Spatial distribution of genetic diversity in populations of Hagenia abyssinica (Bruce) J.F. Gmel from Ethiopia
DOI:
https://doi.org/10.15287/afr.2016.740Keywords:
AFLPs, genetic diversity, kinship coefficient, population differentiation, recolonization, spatial genetic structureAbstract
Genetic variation among 596 individuals from 22 natural and 3 planted populations of Hagenia abyssinica (Rosaceae) sampled from the montane forests of Ethiopia was investigated at amplified fragment length polymorphism (AFLP) loci. We observed 106 unequivocally scorable AFLP markers out of which 91.5 percent were polymorphic. Populations harbored varying genetic diversities (He = 0.139-0.362), and showed low but significant genetic differentiation among them (FST = 0.077). Significant differentiation was observed even though previous paleoecological studies indicated that Hagenia abyssinica recolonized Ethiopia only after the Last Glacial Maximum, and our earlier analyses of maternally inherited chloroplast DNA revealed low mixing of recolonizing lineages through seeds and rare long distance seed dispersal. Genetic diversity did not decrease along recolonization routes, confirming effective gene flow, most likely through pollen, among populations. The observed variation at putatively neutral AFLPs does not reflect clinal variation patterns. As expected, population differentiation is lower at anonymous, mostly biparentally inherited, AFLPs than at maternally inherited chloroplast haplotypes. Despite presumably efficient seed and pollen dispersal of H. abyssinica by wind, a significant non-random fine-scale spatial genetic structure was observed up to 80 m in some populations. Due to significant pair-wise differentiation observed between populations, as many populations as possible should be considered for conservation, tree improvement and forestation programs.References
Austerlitz F., Mariette S., Machon N., Gouyon P-H., Godelle B., 2000. Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics 154:1309-1321.
Ayele T.B., Gailing O., Finkeldey R., 2011. Assessment and integration of genetic, morphological and demographic variation in Hagenia abyssinica (Bruce) J.F. Gmel to guide its conservation. Journal of Nature Conservation 19: 8-17. DOI: 10.1016/j.jnc.2010.03.001.
Ayele T.B., Gailing O., Umer M., Finkeldey R., 2009. Chloroplast DNA haplotype diversity and postglacial recolonization of Hagenia abyssinica (Bruce) J.F. Gmel in Ethiopia. Plant Systematics and Evolution 280: 175-185. DOI: 10.1007/s00606-009-0177-5.
Bawa K.S., Krugman S.L., 1990. Reproductive biology and genetics of tropical trees in relation to conservation and management. In: Gomez-Pampa A., Whitmore T.C., Hadley M. (eds), Rain Forest Regeneration and Management, The Parthenon Publishing Group, pp. 119-136.
Beuning K.R.M., Talbot M.R., Kelts, K., 1997. A revised 30,000-year paleoclimatic and paleohydrologic history of Lake Albert, East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 136:259-279. DOI: 10.1016/S0031-0182(97)00034-5
Bonnefille R., Riollet G., Buchet G., Icole M., Lafont R., Arnold M., Jolly, D., 1995. Glacial/interglacial record from intertropical Africa, high resolution pollen and carbo data at Rusaka, Burundi. Quaternary Science Reviews 14:917-936. DOI: 10.1016/0277-3791(95)00071-2
Cao C.P., Finkeldey R., Siregar I.Z., Siregar U.J., and Gailing O., 2006. Genetic diversity within and among-populations of Shorea leprosula Miq. and Shorea parvifolia Dyer (Dipterocarpaceae) in Indonesia detected by AFLPs. Tree Genetics & Genomes 2:225–239. DOI: 10.1007/s11295-006-0046-0
Castillo-Cárdenas M.F., Toro-Perea N., Cárdenas-Henao H., 2005. Population genetic structure of neotropical Mangrove species on the Colombian Pacific Coast: Pelliciera rhizophorae (Pellicieraceae). Biotropica 37:266-273. DOI: 10.1111/j.1744-7429.2005.00036.x
Cavers S., Degen B., Caron H., Lemes M.R., Margis R., Salgueiro F., Lowe A.J., 2005. Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity 95:281–289. DOI: 10.1038/sj.hdy.6800709
Coart E., Van Glabeke S., Petit R.J., Van Bockstaele E., Roldán-Ruiz I., 2005. Range wide versus local patterns of genetic diversity in hornbeam (Carpinus betulus L.). Conservation Genetics 6:259-273. DOI: 10.1007/s10592-004-7833-7
Coart E., Vekemans X., Smulders M.J.M., Wagner I., Huylenbroeck J.V., Bockstaele E.V., Roldán-Ruiz I., 2003. Genetic variation in the endangered wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers. Molecular Ecology 12:845-857. DOI: 10.1046/j.1365-294X.2003.01778.x
Comps B., Gömöry D., Letouzey J., Thiebaut B., Petit R.J., 2001. Diverging trends between heterozygosity and allelic richness during post glacial colonization in the European beech. Genetics 157:389-397.
