Above-ground biomass allocation and potential carbon sink of black pine – a case study from southern Poland

Authors

  • Wojciech Ochał University of Agriculture in Krakow Faculty of Forestry Department of Forest Resources Management
  • Bogdan Wertz University of Agriculture in Krakow Faculty of Forestry Department of Forest Resources Management
  • Stanisław Orzeł University of Agriculture in Krakow Faculty of Forestry Department of Forest Resources Management

DOI:

https://doi.org/10.15287/afr.2022.2174

Keywords:

Pinus nigra, Allometric biomass model, Carbon sequestration, Biomass expansion factor, Tree social status, Biomass accumulation

Abstract

Biomass allocation is a key factor for understanding the forest carbon balance and reflects plants’ ecological strategies in different environmental conditions. Allocation patterns and biomass models outside of the native range of black pine have not been analyzed in the context of the observed climate changes. The study's goals were to develop biomass equations for mature black pine from southern Poland and assess biomass and carbon allocation patterns and the potential of trees of different social statuses for carbon sequestration. A total of 129 felled black pine trees were measured, among which 14 were destructively sampled to determine biomass and carbon content in tree components. The developed set of biomass equations provided allocation patterns and accumulation of trees of different social statuses.

Biomass and carbon allocation patterns were different but related to tree social status. The introduction of diameter at crown base significantly improved the accuracy of the developed models. The analyzed trees allocated relatively more in stem than in crown in comparison with that observed in other studies.

Biomass and carbon allocation patterns of the analyzed black pines differ from those of the native range. They should be considered in biomass modeling with factors influencing social status structure.

Author Biography

Bogdan Wertz, University of Agriculture in Krakow Faculty of Forestry Department of Forest Resources Management


 

References

Abeli T., Gentili R., Mondoni A., Orsenigo S., Rossi G., 2014. Effects of marginality on plant population performance. Journal of Biogeography. https://doi.org/10.1111/jbi.12215

Aguirre A., del Río M., Condés S., 2019. Productivity estimations for monospecific and mixed pine forests along the Iberian Peninsula aridity gradient. Forests 10(5): 430. https://doi.org/10.3390/f10050430

Balenović I., Jazbec A., Marjanović H., Paladinić E., Vuletić D., 2015. Modeling tree characteristics of individual black pine (Pinus nigra Arn.) trees for use in remote sensing-based inventory. Forests 6(12): 492–509. https://doi.org/10.3390/f6020492

Bellon S., Tumiłowicz J.K.S., 1977. Obce gatunki drzew w gospodarstwie leśnym (Foreign tree species in forest holding). PWRiL, Warszawa.

Bijak S., Zasada M., 2007. Oszacowanie biomasy korzeni w drzewostanach sosnowych Borow Lubuskich. Sylwan 151(12): 21–29.

Bronisz K., Bronisz A., Zasada M., Bijak S., Wojtan R., Tomusiak R., Dudek A., Michalak K., Wróblewski L., 2009. Biomasa aparatu asymilacyjnego w drzewostanach sosnowych zachodniej Polski. Sylwan 153(11): 758–767.

Buotte P.C., Law B.E., Ripple W.J., Berner L.T., 2020. Carbon sequestration and biodiversity co‐benefits of preserving forests in the western United States. Ecological Applications 30(2). https://doi.org/10.1002/eap.2039

Bureau for Forest Management and Geodesy. 2013. Forest Management Plan for Piczów Forest District for period 01.01.2013 r. - 31.12.2022 r.

Cairns M.A., Brown S., Helmer E.H., Baumgardner G.A., 1997. Root biomass allocation in the world’s upland forests. Oecologia 111(1): 1–11. https://doi.org/10.1007/s004420050201

Caudullo G., Welk E., San-Miguel-Ayanz J., 2017. Chorological maps for the main European woody species. Data in Brief 12: 662–666. https://doi.org/10.1016/j.dib.2017.05.007

Cervellini M., Zannini P., Di Musciano M., Fattorini S., Jiménez-Alfaro B., Rocchini D., Field R., Vetaas O.R., Irl S.D.H., Beierkuhnlein C., Hoffmann S., Fischer J.C., Casella L., Angelini P., Genovesi P., Nascimbene J., Chiarucci A., 2020. A grid-based map for the Biogeographical Regions of Europe. Biodivers. Data J. 8, 53720. https://doi.org/10.3897/BDJ.8.E53720

de Medeiros C.M., Hernández-Lambraño R.E., Ribeiro K.A.F., Sánchez Agudo J.Á., 2018. Living on the edge: do central and marginal populations of plants differ in habitat suitability? Plant Ecology 219(9): 1029–1043. https://doi.org/10.1007/s11258-018-0855-x

Demšar J. 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1–30.

