Topography affects the natural forest recovery on inland dunes in Central Europe
DOI:
https://doi.org/10.15287/afr.2024.2875Keywords:
land relief, dune areas, sandy soils, Scots pine, forest succession, GIS spatial analysesAbstract
Topography, by spatially altering site conditions, affects ecological processes, e.g. natural forest recovery. Until now the early dynamics of naturally encroaching trees on inland dunes with regard to topography has not been sufficiently studied in detail, and became the aim of our study. To achieve this aim, in 2011 we established a 14.87 ha long-term research site located in the Toruń artillery ground (N Poland), in one of the biggest inland dune fields of Central Europe. We surveyed twice (2011 and 2021) trees occurring in the site, and investigated their characteristics (GPS coordinates, height, diameter, age, annual stem increment, slenderness) regarding 5 topographical variants: north- (N), east- (E), west- (W), and south-facing (S) slopes, as well as intra-dune depressions (D). We found that within the investigated 10 years timespan the number of trees increased almost fourfold (from 560 to 2016). The natural encroaching of trees was the most advanced in north-facing slopes (88 ± 17 and 352 ± 89 trees ha-1 in 2011 and 2021, respectively). In turn, in sunny exposures and in intra-dune depressions the process was the least advanced (in 2021: 64 ± 21 and 25 ± 15 trees ha-1, respectively), which could be primarily linked to unfavourable moisture conditions occurring on south-facing slopes, and strong competitive effect of tall grasses on young trees regarding the depressions. By showing the rate and topographically controlled spatial pattern of trees encroachment, our study can be useful e.g. for practising managers when reforestation of inland dunes by natural means is planned.References
Andrzejczyk T., Milewski M., 2019. Effect of reducing silver birch competition on growth of sessile oak during the thicket stage. Sylwan 163(6): 452–459.
Bennie J., Huntley B., Wiltshire A., Hill M.O., Baxter R.,2008. Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecological Modelling 216(1): 47–59. DOI: 10.1016/j.ecolmodel.2008.04.010
Bielak K., Dudzinska M.,Pretzsch H., 2014. Mixed stands of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst] can be more productive than monocultures. Evidence from over 100 years of observation of long-term experiments. Forest Systems 23(3): 573–589. DOI: 10.5424/FS/2014233-06195
Bolibok L., Andrzejczyk T., 2008. Analysis of birch and pine seedling density in regeneration gaps on the basis of solar radiation model. Sylwan 152(2): 10–19. DOI: https://DOI.org/10.26202/sylwan.2006017
Bose A.K., Schelhaas M.J., Mazerolle M.J., Bongers F., 2014. Temperate forest development during secondary succession: Effects of soil, dominant species and management. European Journal of Forest Research 133(3): 511–523. DOI: 10.1007/S10342-014-0781-Y/TABLES/6
Cantlon J.E., 1953. Vegetation and Microclimates on North and South Slopes of Cushetunk Mountain, New Jersey. Ecological Monographs 23(3): 241–270. DOI: 10.2307/1943593
Cerioni M., Fidej G., Diaci J., Nagel T.A., 2022. Dynamics and drivers of post-windthrow recovery in managed mixed mountain forests of Slovenia. European Journal of Forest Research 141(5): 821–832. DOI: 10.1007/S10342-022-01475-3/FIGURES/5
Chojnacka J., Cyzman W., Nienartowicz A., Deptuła M., 2010. Variability of the structure and directions in the development of heaths and psammophilous grasslands within the artillery range near the city of Toruń. Ecological Questions 12: 89-129. DOI: 10.12775/v10090-010-0006-z
Dobrowolska D., 2008. Natural regeneration on post-fire area in Rudy Raciborskie Forest District. Forest Research Papers 69(3): 255–264.
