Diagnosis of macronutrient deficiency in Erythrophleum fordii, a nitrogen-fixing rosewood species

Authors

  • Z.G. Zhao Research Institute of Tropical Forestry, CAF, Longdong, Guangzhou 510520, Guangdong, China
  • K.Q. Lin Research Institute of Tropical Forestry, CAF, Longdong, Guangzhou 510520, Guangdong, China
  • J. Guo Research Institute of Tropical Forestry, CAF, Longdong, Guangzhou 510520, Guangdong, China
  • J. Zeng Research Institute of Tropical Forestry, CAF, Longdong, Guangzhou 510520, Guangdong, China

DOI:

https://doi.org/10.15287/afr.2014.285

Keywords:

Erythrophleum fordii Oliv., growth performance, leaf morphology, leaf nutrient interaction, macronutrient deficiency, nitrogen-fixing tree species

Abstract

Erythrophleum fordii (Caesalpiniaceae; nitrogen fixing species) is one of traditional rosewood species indigenous to Southeast Asia and southern China. Slow growth and symptoms such as leaf discoloration, curling and defoliation were usually observed in the nursery and its young plantations due perhaps to deficiencies of specific nutrients. Here sand culture experiment was conducted for its seedlings to assess their visual foliar symptoms, growth performance and nutrient interaction in response to six macronutrient deficiencies. Leaves of E. fordii seedlings discolored in all treatments of nutrient deficiency, and sizes of both old and young leaves became small under nitrogen (N) deficiency, while only young leaves grew small  under deficiencies of calcium (Ca) and sulphur (S). Seedling growth was inhibited significantly under deficiencies of N, potassium (K) and phosphorus (P) except that P deficiency increased diameter at root collar. The difference of seedling N concentration between –N and control was normally much smaller than those for other nutrient elements because -N seedling could acquire N by nitrogen fixation of nodules under N deficiency. In spite of this, N was still major limiting factor for plant growth under N deficiency. Besides in P deficiency, P was also the major limiting factor under deficiencies of magnesium (Mg), Ca and S, which indicated that P play an important role in nutrient demand and balance for E. fordii. Antagonism or synergism occurred widely between six macronutrients, especially for P, K and Ca, their concentrations increased or decreased in all six deficiency treatments in comparison with the control. The implications of these findings were also discussed with a case study on nutritional diagnosis for a young plantation of this species.

