Conservation of unmanaged pan-European forest landscapes as a priority natural heritage for epiphytic lichens at different ecological and biogeographical scales - A review
DOI:
https://doi.org/10.15287/afr.2023.2645Keywords:
biogeographical regions, conservation of non-managed forests, ecoregions, European forests, lichensAbstract
The European forestry landscape represents an important priority for biodiversity and needs adequate management strategies. The main focus of this review is the importance of European forest areas for epiphytic lichen richness under the impact of different management practices assessed in the biogeographical and ecological regions of Europe. In total, 88 scientific articles were reviewed (based on the first author’s archive and by query in Web of Science), which examined epiphytic lichen richness within managed and unmanaged European forests. Biogeographical and ecological regions of Europe were not taken into account in the reviewed articles, but we used them for statistical analyses in the present work according to the geographical position of the investigated sites published in the reviewed articles. We also analysed the dissimilarities in epiphytic lichen richness among European biogeographical and ecological regions. Additionally, we analysed the impact of different silvicultural management practices (within assessed forests) on epiphytic lichen richness across the different biogeographical and ecological regions of Europe. The main results indicate that epiphytic lichen richness is significantly different across the biogeographical and ecological regions of Europe. Epiphytic lichen richness is significantly greater in Western European broadleaf forests in the Carpathian and Caledonian mountain areas and significantly lower in the Central European mixed forests and East European forest steppe. Management practices applied within studied forests had a negative impact on epiphytic lichen richness, while epiphytic lichen richness was higher within unmanaged forests. The main conclusion is that forests within highland areas of Europe that are not subjected to anthropogenic activities or management practices harbour greater epiphytic lichen richness and therefore should be conserved and protected due to their biological and ecological importance.References
Aragón G., Martínez I., García A., 2012. Loss of epiphytic diversity along a latitudinal gradient in southern Europe. Science of the Total Environment, 426: 188–195.
Ardelean I.V., Keller C., Scheidegger C., 2013. Lichen flora of Rodnei Mountains National Park (Eastern Carpathians, Romania) including new records for the Romanian mycoflora. Folia Cryptogamica Estonica, 50: 101-115.
Asplund J., Wardle D.A., 2017. How lichens impact on terestrial community and ecosystem properties. Biological Reviews, 92: 1720-1738.
Bartemucci P., Lilles E., Gauslaa Y., 2022. Silvicultural strategies for lichen conservation: smaller gaps and shorten distances to edges promote recolonization. Ecosphere, 13: e3898.
Beier P., Noss R.F., 1998. Do habitat corridors provide connectivity? Conservation Biology, 12: 1241-1252.
Belinchón R., Ellis C.J., Yahr R., 2018. Climate-woodland effects on population genetics for two congeneric lichens with contrasting reproductive strategies. FEMS Microbiology Ecology, 94: 159.
Belinchón R., Martínez I., Otálora M.A.G., Aragón G., Dimas J., Escudero A., 2009. Fragment quality and matrix affect epiphytic performance in a Mediterranean forest landscape. American Journal of Botany, 96: 1974–1982.
Blicharska M., Angelstam P., Giessen L., Hilszczański J., Hermanowicz E., Holeksa J., Jacobsen J.B., Jaroszewicz B., Konczal A., Konieczny A., Mikusiński G., Mirek Z., Mohren F., Muys B., Niedziałkowski K., Sotirov M., Stereńczak K., Szwagrzyk J., Winder G.M., Witkowski Z., Zaplata R., Winkel G., 2020. Between biodiversity conservation and sustainable forest management-A multidisciplinary assessment of the emblematic Białowieża Forest case. Biological Conservation, 248: 108614.
Bouchard M., Boudreault C., 2016. Is metapopulation size important for the conservation of understory plants and epiphytic lichens? Conservation Biology, 195: 187-195.
Brunialti G., Frati L., Loppi S., 2012. Fragmentation of Mediterranean oak forests affects the diversity of epiphytic lichens. Nova Hedwigia, 96: 265-278.
Calviño-Cancela M., López de Silanes M.E., Rubido-Bará M., Uribarri J., 2013. The potential role of tree plantations in providing habitat for lichen epiphytes. Forest Ecology and Management, 291: 386-395.
