Aboveground dendromass allometry of hybrid black poplars for energy crops

Authors

  • Tatiana Stankova Forest Research Institute, Bulgarian Academy of Sciences, Sofia
  • Veselka Gyuleva Forest Research Institute, Bulgarian Academy of Sciences, Sofia
  • Ivaylo Tsvetkov Forest Research Institute, Bulgarian Academy of Sciences, Sofia
  • Emil Popov Forest Research Institute, Bulgarian Academy of Sciences, Sofia
  • Katya Velinova Forest Research Institute, Bulgarian Academy of Sciences, Sofia
  • Emiliya Velizarova Forest Research Institute, Bulgarian Academy of Sciences, Sofia
  • Dimitar N. Dimitrov Forest Research Institute, Bulgarian Academy of Sciences, Sofia
  • Hristina Hristova Forest Research Institute, Bulgarian Academy of Sciences, Sofia
  • Kancho Kalmukov Dept. Experimental Station for Fast Growing Tree Species of Svishtov State Forestry Estate, Svishtov, Bulgaria
  • Proletka Dimitrova Forest Research Institute, Bulgarian Academy of Sciences, Sofia
  • Mariya Glushkova Forest Research Institute, Bulgarian Academy of Sciences, Sofia
  • Ekaterina Andonova Forest Research Institute, Bulgarian Academy of Sciences, Sofia
  • Georgi P. Georgiev Forest Research Institute, Bulgarian Academy of Sciences, Sofia
  • Ivaylo Kalaydzhiev Forest Research Institute, Bulgarian Academy of Sciences, Sofia
  • Hristo Tsakov Forest Research Institute, Bulgarian Academy of Sciences, Sofia

DOI:

https://doi.org/10.15287/afr.2016.552

Keywords:

aboveground dendromass, black poplar hybrids, allometric relationships, lignocellulosic crops, short-rotation plantations

Abstract

Cultivation of energy crops is concerned with estimation of the total lignified biomass (dendromass) production, which is based on the plantation density and individual plant dendromass. The main objective of this study was to investigate the allometry of aboveground leafless biomass of juvenile black poplar hybrids (Populus deltoides x P. nigra ), traditionally used for timber and cellulose production, and to derive generic allometric models for dendromass prediction, relevant to energy crop cultivation in Bulgaria. The study material comprised a variety of growth sites, tree ages and clones, specific to poplar plantings in Bulgaria. We used three principal quantitative predictors: diameter at breast height, total tree height and mean stand (stock) height. The models were not differentiated by clone, because the black poplar hybrids tested were not equally represented in the data, and the inclusion of tree age as a predictor variable seemed unreliable, because of the significant, up to 3 years, variation, which was possible within the narrow age range investigated. We defined the mean stand (stock) height as a composite quantitative variable, which reflected the interaction between the time since planting (age), site quality and the intrinsic growth potential. Stepwise and backward multiple regression analyses were applied to these quantitative variables and their products and sets of adequacy and goodnessof-fit criteria were used to derive individual biomass models for stem and branches. Then we developed compatible additive systems of models for stem, branch and total lignified biomass in log-transformed form. Finally, the prediction data were back-transformed, applying correction for bias, and were cross-validated. Three systems of generic equations were derived to enable flexible model implementation. Equation system M1 proposes a stem biomass model based on tree and stand heights and stem diameter, and a model for branches including mean stand height and breast height diameter; this model displayed the best goodness-of-fit characteristics. Model system M2 uses only the tree height and diameter and therefore is most relevant to dendromass determination in single trees or harvested saplings, while model M3 allows fast and sufficiently accurate biomass estimation of standing  poplar stock, because it employs the average stand height and the individual tree diameters. All models are applicable to predict lignified aboveground biomass of juvenile Populus deltoides x P. nigra trees of diameter up to 21 cm and total height up to 16 m.

