Effects of soil water decline on diurnal and seasonal variations in sap flux density for differently aged Japanese cypress (Chamaecyparis obtusa) trees

Authors

  • Kenji Tsuruta Soil Resources Laboratory, Department of Forest Soils, Forestry and Forest Products Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
  • Tomonori Kume School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan
  • Hikaru Komatsu Graduate School of Education, Kyoto University, Kyoto 606- 8501, Japan
  • Kyoichi Otsuki Kasuya Research Forest, Kyushu University, Sasaguri, Fukuoka 811-2415, Japan

DOI:

https://doi.org/10.15287/afr.2017.938

Keywords:

Chamaecyparis obtusa, soil drought, sap flux density, transpiration, water deficit, tree age

Abstract

The effects of soil drought on transpiration are often neglected when predicting transpiration for forests in humid regions under the influence of the Asian monsoon. These effects have indeed been neglected for Japanese cypress, Chamaecyparis obtusa, a major plantation species in Japan and the surrounding area, probably because previous studies have reported no clear effects of soil drought on transpiration for Japanese cypress forests. However, a few studies have reported an apparent reduction in transpiration with soil drought for young Japanese cypress forests. It remains unclear whether such a reduction in transpiration is limited to young Japanese cypress forests or if it is not uncommon for mature Japanese cypress forests, which occupy a large area in Japan. To clarify this point, we conducted sap flux measurements in a year with soil drought on three differently aged Japanese cypress stands including mature (43 years old) and relatively young (23 and 26 years old) trees. In a diurnal time scale, a cross correlation analysis of sap flux density (Fd) and vapor pressure deficit (VPD) showed that the time lags between Fd and VPD were 1-3 h in dry soil conditions. These were larger than those of wet soil conditions (<1 h) for all sample trees. Fd at a given VPD in dry soil conditions was smaller than that in wet soil conditions for all sample trees; a 28%–63% reduction in the rate of change in Fd was observed under dry soil conditions. Because our results were obtained when the non-exceedance probability of recorded monthly precipitation was 9%–18%, the results suggest the need to consider the effects of soil drought more extensively. Those effects should be considered for not only relatively young but also mature Japanese cypress when predicting diurnal and seasonal patterns of transpiration in years with soil drought, and when predicting inter-annual patterns of transpiration for Japanese cypress despite humid temperate climate. 