Demesure B., Guerroué B.L., Lucchi G., Prat D., Petit R-J., 2000. Genetic variability of a scattered temperate forest tree: Sorbus torminalis L. (Crantz). Annals of Forest Science 57:63-71. DOI: 10.1051/forest:2000101
Derero A., 2007. Genetic variation in Cordia africana Lam. in Ethiopia. PhD Dissertation, Georg-August University of Göttingen.
Excoffier L., Laval G., Schneider S., 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1:47-50.
Ekramoddoullah A.K.M., Liu J.J., 2008. Molecular mapping of the Pinus monticola Cr2 gene using AFLP and SCAR markers. Annals of Forest Research 51: 147-148.
Feyissa T., Nybom H., Bartish I.V., Welander M., 2007. Analysis of genetic diversity in the endangered tropical tree species Hagenia abyssinica using ISSR markers. Genetic Resources and Crop Evolution 54:947-958. DOI: 10.1007/s10722-006-9155-8
Fichtl R., Admasu A., 1994. Honeybee flora of Ethiopia. DED – Margraf Verlag, Weikersheim.
Finkeldey R., Hattemer H.H., 2007. Tropical Forest Genetics. Springer-Verlag, Berlin. DOI: 10.1007/978-3-540-37398-8
Hamrick J.L., Godt M.J.W., Sherman-Broyles S.L., 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6:95-124. DOI: 10.1007/BF00120641
Hardy O.J., Maggia L., Bandou E., Breyne P., Caron H., Chevallier M-H., Doligez A., Dutech C., Kremer A., Latouche-Hallé C., Troispoux V., Veron V., Degen B., 2006. Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Molecular Ecology 15:559–571. DOI: 10.1111/j.1365-294X.2005.02785.x
Hardy O.J., 2003. Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Molecular Ecology 12:1577–1588. DOI: 10.1046/j.1365-294X.2003.01835.x
Hardy O.J., Vekemans X., 2002. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2:618-620. DOI: 10.1046/j.1471-8286.2002.00305.x
Hedberg O., 1989. Rosaceae. In: Hedberg I., Edwards S. (eds), Flora of Ethiopia, Vol. 3, Pittosporaceae to Arralaceae. Addis Abeba, Ethiopia.
Hoffmann A.A., Blows M.W., 1994. Species borders: ecological and evolutionary perspectives. Trends in Ecology & Evolution 9:223-227. DOI: 10.1016/0169-5347(94)90248-8
Huh M.K., Huh H.W., Back K., 2005. Genetic diversity and population structure of Acanthopanax sessiliflorus (Araliaceae) using AFLP. Korean Journal of Genetics 27:71-79.
Jump A.S., Pe-uelas J., 2007. Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the wind-pollinated tree, Fagus sylvatica. Molecular Ecology 16:925–936. DOI: 10.1111/j.1365-294X.2006.03203.x
Kebede M., Ehrich D., Taberlet P., Nemomissa S., Brochmann C., 2007. Phylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and Tropical East African mountains. Molecular Ecology 16:1233–1243. DOI: 10.1111/j.1365-294X.2007.03232.x
Kumilign A., 2005. Estimation of sex-related genetic diversity of Hagenia abyssinica (Bruce) J.F. Gmel. M.Sc. Dissertation, Addis Ababa University.
Lagercrantz U., Ryman N., 1990. Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation. Evolution 44:38-53. DOI: 10.2307/2409523
Lara-Gomez G., Gailing O., Finkeldey R., 2005. Genetic variation in isolated Mexican populations of the endemic maple Acer skutchii Rehd. Allgemeine Forst und Jagdzeitung 176:97-103.
Li P., Adams W.T., 1989. Range-wide patterns of allozyme variation in Douglas-fir (Pseudotsuga menziesii). Canadian Journal of Forest Research 19:149-161. DOI: 10.1139/x89-022
Loveless M.D., Hamrick J.L., 1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics 15:65–95. DOI: 10.1146/annurev.es.15.110184.000433
Luu H.T., 2005. Genetic variation and the reproductive system of Dipterocarpus cf.
Negash L., 1995. Indigenous trees of Ethiopia: biology, uses and propagation techniques. SLU, Reprocentralen, Umeå.
Nei M., 1987. Molecular evolutionary genetics. Columbia University Press.
Nei M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583-590.