Durkaya A., Durkaya B., Cakil E., 2010. Predicting the above-ground biomass of crimean pine (Pinus nigra) stands in Turkey. Journal of Environmental Biology 31(1–2): 115–118.

Durkaya B., Durkaya A., Yagci H., 2019. Biomass equations in natural black pines. Fresenius Environmental Bulletin 28(2): 1132–1139.

Dutcă I., McRoberts R.E., Næsset E., Blujdea V.N.B., 2019. A practical measure for determining if diameter (D) and height (H) should be combined into D2H in allometric biomass models. Forestry: An International Journal of Forest Research 92(5): 627–634. https://doi.org/10.1093/forestry/cpz041

Dutcă I., Negruţiu F., Ioraş F., Maher K., Blujdea V.N.B., Ciuvăţ L.A., 2014. The influence of age, location and soil conditions on the allometry of young Norway spruce (Picea abies L. Karst.) trees. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 42(2): 579–582. https://doi.org/10.15835/nbha4229714

Enescu C.M., de Rigo D., Caudullo G., Mauri A.H.D.T., 2016. Pinus nigra in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J., de Rigo D., Caudullo G., Houston Durrant T., Mauri (Eds.), European Atlas of Forest Tree Species. pp. 126–127.

Forrester D.I., Dumbrell I.C., Elms S.R., Paul K.I., Pinkard E.A., Roxburgh S.H., & Baker T.G. 2020. Can crown variables increase the generality of individual tree biomass equations? Trees - Structure and Function (0123456789). https://doi.org/10.1007/s00468-020-02006-6

Gargaglione V., Peri P.L., & Rubio G. 2010. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient. Forest Ecology and Management 259(6): 1118–1126. https://doi.org/16/j.foreco.2009.12.025

Gill R.A., & Jackson R.B. 2000. Global patterns of root turnover for terrestrial ecosystems. New Phytologist 147(1): 13–31. https://doi.org/10.1046/j.1469-8137.2000.00681.x

Gower S.T., Krankina O., Olson R.J., Apps M., Linder S., & Wang C. 2007. Net primary production and carbon allocation patterns of boreal ecosystems. Ecological Applications 10: 999–1018.

Grote R., & Reiter I.M. 2004. Competition-dependent modelling of foliage biomass in forest stands. Trees - Structure and Function 18(5): 596–607. https://doi.org/10.1007/s00468-004-0352-9

Guner S., & Comez A. 2017. Biomass equations and changes in carbon stock in afforested black pine (Pinus nigra Arnold. subsp. pallasiana (Lamb.) Holmboe) stands in Turkey. Fresenius Environmental Bulletin 26(3): 2368–2379.

Hackenberg J., Wassenberg M., Spiecker H., & Sun D. 2015. Non destructive method for biomass prediction combining TLS derived tree volume and wood density. Forests 6(4): 1274–1300. https://doi.org/10.3390/f6041274

Herrero de Aza C., Turrión M.B., Pando V., & Bravo F. 2011. Carbon in heartwood, sapwood and bark along the stem profile in three Mediterranean Pinus species. Annals of Forest Science 68: 1067–1076. https://doi.org/10.1007/s13595-011-0122-y

Houghton R.A. 1996. Converting terrestrial ecosystems from sources to sinks of carbon. Ambio 25: 267–272.

Isajev V., Fady B., Semerci H., & Andonovski V. 2004. EUFORGEN Technical Guidelines for genetic conservation and use for European black pine (Pinus nigra). International Plant Genetic Resources Institute, Rome, Italy 6.

Jagodziński A.M., Dyderski M.K., Gȩsikiewicz K., & Horodecki P. 2018. Tree- and stand-level biomass estimation in a Larix decidua Mill. Chronosequence. Forests 9(10). https://doi.org/10.3390/f9100587

Jagodziński A.M., Dyderski M.K., Gęsikiewicz K., & Horodecki P. 2019a. Effects of stand features on aboveground biomass and biomass conversion and expansion factors based on a Pinus sylvestris L. chronosequence in Western Poland. European Journal of Forest Research 138(4): 673–683. https://doi.org/10.1007/s10342-019-01197-z

Jagodziński A.M., Dyderski M.K., Gęsikiewicz K., & Horodecki P. 2019b. Tree and stand level estimations of Abies alba Mill. aboveground biomass. Annals of Forest Science 76(2). https://doi.org/10.1007/s13595-019-0842-y

Jagodziński A.M., Jarosiewicz G., & Karolewski P. 2012. Carbon concentration in the biomass of common species of understory shrubs. Sylwan 156(9): 650–662.