References

Čermák J., Kučera J., Bauerle W.L., Phillips N., Hinckley T.M., 2007. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiology 27: 181-198. DOI: 10.1093/treephys/27.2.181Clearwater M.J., Meinzer FC., Andrade J.L., Goldstein G., Holbrook M., 1999. Potential errors in measurements of nonuniform sap flow using heat dissipation probes. Tree Physiology 19: 681-687. DOI: 10.1093/treephys/19.10.681Delzon S., Sartore M., Burlett R., Dewar R., Loustau D., 2004. Hydraulic responses to tree height growth in maritime pine. Plant Cell and Environment 27: 1077–1087. DOI: 10.1111/j.1365-3040.2004.01213.xDelzon S., Loustau D., 2005. Age-related decline in stand water use: sap flow and transpiration in a pine forest chronosequence. Agricultural and Forest Meteorology 129:105–119. DOI: 10.1016/j.agrformet.2005.01.002Ewers B.E., Mackay D.S., Tang J., Bolstad P.V., Samanta S., 2008. Intercomparison of sugar maple (Acer saccharum Marsh.) stand transpiration responses to en­vironmental conditions from the Western Great Lakes Region of the United States. Agricultural and Forest Meteorology 148: 231-246. DOI: 10.1016/j.agrformet.2007.08.003Ford C.R., Vose J.M., 2007. Tsuga Canadensis (L.) Carr. mortality will impact hydrological processes in southern Appalachian forest ecosystems. Ecological Applica­tions 17: 1156–1167. DOI: 10.1890/06-0027Goldstein G., Andrade J.L., Meinzer F.C., Holbrook N.M., Cavelier J., Jackson P., Celis A., 1998. Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant Cell and Environment 21: 397–406. DOI: 10.1046/j.1365-3040.1998.00273.xGranier A., 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology 3: 309–320. DOI: 10.1093/treephys/3.4.309Hattori S., Tamai K., Abe T., 1993. Effects of soil moisture and vapor pressure deficit on evapotranspiration in a hinoki plantation. Journal of the Japanese Forest Society 75:216–224 [In Japanese with English summary].Hentschel R., Bittner S., Janott M., Briernath C., Holst J., Pedro Ferrio J., Gessler A., Priesack E., 2013. Sim­ulation of stand transpiration based on a xylem water flow model for individual trees. Agricultural and Forest Meteorology 182–183: 31–42. DOI: 10.1016/j.agr­formet.2013.08.002Hubbard R.M., Bond B.J., Ryan M.G., 1999. Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees. Tree Physiology 19: 165–172. DOI: 10.1093/treephys/19.3.165Irvine J., Law B.E., Anthoni P.M., Meinzer F.C., 2002. Water limitations to carbon exchange in old-growth and young ponderosa pine stands. Tree Physiology 22: 189–196 DOI: 10.1093/treephys/22.2-3.189Irvine J., Law B.E., Kurpius M.R., Anthoni P.M., Moore D., Schwarz P.A., 2004. Age-related changes in ecosystem structure and function and effects on water and carbon exchange in ponderosa pine. Tree Physiology 24: 753–763. DOI: 10.1093/treephys/24.7.753Irvine J., Law B.E., Martin J.G., Vickers D., 2008. Interannual variation in soil CO2 efflux and the response of root respiration to climate and canopy gas exchange in mature ponderosa pine. Global Change Biology 14: 2848–2859. DOI: 10.1111/j.1365-2486.2008.01682.xJapan Forestry Agency, 2012. Current state of forest re­sources. Web: http://www.rinya.maff.go.jp/j/sin_riyou/ kafun/data.html [In Japanese]. Accessed: 11.2017.Jarvis P.G., 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London. Series B, Biology Sciences 273: 593–610. DOI: 10.1098/rstb.1976.0035Jarvis P.G., McNaughton K.G., 1986. Stomatal control of transpiration: scaling up from leaf to region. Advances in Ecological Research 15: 1–49. DOI: 10.1016/S0065- 2504(08)60119-1Jasechko S., Sharp Z.D., Gibson J.J., Birks J.S., Yi Y., Fawcett P.J., 2013. Terrestrial water fluxes dominated by transpiration. Nature 