Dziadowiec H., 1987. The decomposition of plant litter fall in an oak-linden-hornbeam forest and an oak-pine mixed forest of the Białowieża National Park. Acta Societatis Botanicorum Poloniae 56(1): 169–185. DOI: 10.5586/asbp.1987.019
Egli M., Mirabella A., Sartori G., Zanelli R., Bischof S., 2006. Effect of north and south exposure on weathering rates and clay mineral formation in Alpine soils. CATENA 67(3): 155–174. DOI: 10.1016/j.catena.2006.02.010
Elgersma A.M., 1998. Primary forest succession on poor sandy soilsas related to site factors. Biodiversity & Conservation 7(2): 193–206. DOI: 10.1023/A:1008884418570
Faliński J.B., 2003. Long-term studies on vegetation dynamics: some notes on concepts, fundamentals and conditions. Community Ecology 4(1): 107–113. DOI: 10.1556/ComEc.4.2003.1.15
Forey E., Chapelet B., Vitasse Y., Tilquin M., Touzard B., Michalet R., 2008. The relative importance of disturbance and environmental stress at local and regional scales in French coastal sand dunes. Journal of Vegetation Science 19(4): 493–502. DOI: 10.3170/2008-8-18392
Forey E., Lortie C.J., Michalet R., 2009. Spatial patterns of association at local and regional scales in coastal sand dune communities. Journal of Vegetation Science 20(5): 916–925. DOI: 10.1111/j.1654-1103.2009.01095.x
Forman S.L., Oglesby R., Webb R.S., 2001. Temporal and spatial patterns of Holocene dune activity on the Great Plains of North America: megadroughts and climate links. Global and Planetary Change 29(1–2): 1–29. DOI: 10.1016/S0921-8181(00)00092-8
González-Martínez S.C., Bravo F., 2001. Density and population structure of the natural regeneration of Scots pine ( Pinus sylvestris L.) in the High Ebro Basin (Northern Spain). Annals of Forest Science 58(3): 277–288. DOI: 10.1051/forest:2001126
Guisan A., Zimmermann N.E., 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135(2–3): 147–186. DOI: 10.1016/S0304-3800(00)00354-9
Hammer D.A.T., Ryan P.D., Hammer Ø., Harper D.A.T., 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 178.
Hille M., den Ouden J., 2004. Improved recruitment and early growth of Scots pine (Pinus sylvestris L.) seedlings after fire and soil scarification. European Journal of Forest Research 123(3): 213–218. DOI: 10.1007/S10342-004-0036-4/FIGURES/3
Jankowski M., 2001. Conditions of occurrence, properties and genesis of intra-dune iron enriched soils. Soil Science Annual 52 (supl.), 49–63.
Jankowski M., 2010. Some aspects of site conditions of heathlands in the Toruń Basin. Ecological Questions 12(0): 145–151. DOI: 10.12775/v10090-010-0008-x
Jankowski M., 2012. Lateglacial soil paleocatena in inland-dune area of the Toruń Basin, Northern Poland. Quaternary International 265: 116–125. DOI: 10.1016/j.quaint.2012.02.006
Jankowski M., 2014. The evidence of lateral podzolization in sandy soils of Northern Poland. CATENA 112: 139–147. DOI: 10.1016/j.catena.2013.03.013
Jasińska J., Sewerniak P., Markiewicz M., 2019. Links between slope aspect and rate of litter decomposition on inland dunes. CATENA 172: 501–508. DOI: 10.1016/j.catena.2018.09.025
Jasińska J., Sewerniak P., Puchałka R., 2020. Litterfall in a Scots Pine Forest on Inland Dunes in Central Europe: Mass, Seasonal Dynamics and Chemistry. Forests 11(6): 678. DOI: 10.3390/f11060678
Jiao-jun Z., Zhi-ping F., De-hui Z., Feng-qi J., Takeshi M., 2003. Comparison of stand structure and growth between artificial and natural forests of Pinus sylvestiris var.mongolica on sandy land. Journal of Forestry Research 14(2): 103–111. DOI: 10.1007/BF02856774
Kenk G., Guehne S., 2001. Management of transformation in central Europe. Forest Ecology and Management 151(1–3): 107–119. DOI: 10.1016/S0378-1127(00)00701-5
Knutti R., Sedláček J., 2012. Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change 2012 3(4): 369–373. DOI: 10.1038/nclimate1716
Koster E.A., 2009. The “European Aeolian Sand Belt”: Geoconservation of Drift Sand Landscapes. Geoheritage 1 (2–4): 93–110. DOI: 10.1007/s12371-009-0007-8
Kunz M., Nienartowicz A., 2010. Temporal and spatial changes in the distribution of heaths within the city of Toruń according to analysis of cartographic and remote-sensing materials, and field exploration. Ecological Questions 12: 59-74. DOI: 10.12775/v10090-010-0004-1
Maarel E., Boot R., Dorp D., Rijntjes J., 1985. Vegetation succession on the dunes near Oostvoorne, The Netherlands; a comparison of the vegetation in 1959 and 1980. Vegetatio 58(3): 137–187. DOI: 10.1007/BF00163874
Marozas V., Racinskas J., Bartkevicius E., 2007. Dynamics of ground vegetation after surface fires in hemiboreal Pinus sylvestris forests. Forest Ecology and Management 250(1–2): 47–55. DOI: 10.1016/j.foreco.2007.03.008
Marzano R., Lingua E., Garbarino M., 2012. Post-fire effects and short-term regeneration dynamics following high-severity crown fires in a Mediterranean forest. iForest - Biogeosciences and Forestry 5(3): 93. DOI: 10.3832/IFOR0612-005
Matuszkiewicz J.M., 2007. Geobotanical identification of the development tendencies in forest associations in the regions of Poland - a synthetic survey. In Matuszkiewicz J.M. (ed.), Geobotanical identification of the development tendencies in forest associations in the regions of Poland. Instytut Geografii i Przestrzennego Zagospodarowania im. Stanisława Leszczyckiego PAN, Warszawa, 817–848 pp.
