Neural network modelling of rainfall interception in four different forest stands
DOI:
https://doi.org/10.15287/afr.2013.37Keywords:
artificial neural network (ANN), throughfall, stemflow, interception, forest standsAbstract
The objective of this study is to reveal whether it is possible to predict rainfall, throughfall and stemflow in forest ecosystems with less effort, using several measurements of rainfall interception (hereafter interception) and an artificial neural network based linear regression model (ANN model). To this end, the Kerpe Research Forest in the province of Kocaeli, which houses stands of mixed deciduous-broadleaf forest (Castanea sativa Mill., Fagus orientalis Lipsky, Quercus spp.), black pine (Pinus nigra Arnold), maritime pine (Pinus pinaster Aiton) and Monterey pine (Pinus radiata D. Don), was selected study site. Four different forest stands were observed for a period of two years, during which rainfall, throughfall and stemflow measurements were conducted. These measurements were separately calculated for each individual stand, based on interception values and the use of stemflow data in strict accordance with the rainfall data, and the measured throughfall interception values were compared with values estimated by the ANN model. In this comparison, 70% of the total data was used for testing, and 30% was used for estimation and performance evaluation. No significant differences were found between values predicted with the help of the model and the measured values. In other words, interception values predicted by the ANN models were parallel with the measured values. In this study, the most success was achieved with the models of the Monterey pine stand (r2 = 0.9968; Mean Squared Error MSE = 0.16) and the mixed deciduous forest stand (r2 = 0.9964; MSE = 0.08), followed by models of the maritime pine stand (r2 = 0.9405; MSE = 1.27) and the black pine stand (r2 = 0.843, MSE = 17.36).Downloads
Published
Issue
Section
License
All the papers published in Annals of Forest Research are available under an open access policy (Gratis Gold Open Access Licence), which guaranty the free (of taxes) and unlimited access, for anyone, to entire content of the all published articles. The users are free to “read, copy, distribute, print, search or refers to the full text of these articles”, as long they mention the source.
The other materials (texts, images, graphical elements presented on the Website) are protected by copyright.
The journal exerts a permanent quality check, based on an established protocol for publishing the manuscripts. The potential article to be published are evaluated (peer-review) by members of the Editorial Board or other collaborators with competences on the paper topics. The publishing of manuscript is free of charge, all the costs being supported by Forest Research and Management Institute.
More details about Open Access:
Wikipedia: http://en.wikipedia.org/wiki/Open_access