Cardós J.L.H., Aragón G., & Martínez I., 2017. A species on a tightrope: establishment limitations of an endangered lichen in a fragmented Mediterranean landscape. American Journal of Botany, 104: 527-537.
Cardós J.L.H., Martínez I., Aragón G., Ellis C.J., 2018. Role of past and present landscape structure in determining epiphyte richness in fragmented Mediterranean forests. Landscape Ecology, 33: 1757-1768.
Carlsson R., Nilsson K., 2009. Status of the red-listed Lobaria pulmonaria on the Åland Islands, SW Finland. Annales Botanici Fennici, 46: 549–554.
Caruso A., Rudolphi J., Rydin H., 2011. Positive edge effects on forest-interior cryptogams in clear-cuts. PLoS ONE, 6: e27936.
Cervellini M., Zannini P., Di Musciano M., Fattorini S., Jiménez-Alfaro B., Rocchini D., Field R., Vetaas O.R., Irl S.D.H., Beierkuhnlein C., Hoffmann S., Fischer J.C., Casella L., Angelini P., Genovesi P., Nascimbene J., Chiarucci A., 2020. A grid-based map for the biogeographical regions of Europe. Biodiversity Data Journal, 8: e53720.
Çobanoğlu G., Yavuz M., Costache I., Radu I., Açikgöz B., Baloniu L., 2009. Epiphytic and terricolous lichens diversity in Cozia National Park (Romania). Oltenia. Studii și comunicări. Științele Naturii, 25: 17-22.
Çobanoğlu G., Yavuz M., Costache I., Radu I., 2011. Additional and new lichen records from Cozia National Park, Romania. Mycotaxon, 114: 193-196.
Cordero S.R.A., Garrido A., Pérez-Molina J.P., Ramírez-Alán O., Chávez J.L., 2021. Lichen community structure and richness in three mid-elevation secondary forests in Costa Rica. Revista de Biología Tropical, 69: 688-699.
Czerepko J., Gawryś R., Mańk K., Janek M., Tabor J., Skalski L., 2021a. The influence of the forest management in the Białowieża forest on the species structure of the forest community. Forest Ecology and Management, 496: 119363.
Czerepko J., Gawryś R., Szymczyk R., Pisarek W., Janek M., Haidt A., Kowalewska A., Piegdoń A., Stebel A., Kukwa M., Cacciatori C., 2021b. How sensitive are epiphytic and epixylic cryptogams as indicators of forest naturalness? Testing bryophyte and lichen predictive power in stands under different management regimes in the Białowieza forest. Ecological Indicators, 125: 107532.
de Rigo D., Houston Durrant T., Caudullo G., Barredo J. I., 2016. European forests: an ecological overview. In Editors: San-Miguel-Ayanz J., de Rigo D., Caudullo G., Houston Durrant T., Mauri A., (ed.), European Atlas of Forest Tree Species. Publ. Off. EU (Publication Office of the European Union), Luxembourg, pp. e01e873+.
Dilkina B., Houtman R., Gomes C. P., Montgomery C. A., McKelvey K. S., Kendall K., Graves T. A., Bernstein R., Schwartz,M.K., 2016. Trade-off and efficiencies in optimal budget-constrained multispecies corridor networks. Conservation Biology, 31: 192-202.
Dinerstein E., Olson D., Joshi A., Vynne C., Burgess N.D., Wikramanayake E., Hahn N., Palminteri S., Hedao P., Noss R., Hansen M., Locke H., Ellis E.C., Jones B., Barber C.V., Hayes R., Kormos C., Martin V., Crist E., Sechrest W., Price L., Baillie J.E.M., Weeden D., Suckling K., Davis C., Sizer N., Moore R., Thau D., Birch T., Potapov P., Turubanova S., Tyukavina, A., De Souza N., Pintea L., Brito J. C., Llewellyn O.A., Miller A.G., Patzelt A., Ghazanfar S.A., Timberlake J., Klöser H., Shennan-Farpón Y., Kindt R., Lillesø J.P.B., Van Breugel P., Graudal L., Voge M., Al-Shammari K.F., Saleem M., 2017. An ecoregion-based approach to protecting half the terrestrial realm. BioScience. 67: 534-545.
