Low genetic diversity and intrapopulation spatial genetic structure of the Atlantic Forest tree, Esenbeckia leiocarpa Engl. (Rutaceae)

Authors

  • G. Forti Universidade Metodista de Piracicaba – Unimep, Escola Superior de Agricultura “Luiz de Queiroz”, University of São Paulo, Av. Padua Dias, 11, PO Box 9, Piracicaba, SP, 13418-900, Brazil
  • E.V. Tambarussi Escola Superior de Agricultura “Luiz de Queiroz”, University of São Paulo, Av. Padua Dias, 11, PO Box 9, Piracicaba, SP, 13418-900, Brazil
  • P.Y. Kageyama Escola Superior de Agricultura “Luiz de Queiroz”, University of São Paulo, Av. Padua Dias, 11, PO Box 9, Piracicaba, SP, 13418-900, Brazil
  • M.A. Moreno Escola Superior de Agricultura “Luiz de Queiroz”, University of São Paulo, Av. Padua Dias, 11, PO Box 9, Piracicaba, SP, 13418-900, Brazil
  • E.M. Ferraz Escola Superior de Agricultura “Luiz de Queiroz”, University of São Paulo, Av. Padua Dias, 11, PO Box 9, Piracicaba, SP, 13418-900, Brazil
  • B. Ibañes Escola Superior de Agricultura “Luiz de Queiroz”, University of São Paulo, Av. Padua Dias, 11, PO Box 9, Piracicaba, SP, 13418-900, Brazil
  • R. Vencovsky Escola Superior de Agricultura “Luiz de Queiroz”, University of São Paulo, Av. Padua Dias, 11, PO Box 9, Piracicaba, SP, 13418-900, Brazil
  • G.M. Mori Centro de Biologia Molecular e Engenharia Genética (CBMEG). AV Candido Rondon, 400 – Universidade procde Campinas (Unicamp), Campinas - SP, 13083-875, Agência Paulista de Tecnologia dos Agronegócios, Pólo Regional Centro Sul, Rodovia SP127, Km 30, CP 28, Piracicaba, SP CEP13400-970, Brazil
  • A.M. Sebbenn Instituto Florestal de São Paulo, CP 1322, São Paulo, SP, 01059-970, Brazil

DOI:

https://doi.org/10.15287/afr.2014.226

Keywords:

Brazilian Atlantic forest, conservation genetics, microsatellite markers, population genetics, tropical tree species

Abstract

Studies on population genetics are the key to designing effective in situ management plans for tree species, in particular, those subjected to pressure from anthropogenic processes, such as forest fragmentation and logging. To investigate genetic diversity, inbreeding and intrapopulation spatial genetic structure (SGS) in a fragmented population of the insect-pollinated tropical tree, Esenbeckia leiocarpa, we developed specific microsatellite markers for this species and mapped and sampled 100 individuals in a forest plot. Two issues were addressed in particular: (i) the level of genetic diversity, inbreeding and effective population size, (ii) whether intrapopulation spatial genetic structure exists. Among the 14 loci developed, we only used the three that presented polymorphism to estimate the genetic parameters. Genetic diversity was low, whereby the average number of alleles per locus (A) was 3.3 and observed (H0) and expected heterozygosities (He) were 0.336 and 0.298, respectively. The average fixation index was significantly higher than zero (F = 0.112), suggesting inbreeding. Significant SGS was found up to 7 m and between 31 to 38 m, indicating that trees growing within these distances may be related. Estimates of the effective population size indicated that the 100 sampled trees correspond to 14 individuals that are neither related nor inbred. Our results suggest that the microsatellite markers developed in this study are suitable for studies on geneticdiversity and structure, mating systems, gene flow and SGS in this species.