496: 347–350. DOI: 10.1038/ nature11983Jones HG., 2014. Plants and microclimate, Cambridge University Press, Cambridge, 407 p.Komatsu H., Kang Y., Kume T., Yoshifuji N., Hotta N., 2006. Transpiration from a Cryptomeria japonica plantation, part 2: responses of canopy conductance to meteorological factors. Hydrological Processes 20: 1321–1334. DOI: 10.1002/hyp.6094Komatsu H., Maita E., Otsuki K., 2008. A model to es­timate annual forest evapotranspiration in Japan from mean annual temperature. Journal of Hydrology 348:330–340. DOI: 10.1016/j.jhydrol.2007.10.006Komatsu H., Kume T., Otsuki K., 2010. A simple model to estimate monthly evapotranspiration in Japan from monthly temperature. Hydrological Processes 24: 1896–1911. DOI: 10.1002/hyp.7622Komatsu H., Shinohara Y., Kumagai T., Kume T., Tsuruta K., Xiang Y., Ichihashi R., Tateishi M., Shimizu T., Miyazawa Y., Nogata M., Laplace S., Han T., Chiu C.W., Ogura A., Saito T., Otsuki K., 2014. A model relating transpiration for Japanese cedar and cypress plantations with stand structure. Forest Ecology and Management 334: 301–312. DOI: 10.1016/j.foreco.2014.08.041Kosugi Y., Takanashi S., Matsuo N., Tanaka K., Tanaka H., 2006. Impact of leaf physiology on gas exchange in a Japanese evergreen broad-leaved forest. Agricultural and Forest Meteorology 139:182–199. DOI: 10.1016/j. agrformet.2006.06.009Kosugi Y., Takanashi S., Tanaka H., Ohkubo S., Tani M., Yano M., Katayama T., 2007. Evapotranspiration over a Japanese cypress forest. I. eddy covariance fluxes and surface conductance characteristics for 3 years. Journal of Hydrology 337: 269–283. doi: 10.1016/j. jhydrol.2007.01.039Kosugi Y., Katsuyama M., 2007. Evapotranspiration over a Japanese cypress forest. II. Comparison of the eddy covariance and water budget methods. Journal of Hydrol­ogy 334: 305–311. DOI: 10.1016/j.jhydrol.2006.05.025Kosugi Y., Takanashi S., Ueyama M., Ohkubo S., Tanaka H., Matsumoto K., Yoshifuji N., Ataka M., Sakabe A., 2013. Determination of the gas exchange phenology in an evergreen coniferous forest from 7 years of eddy covariance flux data using an extended big-leaf analysis. Ecological Research 28: 73–385. DOI: 10.1007/ s11284-012-1019-4Kumagai T., 2001. Modeling water transportation and storage in sapwood - model development and validation. Agricultural and Forest Meteorology 109: 105– 115. DOI: 10.1016/S0168-1923(01)00261-1Kumagai T., Tateishi M., Shimizu T., Otsuki K., 2008. Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed. Agri­cultural and Forest Meteorology 148: 1444–1455. DOI: 10.1016/j.agrformet.2008.04.010Kumagai T., Aoki S., Otsuki K., Utsumi Y., 2009. Impact of stem water storage on diurnal estimated of whole-tree transpiration and canopy conductance form sap flow measurements in Japanese cedar and Japanese cypress trees. Hydrological Processes 23: 2335–2344. DOI: 10.1002/hyp.7338Kume T., Takizawa H., Yoshifuji N., Tanaka K., Tantasirin C., Tanaka N., Suzuki M., 2007. Impact of soil drought on sap flow and water status of evergreen trees in a trop­ical monsoon forest in northern Thailand. Forest Ecol­ogy and Management 238: 220–230. DOI: 10.1016/j. foreco.2006.10.019Kume T., Tanaka N., Kuraji K., Komatsu H., Yoshifuji N., Saitoh T.M., Suzuki M., Kumagai T., 2010. Ten-year evapotranspiration estimates in a Bornean Tropical forest. Agricultural and Forest Meteorology 151: 1183– 1192. DOI: 10.1016/j.agrformet.2011.04.005Law B.E., Goldstein A.H., Anthoni P.M., Unsworth M.H., Panek J.A., Bauer M.R., Fracheboud J.M., Hultman N., 2001. Carbon dioxide and water vapor exchange by young and old ponderosa pine ecosystems during a dry summer. Tree Physiology 21: 299–308. DOI: 10.1093/ treephys/21.5.299Law B.E., Falge E., Gu L., Baldocchi D.D., Bakwin P., Berbigier P., Davis K., Dolman A.J., Falk M., Fuentes J.D., Goldstein A., Granier A., Grelle A., Hollinger D., Janssens IA., Jarvis P., Jensen NO., Katul G., Malhi Y., Matteucci G., Meyers T., Monson R., Munger W., Oechel W., Olson R., Pilegaard K., Paw U K.T., Thorgeirsson H., Valentini R., Verma S., Vesala T., Wilson K., Wofsy S., 2002. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology 113: 97–120. DOI: 10.1016/S0168-1923(02)00104-1Lu P., Müller W.J., Chacko E.K., 2000. Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water condi­tions. Tree Physiology 20: 683–692. DOI: 10.1093/ treephys/20.10.683Monteith J.L., Unsworth M., 1990. Principles of Environmental Physics, Arnold, London, 422 p.Morikawa Y., Hattori S., Kiyono Y., 1986. Transpiration of a 31-year-old Chamaecyparis obtusa Endl. stand before and after thinning. Tree Physiology 2: 105–114. DOI: 10.1093/treephys/2.1-2-3.105Murakami S., Tsuboyama Y., Shimizu T., Fujieda M., Noguchi S., 2000. Variation of evapotranspiration with stand age and climate in a small Japanese forested catchment. Journal of Hydrology 227: 114–127. DOI: 10.1016/S0022-1694(99)00175-4Nagakura J., Shigenaga H., Akama A., Takahashi M., 2004. Growth and transpiration of Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) seeding in response to soil water content. Tree Physiology 24: 1203–1208. DOI: 10.1093/ treephys/24.11.1203Ohnuki Y., Terazono R., Ikuzawa H., Hirata I., Kannna K., Utagawa H., 1997. Distribution of colluvia and saprolites and their physical properties in a zero-order basin in Okinawa, southwestern Japan. Geoderma 80: 75–93. DOI: 10.1016/S0016-7061(97)00076-1Pataki D.E., Oren R., Smith W.K., 2000. Sap flux of co-occurring species in a western subalpine forest during seasonal soil drought. Ecology 81: 2557–2556. DOI: 10.1890/0012-9658(2000)081[2557:SFOCOS]2.0. CO;2Phillips N., Nagchaudhuri A., Oren R., Katul G., 1997. Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow. Trees 11: 412–419. DOI: 10.1007/ s004680050102Phillips N., Oren R., Zimmermann R., Wright S.J., 1999. Temporal patterns of water flux in trees and lianas in a Panamanian moist forest. Trees 24: 116–123. DOI: 10.1007/s004680050216Phillips N., Bond B.J., McDowell N.G., Ryan MG., 2002. Canopy and hydraulic conductance in young, mature and old Douglas-fir trees. Tree Physiology 22: 205–211. DOI: 10.1093/treephys/22.2-3.205Phillips N., Ryan M.G., Bond B.J., McDowell N.G., Hinckley T.M., Čermák J., 2003. Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiology 23: 237–245. DOI: 10.1093/treephys/23.4.237Phillips N.G., Oren R., Licata J., Linder S., 2004. Time series diagnosis of tree hydraulic characteristics. Tree Physiology 24: 879–890. DOI: 10.1093/treeph­ys/24.8.879Ruehr N.K., Martin J.G., Law B.E., 2012. Effects of water availability on carbon and water exchange in a young ponderosa pine forest: Above- and belowground re­sponses. Agricultural and Forest Meteorology 164: 136–148. DOI: 10.1016/j.agrformet.2012.05.015Schlesinger W.H., Jasechko S., 2014. Transpiration in the global water cycle. Agricultural and Forest Meteorology 189–190: 115–117. DOI: 10.1016/j.agr­formet.2014.01.011Sawano S., Hotta N., Tanaka N., Tsuboyama Y., Suzuki M., 2015. Development of a simple forest evapotrans­piration model using a process-oriented model as a ref­erence to parameterize data from a wide range of environmental conditions. Ecological Modelling 309–310: 93–109. DOI: 10.1016/j.ecolmodel.2015.04.011Shiiba M., Tachikawa Y., Ichikawa Y., 2010. Hydrology, Morikita, Tokyo, 224 p. [In Japanese].Shinohara Y., Komatsu H., Otsuki K., 2008. Meteorological characteristics of