Dittrich S., Jacob M., Bade C., Leuschner C., Hauck M., 2014. The significance of deadwood for total bryophyte, lichen, and vascular plant diversity in an old-growth spruce forest. Plant Ecology, 215: 1123-1137.
Dymytrova L., Nadyeina O., Hobi M.L. Scheidegger C., 2014. Topographic and forest-stand variables determining epiphytic lichen diversity in the primeval beech forest in the Ukrainian Carpathians. Biodiversity and Conservation, 23: 1367–1394.
Dytham C., 2011. Choosing and Using Statistics, A Biologist’s Guide, 3th Edition, Wiley-Blackwell Publishing House, Oxford, 316 p.
Dingová Košuthová A. Svitková I., Pišút I., Senko D., Valachovič M., 2013. The impact of forest management on changes in composition of terricolous lichens in dry acidophilous Scots pine forests. The Lichenologist, 45: 413-425.
Ellis C.J., Coppins B.J., 2019. Five decades of decline for old-growth indicator lichens in Scotland. Edinburgh Journal of Botany, 76: 319-331.
Esseen P.A., Renhorn K.E., 1998. Edge effects on an epiphytic lichen in fragmented forests. Conservation Biology, 12: 1307-1317.
Environmental Systems Research Institute (ESRI). 2019. ArcGIS Release 10.7.1. Redlands, CA.
European Environment Acengy (EEA). 2017. Biogeographical regions in Europe. https://www.eea.europa.eu/data-and-maps/figures/biogeographical-regions-in-europe-2 (accessed on 16.03.2022).
Felton A., Löfroth T., Angelstam P., Gustafsson L., Hjältén J., Felton A.M., Simonsson P., Dahlberg A., Lidbladh M., Svensson J., Nilsson U., Lodin I., Hedwall P.O., Sténs A., Lämås T., Brunet J., Kalén C., Kriström B., Gemmel P., Ranius T. 2020. Keeping pace with forestry: Multi-scale conservation in a changing production forest matrix. Ambio, 49: 1050-1064.
Forest Europe., 2020. State of Europe’s Forests 2020, https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf (accessed on 05.07.2022).
Fritz O., Brunet J., 2010. Epiphytic bryophytes and lichens in Swedish beech forests – effects of forest history and habitat quality. Ecological Bulletins, 53: 95–107.
Fritz Ö., Gustafsson L., Larsson K., 2008. Does forest continuity matter in conservation? -A study of epiphytic lichens and bryophytes in beech forests of southern Sweden. Biological Conservation, 141: 655-668.
Giordani P., 2006. Variables influencing the distribution of epiphytic lichens in heterogeneous areas: A case study for Liguria, NW Italy. Journal of Vegetation Science, 17: 195-206.
Giordani P., Incerti G., 2008. The influence of climate on the distribution of lichens: a case study in a borderline area (Liguria, NW Italy). Plant Ecology, 195: 257-272.
Hammer Ø., Harper D.A.T., Ryan P.D., 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis, Version 2.13. Palaeontologia Electronica, 4: 1-9.
Hämäläinen A., Ranius T., Strengbom J., 2021. Increasing the amount of dead wood by creation of high stumps has limited value for lichen diversity. Journal of Environmental Management, 280: 111646.
Han Q., Keeffe G., Cullen S., 2022. Climate connectivity of European forests for species range shifts. Forests, 12: 940.
Hanski. I., 1999. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscape. Oikos, 87: 209-219.
Hilmo O., Holien H., Hytteborn H., 2005. Logging strategy influences colonization of common chlorolichens on branches of Picea abies. Ecological Applications, 15: 983–996.
Hilmo O., Lundemo S., Holien H., Stengrundet K., Stenøien H.K., 2012. Genetic structure in a fragmented Northern Hemisphere rainforest: large effective sizes and high connectivity among populations of the epiphytic lichen Lobaria pulmonaria. Molecular Ecology, 21: 3250–3265.
Hofmeister J., Hošek J., Malíček J., Palice Z., Syravátková L., Steinová J., Černajová I., 2016. Large beech (Fagus sylvatica) trees as ‘lifeboats’ for lichen diversity in central European forests. Biodiversity and Conservation, 25: 1073-1090.