References

Aguilar R., Quesada M., Ashworth L., Yvonne Herrarias D., Lobo J., 2008. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Molecular Ecology 17: 5177-5188. DOI: 10.1111/j.1365-294X.2008.03971.x Billotte N., Lagoda P.J.L., Risterucci A.M., Baurens F.C., 1999. Microsatellite-enriched libraries: Applied methodology for the development of SSR markers in tropical crops. Fruits 54: 277-288. Bittencourt J.M., Sebbenn A.M., 2007. Patterns of pollen and seed dispersal in a small fragmented population of a wind pollinated Araucaria angustifolia in southern Brazil. Heredity 99: 580-591. DOI: 10.1038/sj.hdy.6801019 Breed M.F., Marklund M.H.K., Ottewell K.M., GardnerM.G., Harris J.B.C., Lowe A.J., 2012. Pollen diversity matters: revealing the neglected effect of pollen diversity on fitness in fragmented landscapes. Molecular Ecology 21: 5955-5968. DOI: 10.1111/mec.12056 Breed M.F., Ottewell K.M., GardnerM.G., Marklund M.H.K., Dormonttand E.E., Lowe A.J., 2013. Mating patterns and pollinator mobility are critical traits in forest fragmentation genetics. Heredity DOI: 10.1038/hdy.2013.48 Cockerham C.C., 1969. Variance of gene frequencies. Evolution 23: 72-84. DOI: 10.2307/2406485 Chase M.R., Moller C., Kesseli R., Bawa K.S., 1996. Distant gene flow in tropical trees. Nature 383: 398-399. DOI: 10.1038/383398a0 Crestes S., Tulmann A.N., Figueira A., 2001. Detection of single sequence repeat polymorphism in denaturing polyacrylamide sequencing gels by silver staining. Plant Molecular Biology Reporter 19: 299-306. DOI: 10.1007/BF02772828 Degen B., Bandou E., Caron H., 2004. Limited pollen dispersal and biparental inbreeding in Symphonia globulifera in French Guiana. Heredity 93: 585-591. DOI: 10.1038/sj.hdy.6800560 Doyle J.J., Doyle J.L.,1987. Arapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry 19: 11-15. Ekue M.R.M., Gailing O., Finkeldey R., 2009. Transferability of simple sequence repeat (SSR) markers developed in Litchi chinensis to Blighia sapida (Sapindaceae). Plant Molecular Biology Report 27: 570-574. DOI: 10.1007/s 11105-009-0115-2 EverettT.H., 1981. TheNew YorkBotanical GardenIllustrated Encyclopedia of Horticulture 4. Courier Corporation. p. 1268. ISBN 978-0-8240-7234-6. Faegri K., L. Pijl, 1966. The principles of pollination ecology.Oxford, Pergamon. 2:29. Gaino A.P.S.C., Silva A.M., Moraes M.A., Alves P.F., Moraes M.L.T., Freitas M.L.M., Sebbenn A.M., 2010. Understanding the effects of isolation on seed and pollen flow, spatial genetic structure and effective population size of the dioecious tropical tree Myracrodruon urundeuva. Conservation Genetics 11: 1631-1643. DOI: 10.1007/s10592-010-0046-3 Gillet E., Hattemer H.H., 1989. Genetic analysis of isoenzyme phenotypes using single tree progenies. Heredity 63, 135-141. DOI: 10.1038/hdy.1989.84 Goudet J., 2002. Fstat (Version 2.9.3.2.): a computer program to calculate F-statistics. Journal of Heredity 86: 485-486. Hardy O., Vekemans X., 2002. SPAGeDI: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Molecular Ecology Notes 2: 618-620. DOI: 10.1046/j.1471-8286.2002.00305.x Hardy O.J., Maggia L., Bandou E., Breyne P., Caron J., Chevallier M.H., Doligez A., Dutech C., Kremer A., Latouche-Hallé C., Troispoux V., Veron V., Degen B., 2006. Fine-scale genetic structure and gene dispersal inferences in 10 neotropical tree species. Molecular Ecology 15: 559-571. DOI: 10.1111/j.1365-294X.2005.02785.x Hartl,D.L. Clark, A.G., 1989. Principles of Population Genetics. 2 ed. Sinauer Associates,Sunderland,Massachusetts. Chapter 1. Köppen W., 1948. Climatologia: con un estudio de los climas de la tierra. Fondo de Cultura Econômica. México. 479p. Kalia R.K., Rai M.K., Kalia S., Singh R., Dhawan A.K., 2011. Microsatellites markers: an overview of the recent progress in plants. Euphytica 177: 309-334. DOI: 10.1007/s10681-010-0286-9 Kuleung C., Baenziger P.S., DweikatI., 2004. Transferability of SSR markers among wheat, rye, and triticale. Theoretical Applied Genetic 108: 1147-1150. DOI: 10.1007/s00122-003-1532-5 Lindgren D., Luigi D.G., Jefferson P.A., 1997. Status number for measuring genetic diversity.ForestGenetics 4: 69-76. Loiselle B.A., Sork V.L., Nason J., Graham C., 1995. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany 82: 1420-1425. DOI: 10.2307/2445869 Lowe A.J., Boshier D., Ward M., Bacles C.F.E., Navarro C., 2005. Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for Neotropical trees. Heredity 95: 255-273. DOI: 10.1038 /sj.hdy.6800725 Nakatsu T., Johns T., Kubo L., Milton K., SakaiM., Chatani K., Saito K., Yamagiwa Y., Kamikawa T., 1990. Isolation, structure, and synthesis of novel 4-quinolinone alkaloids from Esenbeckia leiocarpa. Journal of Natural Products 53: 1508-1513. DOI: 10.1021/np 50072a017 Novaes W., 2001. Dilemas do desenvolvimento agrário. Estudos avançados 15: 51-60. DOI: 10.1590/S0103-40142001000300006 Rai M.K., Phulwaria M., ShekhawatN.S., 2013. Transferability of simple sequence repeat (SSR) markers developed in guava (Psidium guajava L.) to four Myrtaceae species. Molecular Biology Report 40: 5067-5071. DOI: 10.1007/ s11033-013-2608-1 Rajora O.P., Mosseler A., 2001. Challenges and opportunities for conservation of forest genetic resources. Euphytica 118: 197-212. DOI: 10.1023/ A:1004150 525384 Ribeiro M.C., Metzger J.P., Martensen A.C., Ponzoni F.J., Hirato M.M., 2009. The BrazilianAtlanticForest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142: 1141-1153. DOI: 10.1016/j.biocon.2009.02.021 Selkoe K.A., Toonen R.J., 2006. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters 9: 615-629. DOI: 10.1111/j.1461-0248.2006.00889.x Sebbenn A., 2011. Effects of forest fragmentation on the effective and realized gene flow of Neotropical tree species: implications for genetic conservation. BMC Proceedings 5: 6. Sebbenn A.M., Carvalho A.C.M., Freitas M.L.M., Moraes S.M.B., Gaino A.P.S.C., Silva J.M., Jolivet C., Moraes M.L.T., 2011. Low levels of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorffii Desf. Heredity 106: 134-145. DOI: 10.1038/ hdy.2010.33 Seoane C.E.S., Kageyama P.Y., Sebbenn A.M., 2000. Efeitos da fragmentação florestal na estrutura genética de populações de Esenbeckia leiocarpa Engl. (Guarantã). Scientia Florestalis 57: 123-139. Seoane C.E.S., Sebbenn A.M., Kageyama P.Y., 2001. Sistema de reprodução em populações de Esenbeckia leiocarpa Engl. Revista do Instituto Florestal 13: 19-26. Silva C.R.S., AlbuquerqueP.S.B., Ervedosa F.R., Mota J.W.S., Figueira A., Sebbenn A.M., 2011. Understanding the genetic diversity, spatial genetic structure and mating system at the hierarchical levels of fruits and individuals of a continuous Theobroma cacao population from the Brazilian Amazon. Heredity 106: 973-985. DOI: 10.1038/ hdy.2010.145 Sousa F.M., Gandolf S., Perez S.C.J.C.A., Rodrigues R.R., 2010. Allelopathic potential of bark and leaves of Esenbeckia leiocarpa Engl. (Rutaceae). Acta Botanica Brasilica 24: 169-174. DOI: 10.1590/S0102 -33062010000100016 Sudheer P.D.V.N., Mastan S.G., Rahman H., RaviP.C., Singh S., Reddy M.P., 2011. Cross species amplification ability of novel microsatellites isolated from Jatropha curcas and genetic relationship with sister taxa. Molecular Biology Report 38: 1383-1388. DOI: 10. 1007/s11033-010-0241-9 Tambarussi E.V., Vencovsky R., Freitas M.L.M., Sebbenn A.M., 2013. Mendelian inheritance, genetic linkage and genotypic disequilibrium at nine microsatellite loci of Cariniana legalis (Mart.) O. Kuntze. Genetics and Molecular Research 12: 5442-5457. DOI: 10.4238/2013. November.11.6 Untergasser A., Nijveen H., Rao X., Bisseling T., Geurts R., Leunissen J.A.M., 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research 35 (Supplement 2): W71-W74. DOI: 10.1093/ nar/gkm306 van Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P., 2004. Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4:535-538, DOI: 10.1111/j.1471-8286.2004.00684.x White G.M., Boshier D.H., Powell W., 2002. Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proceedings of the NationalAcademyof Sciences of the United States of America 99: 2038-2042. DOI: 10.1073/pnas.042649999 White G., Powell W., 1997. Cross-species amplification of SSR loci in the Meliaceae family Molecular Ecology 6: 1158-1197. DOI: 10.1046/ j.1365-294X.1997.00297.x

Downloads

Published

2014-10-07

Issue

Section

Research article