McCook L.J., 1994. Understanding ecological community succession: Causal models and theories, a review. Vegetatio 110(2): 115–147. DOI: 10.1007/BF00033394
Monteiro A.T., Fava F., Gonçalves J., Huete A., Gusmeroli F., Parolo G., Spano D., Bocchi S., 2013. Landscape context determinants to plant diversity in the permanent meadows of Southern European Alps. Biodiversity and Conservation 22(4): 937–958. DOI: 10.1007/s10531-013-0460-1
Nienartowicz A., Deptuła M., Kunz M., Adamska E., Boińska U., Gugnacka-Fiedor W., Kamiński D., Rutkowski L., 2010. Relief and changes in the vegetation cover and the flora of the Zadroże Dune near the city of Toruń: Comparison of the conditions in 1948 and 2009. Ecological Questions 12: 17-50. DOI: 10.12775/v10090-010-0002-3
Picon-Cochard C., Coll L., Balandier P., 2006. The role of below-ground competition during early stages of secondary succession: the case of 3-year-old Scots pine (Pinus sylvestris L.) seedlings in an abandoned grassland. Oecologia 148(3): 373–383. DOI: 10.1007/s00442-006-0379-2
Piotrowska H., 1988. The dynamics of the dune vegetation on the Polish Baltic coast. Vegetatio 77(1–3): 169–175. DOI: 10.1007/BF00045762
Prach K., Pyšek P., 2001. Using spontaneous succession for restoration of human-disturbed habitats: Experience from Central Europe. Ecological Engineering 17(1): 55–62. DOI: 10.1016/S0925-8574(00)00132-4
Pretzsch H., del Río M., Ammer C., Avdagic A., Barbeito I., Bielak K., Brazaitis G., Coll L., Dirnberger G., Drössler L., Fabrika M., Forrester D.I., Godvod K., Heym M., Hurt V., Kurylyak V., Löf M., Lombardi F., Matović B., Mohren F., Motta R., den Ouden J., Pach M., Ponette Q., Schütze G., Schweig J., Skrzyszewski J., Sramek V., Sterba H., Stojanović D., Svoboda M., Vanhellemont M., Verheyen K., Wellhausen K., Zlatanov T., Bravo-Oviedo A., 2015. Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. European Journal of Forest Research 134(5): 927–947. DOI: 10.1007/S10342-015-0900-4/FIGURES/9
Prusinkiewicz Z., 1961. Zagadnienia leśno-gleboznawcze na obszarze wydm nadmorskich Bramy Świny. Badania Fizjograficzne nad Polską Zachodnią 7: 25–127.
Prusinkiewicz Z., 1969. The Soils of Inland Dunes in Poland. Prace Geograficzne 75: 116–144.
Rahmonov O., Skreczko S., Rahmonov M., 2021. Changes in Soil Features and Phytomass during Vegetation Succession in Sandy Areas. Land 10(3): 265. DOI: 10.3390/land10030265
Schelhaas M.J., Nabuurs G.J., Hengeveld G., Reyer C., Hanewinkel M., Zimmermann N.E., Cullmann D., 2015. Alternative forest management strategies to account for climate change-induced productivity and species suitability changes in Europe. Regional Environmental Change 15(8): 1581–1594. DOI: 10.1007/S10113-015-0788-Z/FIGURES/5
Seibert J., Stendahl J., Sørensen R., 2007. Topographical influences on soil properties in boreal forests. Geoderma 141(1–2): 139–148. DOI: 10.1016/j.geoderma.2007.05.013
Sewerniak P., Jankowski M., 2015. Deforestation increases differences in morphology and properties of dune soils located on contrasting slope aspects in the Toruń military area (N Poland). Ecological Questions 21: 61-63. DOI: 10.12775/EQ.2015.009
Sewerniak P., Mendyk Ł., 2015. Secondary succession of trees in the dune landscape of the ‘Glinki’ long-term research area – analysis with GIS. Forest Research Papers 76(2): 122–128. DOI: 10.1515/FRP-2015-0012
Sewerniak P., 2016a. Differences in early dynamics and effects of slope aspect between naturally regenerated and planted Pinus sylvestris woodland on inland dunes in Poland. iForest - Biogeosciences and Forestry 9(6): 875–882. DOI: 10.3832/ifor1728-009
Sewerniak P., 2016b. Impact of land relief on site index and growth parameters of Scots pine stands on inland dunes in the Toruń Basin. Sylwan 160(8): 647–655. DOI: 10.26202/SYLWAN.2016056
Sewerniak P., Stelter P., 2016. Wpływ sposobu przygotowania gleby na dynamikę jej temperatury na wydmach Kotliny Toruńskiej. Sylwan 160(11): 923–932. DOI: 10.26202/SYLWAN.2016085