Hofmeister J., Vondrák J., Ellis C., Coppins B., Sanderson N., Malíček J., Palice Z., Acton A., Svoboda S., Gloor R., 2022. High and balanced contribution of regional biodiversity hotspots to epiphytic and epixylic lichen species diversity in Great Britain. Biological Conservation, 226: 109443.
Johansson V., Ranius T., Snäll T., 2012. Epiphyte metapopulation dynamics are explained by species traits, connectivity, and patch dynamics. Ecology, 93: 235-241.
Johansson V., Ranius T., Snäll T., 2013a. Epiphyte metapopulation persistence after drastic habitat decline and low tree regeneration: time-lags and effects of conservation actions. Journal of Applied Ecology, 50: 414-422.
Johansson V., Snäll T., Ranius T., 2013b. Estimates of connectivity reveal non-equilibrium epiphyte occurrence patterns almost 180 years after habitat decline. Oecologia, 172: 607-615.
Jüriado I., Liira J., 2009. Distribution and habitat ecology of the threatened forest lichen Lobaria pulmonaria in Estonia. Folia Cryptogamica Estonica, 46: 55–65.
Kapusta P., Szarek-Łukaszewska G., Kiszka J., 2004. Spatial analysis of lichen species richness in a disturbed ecosystem (Niepołomice Forest, S Poland). The Lichenologist, 36: 249-260.
Kiebacher T., Keller C., Scheidegger C., Bergamini A., 2017. Epiphytes in wooded pastures: Isolation matters for lichen but not for bryophyte species richness. PLoS ONE, 12: e0182065.
Klein J., Thor G., Low M., Sjögren J., Lindberg E., Eggers S., 2020. What is good for birds is not always good for lichens: interactions between forest structure and species richness in managed boreal forests. Forest Ecology and Management, 473: 118327.
Lelli C., Bruun H.H., Chiarucci A., Donati D., Frascaroli F., Fritz Ö., Goldberg I., Nascimbene J., Tøttrup A.P., Rahbek C., Heilmann-Clausen J., 2019. Biodiversity response to forest structure and management: comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. Forest Ecology and Management, 432: 707-717.
Liepa L., Rendenieks Z., Jansons Ā., Straupe I., Dubrovskis E., Miezīte O., 2020. The persisting influence of edge on vegetation in hemiboreal Alnus glutinosa (L.) Gaertn. swamp forest set-asides adjacent to recently disturbed stands. Forests, 11: 1084.
Lindenmayer D.B., Margules C.R. Botkin D.B., 2000. Indicators of biodiversity for ecologically sustainable forest management. Conservation Biology, 14: 941-950.
Lommi S., Berglund H., Kuusinen M. Kuuluvainen T., 2010. Epiphytic lichen diversity in late-successional Pinus sylvestris forests along local and regional forest utilization gradients in eastern boreal Fennoscandia. Forest Ecology and Management, 259: 883-892.
Łubek A., Kukwa M., Czortek P. Jaroszewicz B., 2020. Impact of Fraxinus excelsior dieback on biota of ash-associated lichen epiphytes at the landscape and community level. Biodiversity and Conservation, 29: 431–450.
Łubek A., Kukwa M., Jaroszewicz B., Czortek P., 2021. Shifts in lichen species and functional diversity in a primeval forest ecosystem as a response to environmental changes. Forests, 12: 686.
Maceda Veiga A., Gómez Bolea A., 2017. Small, fragmented native oak forests have better preserved epiphytic lichen communities than tree plantations in temperate sub-oceanic Mediterranean climate region. The Bryologist, 120: 191-201.
Malíček J., Palice Z., Vondrák J., Kostovčík M., Lenzová V., Hofmeister J., 2019. Lichens in old-growth and managed mountain spruce forests in the Czech Republic: assessment of biodiversity, functional traits and bioindicators. Biodiversity and Conservation, 28: 3497-3528.
Marin G., Strimbu V.C., Abrudan I.V., Strimbu B.M., 2020. Reg
ional variability of the Romanian main tree species growth using National Forest Inventory increment cores. Forests, 11: 409.
Marín A.I., Abdul Malak D., Bastrup-Birk A., Chirici G., Barbati A., Kleeschulte S., 2021. Mapping forest condition in Europe: methodological developments in support to forest biodiversity assessments. Ecological Indicators, 128: 107839.