Ochozu Experimental Watershed, Kyushu University Forest, Fukuoka, Japan. Bulletin of the Kyushu University Forests 89: 39–50 [In Japanese with English summary].Sun X., Onda Y., Otsuki K., Kato H., Hirata A., Gomi T., 2014. The effects of strip thinning on tree transpiration in a Japanese cypress (Chamaecyparis obtusa Endl.) plantation. Agricultural and Forest Meteorology 197: 123–135. DOI: 10.1016/j.agrformet.2014.06.011Tadaki Y., Kagawa T., 1968. Studies on the production structure on forest (XIII). Seasonal change of litter-fall in some evergreen stands. Journal of the Japanese Forest Society 50: 7–13 [In Japanese with English summary].Tanaka K., Tanaka H., Nakamura A., Ohte N., Komashi S., 1996. Conductance at a community level and characteristics of CO2 exchange in a hinoki (Chamaecyparis obtusa) stand. Journal of the Japanese Forest Society 78: 266–272 [In Japanese with English summary].Tanaka K., Kosugi Y., Nakamura A., 2002. Impact of leaf physiological characteristics on seasonal variation in CO2, latent and sensible heat exchanges over a tree plantation. Agricultural and Forest Meteorology 114: 103–122. DOI: 10.1016/S0168-1923(02)00128-4Tateishi M., Xiang Y., Saito T., Otsuki K., Kasahara T., 2015. Changes in canopy transpiration of Japanese cypress and Japanese cedar plantations because of selective thinning. Hydrological Processes 29: 5088–5097. DOI: 10.1002/hyp.10700Tsuruta K., Kume T., Komatsu H., Higashi N., Kumagai T., Otsuki K., 2008. Relationship between tree height and transpiration for individual Japanese cypress (Chamaecyparis obtusa). Journal of Japan Society of Hydrology and Water Resources 21: 414–422 [In Japanese with English summary]. DOI: doi.org/10.3178/ jjshwr.21.414Tsuruta K., Kume T., Komatsu H., Higashi N., Ume­bayashi T., Kumagai T., Otsuki K., 2010. Azimuthal variations of sap flux density within Japanese cypress xylem trunks and their effects on tree transpiration estimates. Journal of Forest Research 15: 398–403. DOI: 10.1007/s10310-010-0202-0Tsuruta K., Komatsu H., Kume T., Shinohara Y., Otsuki K., 2015. Canopy transpiration in two Japanese cypress forests with contrasting structures. Journal of Forest Research 20: 464–474. DOI: 10.1007/s10310-015-0495-0Ueda M., Yoshikawa K., 1994. Effects of summer dry-pe­riod on sap water movement in a tree trunk of Liquidamber formosana HANCE. Journal of the Japanese Forest Society 76: 249–257 [In Japanese with English summary].Umebayashi T., Utsumi Y., Koga S., Inoue S., Shiiba Y., Arakawa K., Matsumura J., Oda K., 2007. Optimal conditions for visualizing water-conducting pathways in a living tree by the dye injection method. Tree Physiology 27: 993–999. DOI: 10.1093/treephys/27.7.993Umebayashi T., Utsumi Y., Koga S., Inoue S., Fujikawa S., Arakawa K., Matsumura J., Oda K., 2008. Conducting pathways in north temperate deciduous broadleaved trees. IAWA Journal 29: 247–263. DOI: 10.1163/22941932-90000184Utsugi H., Araki M., Kawasaki T., Ishizuka M., 2001. Estimation of seasonal change is leaf area index for a Chamaecyparis obtusa stands. Journal of the Japanese Forest Society 83: 359–362 [In Japanese with English summary].Watanabe T., Yokozawa M., Emori S., Tanaka K., Sumida A., Hara T., 2004. Developing a multilayered integrated numerical model of surface physics – growing plants interaction (MINoSGI). Global Change Biology 10: 963–982. DOI: 10.1111/j.1529-8817.2003.00768.xYoshinaga S., Ohnuki Y., 1995. Estimation of soil physical properties from handy dynamic cone penetration test. Journal of the Japan Society of Erosion Control Engineering 48: 22–28 [In Japanese with English summary].

Downloads

Published

2018-01-08

Issue

Section

Research article