Nybom H., 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13:1143–1155. DOI: 10.1111/j.1365-294X.2004.02141.x
Olago D.O., Street-Perrott F.A., Perrott R.A., Ivanovich M., Harkness D.D., 1999. Late quaternary glacial-interglacial cycle of climatic and environmental change on Mount Kenya. Journal of African Earth Science 29:593-618. DOI: 10.1016/S0899-5362(99)00117-7
Petit R.J., Aguinagalde I., De Beaulieu J-L., Bittkau C., Brewer S., Cheddadi R., Ennos R., Fineschi S., Grivet D., Lascoux M, Mohanty A., Müller-Starck G., Demesure-Musch B., Palmé A., Martín P.J., Rendell S., Vendramin G.G., 2003. Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563-1565. DOI: 10.1126/science.1083264
Rivera-Ocasio E., Aide T.M., Mcmillan W.O., 2002. Patterns of genetic diversity and biogeographical history of the tropical wetland tree, Pterocarpus officinalis (Jacq.), in the Caribbean basin. Molecular Ecology 11:675–683. DOI: 10.1046/j.1365-294X.2002.01476.x
Rohlf F.J., 1998. NTSYS-pc: Numerical taxonomy and multivariate analysis system (Version 2.0). State University of New York, USA.
Sertse D., Gailing O., Eliades N-G., Finkeldey R., 2010. Anthropogenic and natural causes influencing population genetic structure of Juniperus procera Hochst. ex Endl. in the Ethiopian highlands. Genetic Resources and Crop Evolution doi: 10.1007/s10722-010-9623-z. DOI: 10.1007/s10722-010-9623-z
Slatkin M., Barton N.H., 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349-1368. DOI: 10.2307/2409452
Spearman C., 1907. Demonstration of formulae for true measurement of correlation. American Journal of Psychology 18:161–169. DOI: 10.2307/1412408
Tang T., Zhong Y., Jian S.G., Shi S.H., 2003. Genetic diversity of Hibiscus tiliaceus (Malvaceae) in China assessed using AFLP markers. Annals of Botany 92:409-414. DOI: 10.1093/aob/mcg156
Tero N., Aspi J., Siikamäki P., Jäkäläniemi A., 2005. Local genetic population structure in an endangered plant species, Silene tatarica (Caryophyllaceae). Heredity 94:478–487. DOI: 10.1038/sj.hdy.6800642
Umer M., Lamb H.F., Bonnefille R., Lézine A-M., Tiercelin J-J., Gibert E., Gazet J-P., Watrin J., 2007. Late Pleistocene and Holocene vegetation history of the Bale Mountains, Ethiopia. Quaternary Science Reviews 26:2229–2246. DOI: 10.1016/j.quascirev.2007.05.004
Vasilyeva G., Semerikov V., 2014. Application of amplified fragment length polymorphisms markers to study the hybridization between Pinus sibirica and P. pumila. Annals of Forest Research 57(2): 175-180.Vekemans X., Beauwens T., Lemaire M., Roldan-Ruiz I. 2002. Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and a relationship between degree of homoplasy and fragment size. Molecular Ecology 11:139-151. DOI: 10.1046/j.0962-1083.2001.01415.x
Vekemans X., Hardy O.J., 2004. New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology 13:921–935. DOI: 10.1046/j.1365-294X.2004.02076.x
Vos P., Hogers R., Bleeker M., Reijans M., Lee Th Van Der Hornes M., Frijters A., Pot J., Peleman J., Kuiper M., Zabeau M., 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23:4407-4414. DOI: 10.1093/nar/23.21.4407
White T.L., Adams W.T., Neale D.B., 2007. Forest Genetics. CABI Publishing, Wallingford and Cambridge. DOI: 10.1079/9781845932855.0000
Wright S. 1969. Evolution and the Genetics of Populations. Vol. 2. The theory of gene frequencies. University of Chicago Press, Chicago.
Wright S., 1931. Evolution in Mendelian populations. Genetics 16:97-159.
Yeh F.C., 2000. Population Genetics. In: Young A., Boshier D., Boyle T., (eds), Forest conservation genetics: principles and practice. CABI Publishing.
Zhivotovsky L.A., 1999. Estimating population structure in diploids with multilocus dominant DNA markers. Molecular Ecology 8:907–913. DOI: 10.1046/j.1365-294x.1999.00620.x
Published
Issue
Section
License
All the papers published in Annals of Forest Research are available under an open access policy (Gratis Gold Open Access Licence), which guaranty the free (of taxes) and unlimited access, for anyone, to entire content of the all published articles. The users are free to “read, copy, distribute, print, search or refers to the full text of these articles”, as long they mention the source.
The other materials (texts, images, graphical elements presented on the Website) are protected by copyright.
The journal exerts a permanent quality check, based on an established protocol for publishing the manuscripts. The potential article to be published are evaluated (peer-review) by members of the Editorial Board or other collaborators with competences on the paper topics. The publishing of manuscript is free of charge, all the costs being supported by Forest Research and Management Institute.
More details about Open Access:
Wikipedia: http://en.wikipedia.org/wiki/Open_access