Marmor L., Tõrra T., Leppik E., Saag L., Randlane T., 2011. Epiphytic lichen diversity in Estonian and Fennoscandian old coniferous forests. Folia Cryptogamica Estonica, 48: 31-43.
Miller J.E.D., Villella J., Stone D., Hardman A., 2020. Using lichen communities as indicators of forest stand age and conservation value. Forest Ecology and Management, 475: 118436.
Moning C., Werth S., Dziock F., Bässler C., Bradtka J., Hothorn T., Müller J., 2009. Lichen diversity in temperate montane forests is influenced by forest structure more than climate. Forest Ecology and Management, 258: 745-751.
Motiejūnaitė J., 2015. Lichens and allied fungi from the Čepkeliai State Nature Reserve (southern Lithuania). Botanica Lithuanica, 21: 3-12.
Nascimbene J., Nimis P.L., Ravera S., 2013. Evaluating the conservation status of epiphytic lichens of Italy: A red list. Plant Biosystems, 147: 898-904.
Niculae M.I., Avram S., Vânău G.O., Pătroescu M., 2017. Effectiveness of Natura 2000 network in Romanian alpine biogeographical region: an assessment based on forest landscape cennectivity. Annals of Forest Research, 60: 19-32.
Oksuz D.P., Aquiar C.A.S., Tápia S., Llop E., Serrano A.R.M., Leal A.I., Branquinho C., Correia O., Rainho A., Correia R.A., Palmeirim J.M., 2020. Increasing biodiversity in wood-pastures by protecting small shrubby patches. Forest Ecology and Management, 464: 118041.
Otálora M. G., Martínez I., Belinchón R., Widmer I., Aragón G., Escudero A., Scheidegger C., 2011. Remnants fragments preserve genetic diversity of the old forest lichen Lobaria pulmonaria in a fragmented Mediterranean mountain forest. Biodiversity and Conservation, 20: 1239-1254.
Paillet Y., Bergès L., Hjältén J., Ódor P., Avon C., Bernhardt-Römermann M., Bijlsma R.J., De Bruyn L., Fuhr M., Grandin U., Kanka R., Lundin L., Luque S., Magura T., Matesanz S., Mészáros I., Sebastià M.T., Schmidt W., Standovár T., Tóthmérész B., Uotila A., Valladares F., Vellak K., Virtanen R., 2010. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conservation Biology, 24(1): 101-112.
Palmero-Iniesta M., Espelta J.M., Gordillo J., Pino J., 2020. Changes in forest landscape patterns resulting from recent afforestation in Europe (1990–2012): defragmentation of pre-existing forest versus new patch proliferation. Annals of Forest Science, 77: 43.
Paltto H., Nordén B., Götmark F., Franc N., 2006. At which spatial and temporal scales does landscape context affect local density of Red Data Book and Indicator species? Biological Conservation, 133: 442-454.
Paltto H., Nordberg A., Nordén B., Snäll T., 2011. Development of secondary woodland in oak wood pastures reduces the richness of rare epiphytic lichens. PLoS One, 6: e24675.
Paoli L., Benesperi R., Fačkovcová Z., Nascimbene J., Ravera S., Marchetti M., Anselmi B., Landi M., Landi S., Bianchi, E., Di Nuzzo L., Lackovičová A., Vannini A., Loppi S., Guttová A., 2019. Impact of forest management on threatened epiphytic macrolichens: evidence from a Mediterranean mixed oak forest (Italy). iForest - Biogeosciences and Forestry, 12: 383-388.
Reed D.H., 2012. Impact of climate change on biodiversity. In Editors: Chen W.Y., Seiner J., Suzuki T., Lackner M. (ed.). Handbook of climate change mitigation. Springer, New York, NY, pp. 505-530.
Rolstad J., Rolstad E., 1999. Does tree age predict the occurrence and abundance of Usnea longissima in multi-aged submontane Picea abies stands? Lichenologist, 31: 613-625.
Rosenvald R., Lohmus A., 2008. For what, when, and where is green-tree retention better than clear-cutting? A review of the biodiversity aspects. Forest Ecology and Management, 255: 1-15.
Runnel K., Rosenvald R., Lõhmus A., 2013. The dying legacy of green-tree retention: different habitat values for polypore and wood-inhabiting lichens. Biological Conservation, 159: 187-196.
