Research article

Inventory-based estimation of forest biomass in Shitai County, China: A comparison of five methods

X. Tang , L. Fehrmann, F. Guan, D. I. Forrester, R. Guisasola, C. Kleinn

X. Tang
Department of Forest Inventory and Remote Sensing, Burckhardt Institute, Georg-August-Universität Göttingen, 37077 Göttingen, Germany. Email:
L. Fehrmann
Department of Forest Inventory and Remote Sensing, Georg-August-Universität Göttingen, Büsgenweg 5, 37077 Göttingen, Germany
F. Guan
Key laboratory of Bamboo and Rattan, International Centre for Bamboo and Rattan, No.8, Futong Dongdajie, Wangjing, Chaoyang District, Beijing 100102, P. R. China
D. I. Forrester
Department of Silviculture, Faculty of Environment and Natural Resources, Freiburg University, Tennenbacherstr. 4, 79108 Freiburg, Germany
R. Guisasola
Department of Silviculture, Faculty of Environment and Natural Resources, Freiburg University, Tennenbacherstr. 4, 79108 Freiburg, Germany
C. Kleinn
Department of Forest Inventory and Remote Sensing, Georg-August-Universität Göttingen, Büsgenweg 5, 37077 Göttingen, Germany

Online First: April 11, 2016
Tang, X., Fehrmann, L., Guan, F., Forrester, D., Guisasola, R., Kleinn, C. 2016. Inventory-based estimation of forest biomass in Shitai County, China: A comparison of five methods. Annals of Forest Research DOI:10.15287/afr.2016.574

Several comparative studies have reported that there can be great discrepancies between different methods used to estimate forest biomass. With the development of carbon markets, an accurate estimation at the regional scale (i.e. county level) is becoming increasingly important for local government. In this study, we applied five methodologies [continuous biomass expansion factor (CBEF) approach, mean biomass density (MB) approach, mean biomass expansion factor (MBEF) approach, national continuous biomass expansion factors (NCBEF) proposed by Fang et al (2002), standard IPCC approach] to estimate the total biomass for Shitai County, China. The CBEF is generally considered to provide the most realistic estimates in term of regional biomass because CBEF reflects the change of BEF to stand density, stand age and site conditions. The forests of the whole county were divided into four forest types, namely Chinese fir plantations (CF), hardwood broadleaved forests (HB), softwood–broadleaved forests (SB) and mason pine forests (MP) according to the local forest management inventory of 2004. Generally, the MBEF approach overestimated forest biomass while the IPCC approach underestimated forest biomass for all forest types when CBEF derived biomass was used as a control. The MB approach provided the most similar biomass estimates for all forest types and could be an alternative approach when a CBEF equation is lacking in the study area. The total biomass derived from MBEF was highest at 1.44×107 t, followed by 1.32 ×107 t from CBEF, 1.31 ×107 t from NCBEF, 1.25 ×107 t from MB and 1.16 ×107 t from IPCC. Our results facilitate method selection for regional forest biomass estimation and provide statistical evidence for local government planning to enter the potential carbon market.

Bettelli P., Carpenter C., Davenport D., Doran P., Wise S., 1997. Report of the Third Conference of the Parties to the United Nations Framework Convention on Climate Change: 1–11 December 1997. Earth Negotiations Bulletin 12:1-16.

Bonan G.B. 2008. Forests and climate change: forcings, feedbacks, and theclimate benefits of forests. Science 320:1444-1449. DOI: 10.1126/science.1155121.

Brown S., Lugo A.E. 1984. Biomass of tropical forests: a new estimate based on forest volumes. Science 223:1290-1293. DOI: 10.1126/science.223.4642.1290.

Brown S.L., Schroeder P., Kern J.S. 1999. Spatial distribution of biomass in forests of the eastern USA. For Ecol Manag 123:81-90. DOI: 10.1016/S0378-1127(99)00017-1.

Correia A.C., Tome M., Pacheco C.A., Faias S., Dias A.C., Freire J., Carvalho P.O., Pereira J.S. 2010. Biomass allometry and carbon factors for a Mediterranean pine (Pinus pinea L.) in Portugal. Forest Systems 19:418-433.

Dixon R.K., Solomon A.M., Brown S., Houghton R.A., Trexier M.C., Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science 263:185-190. DOI: 10.1126/science.263.5144.185.

