Research article

Evaluating primary forest fuel rail terminals with discrete event simulation: A case study from Austria

Ulrich J. Wolfsmayr , Rossana Merenda, Peter Rauch, Francesco Longo, Manfred Gronalt

Ulrich J. Wolfsmayr
University of Natural Resources and Life Sciences, Vienna. Email:
Rossana Merenda
University of Calabria, Italy
Peter Rauch
University of Natural Resources and Life Sciences, Vienna
Francesco Longo
University of Calabria, Italy
Manfred Gronalt
University of Natural Resources and Life Sciences, Vienna

Online First: July 13, 2015
Wolfsmayr, U., Merenda, R., Rauch, P., Longo, F., Gronalt, M. 2015. Evaluating primary forest fuel rail terminals with discrete event simulation: A case study from Austria. Annals of Forest Research DOI:10.15287/afr.2015.428

Biomass rail transport is a useful alternative to unimodal truck transport for medium or long transport distances, if only a short road pre-haulage is required. Up to now primary forest fuels (PFF) are rarely transported on the rail network in Austria and rail terminals able to tranship notable volumes are not established yet. The objective of this study is to investigate the potentials of existing transhipment infrastructure for introducing and operating PFF terminals. Such PFF terminals enable a regular PFF supply to bioenergy plants and additionally provide opportunities for buffer storage and production processes like comminution. Three existing railway sidings in South, Central and Western Austria were chosen to serve as a multimodal transhipment hub with a road pre-haulage and a rail main-haulage for this case study. The logistic potential of these terminals was investigated, modelling the specific PFF supply chains, by means of a discrete event simulation. Simulation results provide daily and annual transhipment capacities and revealed bottlenecks in the terminal layout under different supply scenarios.

Anbumozhi V., Gunjima T., Prem Ananth A., Visvanathan C., 2010. An assessment of inter-firm networks in a wood biomass industrial cluster: lessons for integrated policymaking. Clean Technologies and Environmental Policy 12: 365-372. DOI:10.1007/s10098-009-0246-z

Austrian Biomass Association, 2013. Basisdaten Bioenergie 2013,Vienna. 52 p.

Behrends S., 2012. The Significance of the Urban Context for the Sustainability Performance of Intermodal Road-rail Transport. Procedia - Social and Behavioral Sciences 54: 375-386. DOI:10.1016/j.sbspro.2012.09.757

Börjesson P., Gustavsson L., 1996. Regional production and utilization of biomass in Sweden. Energy 21: 747-764. DOI: 10.1016/0360-5442(96)00029-1. DOI:10.1016/0360-5442(96)00029-1

Callahan R.N., Hubbard K.M., BacoskiN.M., 2006. The use of simulation modeling and factorial analysis as a method for process flow improvement. The International Journal of Advanced Manufacturing Technology 29: 202-208. DOI:10.1007/s00170-004-2497-5

Dornburg V., Faaij A.P.C., 2001. Efficiency and economy of wood-fired biomass energy systems in relation to scale regarding heat and power generation using combustion and gasification technologies. Biomass and Bioenergy 21: 91-108. DOI:10.1016/S0961-9534(01)00030-7

Etlinger K., Rauch P., Gronalt M., 2014. Improving rail road terminal operations in the forest wood supply chain – a simualtion based approach. In: Bruzzone, Del Rio Vilas, Longo, Merkuryev, Piera (Eds.), Proceedings of the International Conference on Harbor Maritime and Multimodal Logistics M&S 2014, 199-206

FOROPA, 2014. Accessed 2014-03-05

Gan J., Smith C.T., 2011. Optimal plant size and feedstock supply radius: A modeling approach to minimize bioenergy production costs. Biomass and Bioenergy 35: 3350-3359. DOI:10.1016/j.biombioe.2010.08.062

Gronalt M., Rauch P., 2007. Designing a regional forest fuel supply network. Biomass and Bioenergy 31: 393-402. DOI:10.1016/j.biombioe.2007.01.007

Hamelinck C.N., Suurs R.A.A., Faaij A.P.C., 2005. International bioenergy transport costs and energy balance. Biomass and Bioenergy 29: 114-134. DOI:10.1016/j.biombioe.2005.04.002

Haneder H., Furtner K., 2013. Biomasse-Heizungserhebung 2013. Landwirtschaftskammer Niederösterreich, St. Pölten, 20 p.