Sârbu A., Sârbu I., Oprea A., Negrean G., Cristea V., Gheorghe C., Cristurean I., Popescu Ghe., Oroian S., Tănase C., Bartók K., Gafta D., Anastasiu P., Crișan F., Costache I., Goia I., Marușca T., Oțel V., Sămărghițan M., Hențea S., Pascale G., Răduțoiu D., Baz A., Boruz V., Pușcaș M., Hirițiu M., Stan I., Frink J. 2007. Arii speciale pentru protecția și conservarea plantelor în România. Victor B Victor, Bucharest, 396 p.
Sorrell A.R.J., 2006. A compartmental study of three Bolton Abbey woodlands using lichen-types: implications for current and future conservation management. Earth & E-nvironment, 2: 253-307.
Stănciou P.T., Niță M.D., Lazăr G.E., 2018. Forestland connectivity in Romania-Implications for policy and management. Land Use Policy, 76: 487-499.
Surian N., 2022. 9.24-Fluvial changes in the Anthropocene: a European perspective. Treatise on geomorphology (Second Edition). In Editors: James L.A., Harden C.P., Clague J.J. (ed.), Academic Press, pp.561-583.
Svoboda D., Peksa O., Veselá J., 2011. Analysis of the species composition of epiphytic lichens in Central European oak forests. Preslia, 83: 129-144.
Świerkosz K., Reczyńska K., Kuras I., 2017. Increasing area of deciduous forest communities (Querco-Fagatea Class) as an unintended effect of regular forestry management-a study from Central Europe. Polish Journal of Environmental Studies, 26: 323-329.
van Herk C.M., Aptroot A., van Dobben H.F., 2002. Long-term monitoring in the Netherlands suggest that lichens respond to global warming. The Lichenologist, 34: 141-157.
Vicol I., 2020a. The role of forest structure as a determinant of epiphytic lichens within managed temperate deciduous forests (southern Romania). Environmental Engineering and Management Journal, 19: 797-807.
Vicol I., 2020b. Multi-aged forest fragments in Atlantic France that are surrounded by meadows retain a richer epiphyte lichen flora. Cryptogamie Mycologie, 41: 235-247.
Vondrák J., Malíček J., Palice Z., Bouda F., Berger F., Sanderson N., Acton A., Pouska V., Kish R., 2018. Exploiting hot-spots; effective determination of lichen diversity in a Carpathian virgin forest. PLoS ONE, 13: e0203540.
Vondrák J., Malíček J., Šoun J., Pouska V., 2015. Epiphytic lichens of Stužica (E Slovakia) in the context of Central European old-growth forests. Herzogia, 28: 104–126.
Vondrák J., Urbanavichus G., Palice Z., Malíček J., Urbanavichene I., Kubásek J., Ellis C., 2019. The epiphytic lichen biota of Caucasian virgin forests: a comparator for European conservation. Biodiversity and Conservation, 28: 3257–3276.
Wolseley A.P., 1995. A global perspective on the status of lichens and their conservation. Mitteilungen der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft, 70: 11–27.
Wolseley P., Sanderson N., Thüs H., Carpenter D., Eggleton P., 2017. Patterns and drivers of lichen species composition in a NW-European lowland deciduous woodland complex. Biodiversity and Conservation, 26: 401-419.
Zoller S., Lutzoni F., Scheidegger C., 1999. Genetic variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation. Molecular Ecology, 8: 2049–2059.
Downloads
Published
Issue
Section
License
All the papers published in Annals of Forest Research are available under an open access policy (Gratis Gold Open Access Licence), which guaranty the free (of taxes) and unlimited access, for anyone, to entire content of the all published articles. The users are free to “read, copy, distribute, print, search or refers to the full text of these articles”, as long they mention the source.
The other materials (texts, images, graphical elements presented on the Website) are protected by copyright.
The journal exerts a permanent quality check, based on an established protocol for publishing the manuscripts. The potential article to be published are evaluated (peer-review) by members of the Editorial Board or other collaborators with competences on the paper topics. The publishing of manuscript is free of charge, all the costs being supported by Forest Research and Management Institute.
More details about Open Access:
Wikipedia: http://en.wikipedia.org/wiki/Open_access