Fang J., Chen A., Zhao Z. 2002. Calculating forest biomass changes in China-response. Science 296:1359. DOI: 10.1126/science.296.5572.1359a.

Fang J., Oikawa T., Kato T., Mo W., Wang Z. 2005. Biomass carbon accumulation by Japan’s forests from 1947 to 1995. Global Biogeochem Cycles 19:GB2004. DOI: 10.1029/2004gb002253.

Fang J.Y., Chen A.P., Peng C.H., Zhao S.Q., Ci L. 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292:2320-2322. DOI: 10.1126/science.1058629.

Fang J.Y., Guo Z.D., Piao S.L., Chen A.P., 2007. Terrestrial vegetation carbon sinks in China, 1981-2000. Science in China Series D-Earth Sciences 50:1341-1350. DOI: 10.1007/s11430-007-0049-1.

Fang J.Y., Wang G.G., Liu G.H., Xu S.L. 1998. Forest biomass of China: An estimate based on the biomass-volume relationship. Ecological Applications 8:1084-1091. DOI: 10.2307/2640963.

Fang J.Y., Wang Z.M. 2001. Forest biomass estimation at regional and global levels, with special reference to China’s forest biomass. Ecological Research 16:587-592. DOI: 10.1046/j.1440-1703.2001.00419.x.

Forest Bureau of Shitai County, 2004. Forest resources planning and design survey of Shitai County in 2004, Hefei

Geng T.S., Wang H.H. 2011. Research on the water and soil conservation in Shitai County of Anhui Province. Journal of Anhui Agriculture Science 39:451-452, 482 (in Chinese with English abstract).

González-García M., Hevia A., Majada J., Barrio-Anta M., 2013. Above-ground biomass estimation at tree and stand level for short rotation plantations of Eucalyptus nitens (Deane & Maiden) Maiden in Northwest Spain. Biomass Bioenergy 54:147-157. DOI: 10.1016/j.biombioe.2013.03.019.

Goodale C.L., Apps M.J., Birdsey R.A., Field C.B., Heath L.S., Houghton R.A., Jenkins J.C., Kohlmaier G.H., Kurz W., SR Liu, GJ Nabuurs, S Nilsson, AZ Shvidenko, 2002. Forest carbon sinks in the Northern Hemisphere. Ecological Application 12:891-899. DOI: 10.2307/3060997.

Guisasola-Rodríguez R., 2014. Allometric biomass equations and crown architecture in mixed-species forests of subtropical China, Albert-Ludwigs Universität Freiburg

Guo Z.D., Fang J.Y., Pan Y.D., Birdsey R. 2010. Inventory-based estimates of forest biomass carbon stocks in China: A comparison of three methods. Forest Ecology Management 259:1225-1231. DOI: 10.1016/j.foreco.2009.09.047.

Houghton R.A. 2007. Balancing the Global Carbon Budget. Annual Review of Earth and Planetary Sciences 35:313-347. DOI:10.1146/

IPCC 2003. Good practice guidance for land use, land-use change and forestry, Institute for Global Environmental Strategies

IPCC 2006. IPCC guidelines for national greenhouse gas inventories. IGES, Japan.

IPCC 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

Lehtonen A., Mäkipää R., Heikkinen J., Sievänen R., Liski J. 2004. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology Management 188:211-224. DOI: 1016/j.foreco.2003.07.008.

Li H.K., Zhao P.X., Lei Y.C., Zeng W. 2012. Comparison on estimation of wood biomass using forest inventory data. Scientia Silvae Sinnica 48:44-52 (in Chinese with English abstract).

Lu C.M. 2010. Rock-soil geochemical features for Dashan Area, Shitai, Anhui. Geology of Anhui 20:120-125 (in Chinese with English abstract).

Mutke S., Sievänen R., Nikinmaa E., Perttunen J., Gil L. 2005. Crown architecture of grafted Stone pine (Pinus pinea L.): shoot growth and bud differentiation. Trees 19:15-25. DOI: 10.1007/s00468-004-0346-7.

Pajtík J., Konôpka B., Lukac M. 2008. Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. Forest Ecology Management 256:1096-1103. DOI: 10.1016/j.foreco.2008.06.013.