References

Álvarez E., Fernández-Marcos M.L., Monterroso C., Fernández-Sanjurjo M.J., 2005. Application of aluminum toxicity indices to soils under varous forest species. Forest Ecology and Management 211: 227–239. DOI: 10.1016/j.foreco.2005.02.044 Ares A., Falcao N., Yuyama K., Yost R.S., Clement C.R., 2003. Response to fertilization and nutrient deficiency diagnostics in peach palm in Central Amazonia. Nutrient Cycling in Agroecosystems 66: 221–232. DOI: 10.1023/A:1024458823052Battie–Laclau P., Laclau J.P., Piccolo M.C., Arenque B.C., Beri C., Mietton L., Muniz M.R.A., Jordan–Meille L., Buckeridge M.S., NouvellonY., Ranger J., Bouillet J.P., 2013. Influence of potassium and sodium nutrition on leaf area components in Eucalyptus grandis trees. Plant and Soil 371: 19–35. DOI: 10.1007/s11104-013-1663-7Bigelow S.W., Canham C.D., 2007, Nutrient limitation of juvenile trees in a northern hardwood forest: Calcium and nitrate are preeminent. Forest Ecology and Management 243: 310–319. DOI: 10.1016/j.foreco.2007.03.027Bonilla I., Bola-os L., 2009. Mineral nutrition for legume–rhizobia symbiosis: B, Ca, N, P, S, K, Fe, Mo, Co, and Ni: a review. in Lichtfouse E. (ed). Organic farming, pest control and remediation of soil pollutants, Sustainable Agriculture Reviews, volume 1: 253–274 DOI 10.1007/978-1-4020- 9654-9_13, Springer Science + Business Media B.V.Chen L., Zeng J., Jia H.Y., Zeng J., Guo W.F., Cai D.X., 2012. Growth and nutrient uptake dynamics of Mytilaria laosensis seedlings under exponential and conventional fertilizations. Soil Science and Plant Nutrition 58: 618–626. DOI: 10.1080/00380768.2012.708879.Chen L., Zeng J., Xu D.P., Zhao Z.G., Guo J.J., 2010. Macronutrient deficiency symptoms in Betula alnoides seedlings. Journal of Tropical Forest Science 22: 403–413.Danso S.K.A., Bowen G.D., Sanginga N., 1992. Biological nitrogen fixation in trees in agro–ecosystems. Plant and Soil 141: 177–196. DOI: 10.1007/BF00011316.Davis K.I., Niedziela Jr C.E., Reddy M.R., Whipker B.E., Frantz J., 2011. Nutrient disorder symptomology and foliar concentrations of Clerodendrum thomsoniae. Journal of Plant Nutrition 34: 1079–1086. DOI: 10.1080/01904167.2011.555805.Fageria V.D., 2001. Nutrient interactions in crop plants. Journal of Plant Nutrition 24: 1269-1290. DOI: 10.1081/PLN-100106981Gajdanowicz P., Michard E., Sandmann M., Rocha M., Corrêa L.G.G., Ramírez–Aguilar S.J., Gomez–Porras J.L., Gonzáleza W., Thibaud J.B., van Dongen J.T., Dreyer I., 2010. Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues, PNAS 108: 864–869. DOI: 10.1073/pnas.1009777108Guan G.C., Wei X.H., 2103. Simulation experiment on effect of soils Calcium and Magnesium ions losses on natural rainfall in Karst rocky area of north Guangdong. Journal of Soil and Water Conservation 27 (5): 76–79, 86. [In Chinese]Liu A.S., 1993. Guangdong soil. Guangdong Soil General Investigation Office. Beijing: Science Publish House. [In Chinese]Lu J.K., Kang L.H., He X.H., Xu D.P., 2011. Multilocus sequence analysis of the Rhizobia from five woody legumes in southern China. African Journal of Microbiology Research 5: 5343–353.Maathuis F.J.M., Diatloff E., 2013. Roles and functions of plant mineral nutrients. in Maathuis F.J.M. (ed). Plant mineral nutrients: methods and protocols, methods in molecular biology, vol. 953: 1–21, DOI 10.1007/978-1-62703-152-3_1, Springer Science+Business Media, LLC.Millner J.P., Kemp P.D., 2012. Foliar nutrients in Eucalyptus species in New Zealand. New Forests 43: 255–266. DOI: 10.1007/s11056-011-9279-3Mortimer P.E., Le Roux M.R., Pérez–Fernández M.A., Benedito V.A., Kleinert A., Xu J., Valentine A.J., 2013. The dual symbiosis between arbuscular mycorrhiza and nitrogen fixing bacteria benefits the growth and nutrition of the woody invasive legume Acacia cyclops under nutrient limiting conditions. Plant and Soil 366: 229–241. DOI: 10.1007/s11104-012-1421-2Nawaza R., Parkpiana P., Garivaitb H., Anurakpongsatornc P., DeLauned R.D., Jugsujindad A., 2012. Impacts of acid rain on base cations, aluminum, and acidity development in highly weathered soils of Thailand. Communications in Soil Science and Plant Analysis 43: 1382–1400. DOI: 10.1080/00103624.2012.670347Nghia N.H., 2004. Status of forest genetic resources conservation and management in Vietnam. in Luoma-aho T., Hong L.T., Ramanatha V., Sim H.C. (eds). Forest Genetic Resources Conservation and Management. Serdang, Malaysia: IPGRI-APO. 290-301.O'Hara G.W., 2001. Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: a review. Australian Journal of Experimental Agriculture 41: 417–433. DOI: 10.1071/EA00087Ouimet R., Moore J.D., Duchesne L., Camiré C., 2013. Etiology of a recent white spruce decline: role of potassium deficiency, past disturbances, and climate change. Canadian Journal of Forest Research 43: 66–77. DOI: 10.1139/cjfr-2012-0344Rout G.R., Samantaray S., Das P., 2001. Aluminum toxicity in plants: a review. Agronomie 21: 3–21. DOI: 10.1051/agro:2001105Roy A.K., Sharma A., Talukder G., 1988. Some aspects of aluminum toxicity in plants. The Botanical Review 54: 146–178. DOI: 10.1007/BF02858527Schaedle M., Thornton F.C., Raynal D.J., Tepper H.B., 1989. Response of tree seedlings to aluminum. Tree Physiology, 5: 337–356. DOI: 10.1093/treephys/5.3.337Scheublin T.R., Ridgway K.P., Young J.P.W., Heijden M.G.A., 2004. Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Applied Environment Microbiology 70: 6240–6246. DOI: 10.1128/AEM.70.10.6240-6246.2004Schulze J.H., Temple G., Temple S.J., Beschow H., Vance C.P., 2006. Nitrogen fixation by white lupin under phosphorus deficiency. Annals of Botany 98: 731–740. DOI: 10.1093/aob/mcl154Tang C., Hinsinger P., Drevon J.J., Jaillard B., 2001. Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of Medicago tuncatula L. Annals of Botany 88: 131–138. DOI: 10.1006/anbo.2001.1440Walters D.R., Bingham I.J., 2007. Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. Annals of Applied Biology 151: 307–324. DOI: 10.1111/j.1744-7348.2007.00176.xYao Y., Wang R., Lu J.K., Sui X.H., Wang E.T., Chen W.X., 2014. Genetic diversity and evolution of Bradyrhizobium populations nodulating Erythrophleum fordii, an evergreen tree indigenous to the southern subtropical region of China. Applied and Environmental Microbiology 80: 6184–6194. DOI: 10.1128/AEM.01595-14Yeh D.M., Lin L., Wright C.J., 2000. Effects of mineral nutrient deficiencies on leaf deveolpment, visual symptoms and shoot-root ratio of Spathiphyllum. Scientia Horticulturae 86: 223-233. DOI: 10.1016/S0304-4238(00)00152-7Yoneyama K., Xie X.N., Kim H., Kisugi T., Nomura T., Sekimoto H., Yokota T., Yoneyama K., 2012. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235: 1197–1207. DOI: 10.1007/s00425-011-1568-8Zahran H.H., 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews 63: 968-989.Zhao Z.G., Guo J.J., Sha E., Zeng J., Xu J.M., 2012. Natural distribution, endangered mechanism and conservation strategy of an endangered tree species, Erythrophleum fordii Oliv. in Sim Heok-Choh, Syuqiyah Abdul Hamid, Li Mei (eds.). Multinational and transboundary conservation of valuable and endangered forest species. IUFRO World Series Volume, 30, 113–116.

Downloads

Published

2014-12-30

Issue

Section

Research article