Sewerniak P., Stelter P., Bednarek R., 2017a. Effect of site preparation method on dynamics of soil water conditions on inland dunes of the Toruń Basin. Sylwan 161(1): 52–61. DOI: 10.26202/SYLWAN.2016086
Sewerniak P., Jankowski M., Dąbrowski M., 2017b. Effect of topography and deforestation on regular variation of soils on inland dunes in the Toruń Basin (N Poland). CATENA 149: 318–330. DOI: 10.1016/j.catena.2016.10.008
Sewerniak P., Jankowski M., 2017. Topographically-controlled site conditions drive vegetation pattern on inland dunes in Poland. Acta Oecologica 82: 52–60. DOI: 10.1016/j.actao.2017.06.003
Sewerniak P., Puchałka R., 2020. Topographically induced variation of microclimatic and soil conditions drives ground vegetation diversity in managed Scots pine stands on inland dunes. Agricultural and Forest Meteorology, 291. DOI: 10.1016/j.agrformet.2020.108054
Socha J., 2008. Effect of topography and geology on the site index of Picea abies in the West Carpathian, Poland. Scandinavian Journal of Forest Research 23(3): 203–213. DOI: 10.1080/02827580802037901
Tilk M., Mandre M., Klõšeiko J., Kõresaar P., 2011. Ground vegetation under natural stress conditions in Scots pine forests on fixed sand dunes in southwest Estonia. Journal of Forest Research 16(3): 223–227. DOI: 10.1007/s10310-011-0282-5
Tilk M., Tullus T., Ots K., 2017. Effects of environmental factors on the species richness, composition and community horizontal structure of vascular plants in Scots pine forests on fixed sand dunes. Silva Fennica 51(3). DOI: 10.14214/sf.6986
Vanoni M., Bugmann H., Nötzli M., Bigler C., 2016. Drought and frost contribute to abrupt growth decreases before tree mortality in nine temperate tree species. Forest Ecology and Management 382: 51–63. DOI: 10.1016/j.foreco.2016.10.001
Watt M.S., Whitehead D., Richardson B., Mason E.G., Leckie A.C., 2003. Modelling the influence of weed competition on the growth of young Pinus radiata at a dryland site. Forest Ecology and Management 178(3): 271–286. DOI: 10.1016/S0378-1127(02)00520-0
Wójcik G., Marciniak K., 2006. Klimat. In Andrzejewski L., Weckwerth P., Burak S., (eds.), Toruń i jego okolice: monografia przyrodnicza. UMK, Toruń, 99–128 pp.
Yimer F., Ledin S., Abdelkadir A., 2006. Soil property variations in relation to topographic aspect and vegetation community in the south-eastern highlands of Ethiopia. Forest Ecology and Management 232(1–3): 90–99. DOI: 10.1016/J.FORECO.2006.05.055
Zeeberg J., 2008. The European sand belt in eastern Europe - and comparison of Late Glacial dune orientation with GCM simulation results. Boreas 27(2): 127–139. DOI: 10.1111/j.1502-3885.1998.tb00873.x
Zell J., Hanewinkel M., 2015. How treatment, storm events and changed climate affect productivity of temperate forests in SW Germany. Regional Environmental Change 15(8): 1531–1542. DOI: 10.1007/S10113-015-0777-2/FIGURES/8
Zoladeski C.A., 1991. Vegetation zonation in dune slacks on the Leba Bar, Polish Baltic Sea coast. Journal of Vegetation Science 2(2): 255–258. DOI: 10.2307/3235958
Downloads
Additional Files
Published
Issue
Section
License
All the papers published in Annals of Forest Research are available under an open access policy (Gratis Gold Open Access Licence), which guaranty the free (of taxes) and unlimited access, for anyone, to entire content of the all published articles. The users are free to “read, copy, distribute, print, search or refers to the full text of these articles”, as long they mention the source.
The other materials (texts, images, graphical elements presented on the Website) are protected by copyright.
The journal exerts a permanent quality check, based on an established protocol for publishing the manuscripts. The potential article to be published are evaluated (peer-review) by members of the Editorial Board or other collaborators with competences on the paper topics. The publishing of manuscript is free of charge, all the costs being supported by Forest Research and Management Institute.
More details about Open Access:
Wikipedia: http://en.wikipedia.org/wiki/Open_access