References

Ajit, Das D.K., Chaturvedi O.P., Jabeen N., Dhyani S.K., 2011. Predictive models for dry weight estimation of above and below ground biomass components of Populus deltoides in India: Development and comparative diagnosis. Biomass and bioenergy 35: 1145–1152. DOI: 10.1016/ j.biombioe.2010.12.001 Al Afas N., Marron N., Van Dongen S., Laureysens I., Ceulemans R., 2008. Dynamics of biomass production in a poplar coppice culture over three rotations (11 years). ForestEcology and Management 255: 1883–1891. DOI: 10.1016/j.foreco.2007.12.010 Arevalo C.B.M., Volk T.A., Bevilacqua E., Abrahamson L., 2007. Development and validation of aboveground biomass estimations for four Salix clones in central New York. Biomass and Bioenergy 31: 1–12. DOI: 10.1016/j.biombioe.2006.06.012 Arora G., Chaturvedi S., Kaushal R., Nain A., Tewari S., Alam N.M., Chaturvedi O.P., 2014. Growth, biomass, carbon stocks, and sequestration in an age series of Populus deltoides plantations in Tarai region of central Himalaya. Turkish Journal of Agriculture and Forestry 38: 550-560. DOI: 10.3906/tar-1307-94 Burkhart H. E., Tomé M., 2012. Modelling forest trees and stands. Springer Sience+Business Media,Dordrecht, 457p. Canga E.,Diéguez-ArandaU., Afif-Khouri E., Camara-Obregon A., 2013. Above-ground biomass equations for Pinus radiata D. Don inAsturias.ForestSystems 22(3): 408-415. Ceulemans R., Deraedt W., 1999. Production physiology and growth potential of poplars under short-rotation forestry culture.ForestEcology and Management 121: 9 – 23. Ciuvăt A.L., Abrudan I.V., Blujdea V., Dutca I., Nuta I.S., Edu E. 2013. Biomass equations and carbon content of young black locust (Robinia pseudoacacia L.) trees from plantations and coppices on sandy soils in south-western Romanian plain. Notulae Botanicae Horti AgrobotaniciCluj-Napoca41(2):590-592. Clifford D., Cressie N., EnglandJ.R., Roxburgh S.H., Paul K.I., 2013. Correction factors for unbiased, efficient estimation and prediction of biomass from log–log allometric models. ForestEcology and Management 310: 375–381. DOI: 10.1016/j.foreco.2013.08.041 Clutter J. L., Fortson J. C., Pienaar L.V., Brister G. H., Bailey R. L., 1983. Timber management: a quantitative approach. John Wiley & Sons, NY, 333p. Dillen S.Y., Djomo S.N., Al Afas N., Vanbeverea S., Ceulemans R., 2013. Biomass yield and energy balance of a short rotation poplar coppice with multiple clones on degraded land during 16 years. Biomass and bioenergy 56: 157 – 165. DOI: 10.1016/j.biombioe.2013.04.019 Desrochers A., Maurin V., Tarroux E., 2015. Production and role of epicormic shoots in pruned hybrid poplar: effects of clone, pruning season and intensity. Annals ofForestScience 72: 425–434. DOI 10.1007/s13595-014-0443-8 Ericsson К., Nilsson L.J., 2006. Assessment of the potential biomass supply inEuropeusing a resource-focused approach. Biоmass and bioenergy 30: 1 – 15. doi:10.1016/j.biombioe.2005.09 Felix E., Tilley D.R., Felton G., Flaminoc E., 2008. Biomass production of hybrid poplar (Populus sp.) grown on deep-trenched municipal biosolids. Ecological Engineering 33: 8 – 14. DOI: 10. 1016/j.ecoleng.2007.10.009 Fischer M., Trnka M., Kučera J., Fajman M., Žalud Z., 2011. Biomass productivity and water use relation in short rotation poplar coppice (Populus nigra x P. maximowiczii) in the conditions of Czech Moravian Highlands. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, LIX, 6: 141–152. Gadow K.v., Hui G., 1999. ModellingForestDevelopment. Kluwer Academic Publishers,Dordrecht, 217p. Huxley J.S., 1972. Problems of relative growth. 2nd Edition. Dover Publications Inc,New York, 319p. Johansson T., Karačić Al., 2011. Increment and biomass in hybrid poplar and some practical implications. Biomass and Bioenergy 35:, 1925-1934. DOI: 10.1016/j.biombioe.2011.01.040 Krastanov K., Tsakov H., Belyakov P., Fakirov V., Ganchev P., 2004a. Growth and yield tables for Euro-American poplars (P. robusta, 'I 214'). In: Krastanov K, Raykov R (eds) Reference book on dendrobiometry, Bulprofor,Sofia, pp. 493 – 541 (in Bulgarian) Krastanov K., Fakirov V., Belyakov P., Ganchev P., 2004b. Volume and assortment tables for individual trees of Euro-American poplars (P. regenerata, P. robusta, 'I 214'). In: Krastanov K, Raykov R (eds) Reference book on dendrobiometry, Bulprofor,Sofia, pp. 302 – 340 (in Bulgarian) Li H., Zhao P., 2013. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale. ForestEcology and Management 289: 153 – 163. DOI: 10.1016/j.foreco.2012.10.002 Marquet P.A., Qui-ones R.A., Abades S., Labra F., Tognelli M., Arim M., Rivadeneira M., 2005. Scaling and power-laws in ecological systems. Journal of Experimental Biology 208: 1749–1769. DOI: 10.1242/jeb.01588 Marinov, M., Kolarov D., Tsanov Ts., 1982. Unified classification of the sites for poplars and willows inBulgaria. Forestry,Sofia, 12, 9–15. (in Bulgarian) Mathieu A., Cournéde P.H., Letort V., Barthélémy D., Reffye P.d.,2009. Adynamic model of plant growth with interactions between development and functional mechanisms to study plant structural plasticity related to trophic competition. Annals of Botany 103: 1173–1186. doi:10.1093/aob/. Menéndez-Miguélez M., Canga E., Barrio-Anta M., Majada J., Álvarez-Álvarez P., 2013. Athree level system for estimating the biomass of Castanea sativa Mill. coppice stands in north-west Spain. ForestEcology and Management 291: 417–426. DOI: 10.1016/j.foreco.2012.11.040 Paris P., Mareschi L., Sabatti M., Pisanelli A., Ecosse A., Nardin F., Scarascia-Mugnozza G., 2011. Comparing hybrid Populus clones for SRF across northern Italyafter two biennial rotations: Survival, growth and yield. Biomass and bioenergy 35: 1524 – 1532. DOI: 10.1016/j.biombioe. 2010.12.050 Parresol B.R., 1999. Assessing tree and stand biomass: a review with examples and critical comparisons.ForestScience 45: 573–593. Paul K.I., Roxburgh S.H., England J.R., Ritson P., Hobbsg T., Brooksbank K., Raison R.J., Larmour J.S., Murphy S., Norris J., Neumann C., Lewis T., Jonson J., Carter J.L., McArthur G., Barton C., Rosem B. 2013a. Development and testing of allometric equations for estimating above-ground biomass of mixed-species environmental plantings. ForestEcology and Management 310: 483–494. DOI: 10.1016/j.foreco.2013.08.054 Paul K.I., Roxburgh S.H., Ritson P., Hobbsg T., Brooksbank K., England J.R., Larmour J.S., Raison R.J., Peck A., Wildy D.T., Sudmeyer R.A., Giles R., Carter J., Bennett R., Mendham D.S., Huxtable D., Bartle J.R. 2013b. Testing allometric equations for prediction of above-ground biomass of mallee eucalypts in southern Australia. ForestEcology and Management 310: 1005–1015. DOI: 10.1016/j.foreco.2013.09.040 Picard N., Saint-André L., Henry M., 2012. Manual for building tree volume and biomass allometric equations: from field measurement to prediction. Food and Agricultural Organization of the United Nations,Rome, and Centre de Coopération Internationale en