Innofreight, 2013. Accessed 2013-04-18

Jäppinen E., Korpinen O.-J., Ranta T., 2013. GHG emissions of forest-biomass supply chains to commercial-scale liquid-biofuel production plants in Finland. GCB Bioenergy 6: 290–299.

Jenkins T.L., Sutherland J.W., 2014. Acost model for forest-based biofuel production and its application to optimal facility size determination. ForestPolicy and Economics 38: 32-39. DOI:10.1016/j.forpol.2013.08.004

Junginger M., Faaij A., van den Broek R., Koopmans A., Hulscher W., 2001. Fuel supply strategies for large-scale bio-energy projects in developing countries. Electricity generation from agricultural and forest residues in Northeastern Thailand. Biomass and Bioenergy 21: 259-275. DOI:10.1016/S0961-9534(01)00034-4

Lindholm E.-L., Berg S., 2005. Energy requirement and environmental impact in timber transport. Scandinavian Journal of ForestResearch 20: 184-191. DOI:10.1080/ 02827580510008329

Lundmark R., 2006. Cost structure of and competition for forest-based biomass. Scandinavian Journal of ForestResearch 21: 272-280. DOI:10.1080/02827580600688251

Madlener R., Bachhiesl M., 2007. Socio-economic drivers of large urban biomass cogeneration: Sustainable energy supply for Austria's capital Vienna. Energy Policy 35: 1075-1087. DOI:10.1016/j.enpol.2006.01.022

Madlener R., Vögtli S., 2008. Diffusion of bioenergy in urban areas: A socio-economic analysis of the Swiss wood-fired cogeneration plant in Basel. Biomass and Bioenergy 32: 815-828.

Ranta T., Rinne S., 2006. The profitability of transporting uncomminuted raw materials in Finland. Biomass and Bioenergy 30: 231-237. DOI:10.1016/j.biombioe.2005.11.012

Rauch P., 2010. Stochastic simulation of forest fuel sourcing models under risk. Scandinavian Journal of ForestResearch 25: 574-584. DOI:10.1080/02827581.2010.512876

Rauch P., Gronalt M., 2010. The terminal location problem in a cooperative forest fuel supply network. International Journal ofForestEngineering 21: 32-40. DOI: 10.1080/14942119.2010.10702596

Sauter P., Witt J., Billig E., Thrän D., 2013. Impact of the Renewable Energy Sources Act in Germanyon electricity produced with solid biofuels – Lessons learned by monitoring the market development. Biomass and Bioenergy 53: 162-171. DOI:10.1016/j.biombioe. 2013.01.014

Searcy E., Flynn P., Ghafoori E., Kumar A., 2007. The relative cost of biomass energy transport. Applied Biochemistry and Biotechnology 137-140: 639-652. DOI:10.1007/s12010-007-9085-8

Tahvanainen T., Anttila P., 2011. Supply chain cost analysis of long-distance transportation of energy wood in Finland. Biomass and Bioenergy 35: 3360-3375. DOI:10.1016/j.biombioe. 2010.11.014

WolfsmayrU., Rauch P., Gronalt M., 2013. Endbericht Intermodales Transportsystem Holzbiomasse (unveröffentlicht). Universität für Bodenkultur, Wien

Wolfsmayr U.J., Rauch P., 2013. Transportketten forstlicher Biomasse – Stand der Technik und Innovationen. Schweizerische Zeitschrift fur Forstwesen 164: 365-373. DOI:10.3188/szf. 2013.0365

Wolfsmayr U.J., Rauch P., 2014a. The primary forest fuel supply chain: A literature review. Biomass and Bioenergy 60: 203-221. DOI:10.1016/j.biombioe.2013.10.025

Wolfsmayr U.J., Rauch P., 2014b. Primary forest fuel supply chain: assessing barriers and drivers for the modal shift from truck to train. Silva Fennica 48. DOI:10.14214/sf.1217

Wolfsmayr U.J., Rauch P., 2014c. Strategy development for regional forest fuel supply chains inSoutheast Europe. in: Austrian Biomass Association (Ed.), Central European Biomass Conference. Austrian Biomass Association,Graz

No Supplimentary Material available for this article.
No metrics available for this article.