Pan Y., Birdsey R.A., Fang J., Houghton R., Kauppi P.E., Kurz W.A., Phillips O.L., Shvidenko A., Lewis S.L., Canadell J.G., Ciais P., Jackson R.B., Pacala S.W., McGuire A.D., Piao S., Rautiainen A., Sitch S., Hayes D. 2011. A large and persistent carbon sink in the world’s forests. Science 333:988-993. DOI: 10.1126/science.1201609.

Pan Y.D., Luo T.X., Birdsey R., Hom J., Melillo J. 2004. New estimates of carbon storage and sequestration in China’s forests: Effects of age-class and method on inventory-based carbon estimation. Climate Change 67:211-236. DOI: 10.1007/s10584-004-2799-5.

Petersson H., Holm S., Stahl G., Alger D., Fridman J., Lehtonen A., Lundstrom A., Makipaa R. 2012. Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass - A comparative study. Forest Ecology Management 270:78-84. DOI: 10.1016/j.foreco.2012.01.004.

R Core Team 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL Accessed accessed on 6 March, 2015

Schroeder P., Brown S., Mo J.M., Birdsey R., Cieszewski C. 1997. Biomass estimation for temperate broadleaf forests of the United States using inventory data. For est Science 43:424-434.

Seo Y.O., Lee Y.J., Lumbres R.I.C., Pyo J.K., Kim R.H., Son Y.M., Lee K.H. 2013. Influence of stand age class on biomass expansion factor and allometric equations for Pinus rigida plantations in South Korea. Scand J For Res 28:566-573. DOI: 10.1080/02827581.2013.786126.

Sharp D.D., Lieth H., Whigham D. 1975. Assessment of regional productivity in North Carolina. In: Whittaker HLRH (ed.), Primary productivity of the biosphere. Springer, pp. 131-146.

Tang X., Lu Y., Fehrmann L., Forrester D.I., Guisasola-Rodríguez R., Pérez-Cruzado C., Kleinn C. 2015. Estimation of stand-level aboveground biomass dynamics using tree ring analysis in a Chinese fir plantation in Shitai County, Anhui Province, China. New Forests 10.1007/s11056-015-9518-0:1-14. DOI: 10.1007/s11056-015-9518-0.

Teobaldelli M., Somogyi Z., Migliavacca M., Usoltsev V.A. 2009. Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. Forest Ecology and Management 257:1004-1013. DOI: 10.1016/j.foreco.2008.11.002.

Turner D.P., Koerper G.J., Harmon M.E., Lee J.J. 1995. A carbon budget for forests of the conterminous United States. Ecological Applications 5:421-436. DOI: 10.2307/1942033.

Wang X., Fang J., Zhu B. 2008. Forest biomass and root-shoot allocation in northeast China. Forest Ecology and Management 255:4007-4020. DOI: 10.1016/j.foreco.2008.03.055.

Whittaker R.H., Likens G.E. 1973 Carbon in the biota. In: Woodwell GM, Pecan EV (eds.), Brookhaven Symp Biol. Technical Information Center, Office of Information Services, US Atomic Energy Commission, Springfield, VA, USA, pp. 281-302.

Woodwell G.M. 1978. The carbon dioxide question. Scientific American 238:34-43.

Yin G., Zhang Y., Sun Y., Wang T., Zeng Z., Piao S. 2015. MODIS Based Estimation of Forest Aboveground Biomass in China. PLoS One 10:e0130143. DOI: 10.1371/journal.pone.0130143.

Yu D., Wang X., Yin Y., Zhan J., Lewis B.J., Tian J., Bao Y., Zhou W., Zhou L., Dai L. 2014. Estimates of forest biomass carbon storage in Liaoning Province of Northeast China: a review and assessment. PLoS One 9:e89572. DOI: 10.1371/journal.pone.0089572.

No Supplimentary Material available for this article.
No metrics available for this article.

Related Articles

Related Authors


In Google Scholar

In Annals of Forest Research

In Google Scholar

  • X. Tang
  • L. Fehrmann
  • F. Guan
  • D. I. Forrester
  • R. Guisasola
  • C. Kleinn
  • X. Tang
  • L. Fehrmann
  • F. Guan
  • D. I. Forrester
  • R. Guisasola
  • C. Kleinn