Recherche Agronomique pour le Développement,Montpellier, 215p. Pontailler J.Y., Ceulemans R., Guittet J., Mau F., 1997, Linear and non-linear functions of volume index to estimate woody biomass in high density young poplar stands. Annals ofForestScience 54: 335 – 345. Porté A., Trichet P., Bert D., Loustau D. 2002. Allometric relationships for branch and tree woody biomass of Maritime pine (Pinus pinaster Ait.).ForestEcology and Management 158: 71–83. Shaiek O., Loustau D., Trichet P., Meredieu C., Bachtobji B., Garchi S., Hédi EL Aouni M., 2011. Generalized biomass equations for the main aboveground biomass components of maritime pine across contrasting environments. Annals ofForestScience 68:443–452. DOI 10.1007/s13595-011-0044-8. Sileshi G.W., 2014. Acritical review of forest biomass estimation models, common mistakes and corrective measures. ForestEcology and Management 329: 237–254. DOI: 10.1016/j.foreco. 2014.06.026 Sixto H., Hil P., Ciria P., Camps F., Sanchez M., Ca-ellasI., Voltas J., 2014. Performance of hybrid poplar clones in short rotation coppice in Mediterranean environments: analysis of genotypic stability. GCB Bioenergy 6(6): 661-671. DOI: 10.1111/gcbb.12079 Stankova T. V.,Diéguez-ArandaU., 2013. Height-diameter relationships for Scots pine plantations inBulgaria: optimal combination of model type and application. Annals ofForestResearch 56 (1): 149-163 Stankova T., Shibuya M., 2003. Adaptation of Hagihara's competition-density theory to natural birch stands. ForestEcology and Management 186 (1-3): 7-20. DOI: 10.1016/S0378-1127(03)00260-3 Stankova T., Gyuleva V., Popov E., Velinova K., Velizarova E., Dimitrov D.N., Kalmukov K., Glushkova M., Dimitrova P., Hristova H., Andonova E., Georgiev G.P., Kalaydzhiev I., 2015. Allometric relationships for aboveground biomass of juvenile black poplar hybrids. Silva Balcanica 16(2) (in press). Taeroe A., Nord-Larsen T., StupakI., Raulund-Rasmussen K., 2015. Allometric biomass, biomass expansion factor and wood density models for OP42 hybrid poplar in southernScandinavia. Bioenergy Research. doi: 10.107/s12155-015-9592-3 Tsanov Ts., Mikov M., 1997. Catalogue of poplars. Academic publishing house "Tsenov", Svishtov, 110p. (in Bulgarian) Verlinden M.S., Broeckx L.S., Ceulemans R., 2015. First vs. second rotation of a poplar short rotation coppice: Above-ground biomass productivity and shoot dynamics. Biomass and bioenergy 73: 174 – 185. Verónica G., Luis P.P., Gerardo R., 2010. Allometric relations for biomass partitioning of Nothofagus antarcticatrees of different crown classes over a site quality gradient. ForestEcology and Management 259: 1118–1126. DOI: 10.1016/j.foreco.2009.12.025 Walle I.V., Van Camp N., Van de Casteele L., Verheyen K., Lemeur R., 2007. Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) I—Biomass production after 4 years of tree growth. Biomass and bioenergy 31: 267 – 275. doi:10.1016/j.biombioe.2007.01.0 Xiao X., White E.P., Hooten M.B.,DurhamS.L., 2011. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology 92(10): 1887–1894. Zabek L.M., Prescott C.E., 2006. Biomass equations and carbon content of aboveground leafless biomass of hybrid poplar in Coastal British Columbia.ForestEcology and Management 223: 291–302. Zianis D., Muukkonen P., Mäkipää R., Mencuccini M., 2005. Biomass and Stem Volume Equations for Tree Species inEurope. Silva Fennica Monograph 4: 1-63.

Downloads

Published

2016-03-14

Issue

Section

Research article