Jagodzinski A.M., & Oleksyn J. 2009. Ekologiczne konsekwencje hodowli drzew w roznym zageszczeniu. II. Produkcja i alokacja biomasy, retencja biogenow (Ecological consequences of silviculture at variable stand densities. II. Biomass production and allocation, nutrient retention). Sylwan 153(03): 147–157.

Jagodziński A.M., Zasada M., Bronisz K., Bronisz A., & Bijak S. 2017. Biomass conversion and expansion factors for a chronosequence of young naturally regenerated silver birch (Betula pendula Roth) stands growing on post-agricultural sites. Forest Ecology and Management 384(November): 208–220. https://doi.org/10.1016/j.foreco.2016.10.051

Janssen E., Kint V., Bontemps J.D., Özkan K., Mert A., Köse N., Icel B., & Muys B. 2018. Recent growth trends of black pine (Pinus nigra J.F. Arnold) in the eastern mediterranean. Forest Ecology and Management 412: 21–28. https://doi.org/10.1016/j.foreco.2018.01.047

Jiang Y., & Wang L. 2017, July 1. Pattern and control of biomass allocation across global forest ecosystems. Ecology and EvolutionJohn Wiley and Sons Ltd. DOI: 10.1002/ece3.3089

Konôpka B., Pajtík J., Šebeň V., Merganičová K., & Surový P. 2020. Silver birch aboveground biomass allocation pattern, stem and foliage traits with regard to intraspecific crown competition. Central European Forestry Journal 66(3): 159–169. https://doi.org/10.2478/forj-2020-0013

Kraft G. 1884. Beiträge zur Lehre von den Durchfor- stungen, Schlagstellungen und Lichtungshieben in Waldbeständen. Klindsworth, Hannover.

Lin Y., Jaakkola A., Hyyppä J., & Kaartinen H. 2010. From TLS to VLS: Biomass Estimation at Individual Tree Level. Remote Sensing 2(8): 1864–1879. https://doi.org/10.3390/rs2081864

Lucas-Borja M.E., & Vacchiano G. 2018. Interactions between climate, growth and seed production in Spanish black pine (Pinus nigra Arn. ssp. salzmannii) forests in Cuenca Mountains (Spain). New Forests 49(3): 399–414. https://doi.org/10.1007/s11056-018-9626-8

Martín-Benito D., Cherubini P., Del Río M., & Cañellas I. 2008. Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees - Structure and Function 22(3): 363–373. https://doi.org/10.1007/s00468-007-0191-6

Mikulová K., Jarolímek I., Bacigál T., Hegedüšová K., Májeková J., Medvecká J., Slabejová D., Šibík J., Škodová I., Zaliberová M., & Šibíková M. 2019. The Effect of Non-Native Black Pine (Pinus nigra J. F. Arnold) Plantations on environmental conditions and undergrowth diversity. Forests 10(7): 548. https://doi.org/10.3390/f10070548

Molinier M., López-Sánchez C.A., Toivanen T., Korpela I., Corral-Rivas J.J., Tergujeff R., & Häme T. 2016. Relasphone-mobile and participative in situ forest biomass measurements supporting satellite image mapping. Remote Sensing 8(10). https://doi.org/10.3390/rs8100869

Muukkonen P., & Mäkipää R. 2006. Biomass equations for European trees: addendum. Silva Fennica 40(4). https://doi.org/10.14214/sf.475

Nabuurs G.J., Masera O., Andrasko K., Benitez-Ponce P., Boer R., Dutschke M., Elsiddig E., Ford-Robertson J., Frumhoff P., Karjalainen T., Krankina O., Kurz W.A., Matsumoto M., Oyhantcabal W., Ravindranath N.H., Sanchez M.J.S., & Zhang X. 2007. Forestry. In: Metz B., Davidson O.R., Bosch P.R., Dave R., & Meyer L.A. (Eds.), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. pp. 541–584. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

Newton P.F. 2004. A stem analysis computational algorithm for estimating volume growth and its empirical evaluation under various sampling strategies. Comput. Electron. Agric. 44, 21–31. https://doi.org/10.1016/j.compag.2004.02.004

O’Brien R.M. 2007. A caution regarding rules of thumb for variance inflation factors. Quality and Quantity 41(5): 673–690. https://doi.org/10.1007/s11135-006-9018-6

Ochał W. 2013. Nadziemna biomasa drzew w młodych drzewostanach olszy czarnej (Alnus glutinosa (L.) Gaertn.). Acta Agraria et Silvestria Ser Sylvestris 51: 75–89.

Ochał W., Grabczyński S., Orzeł S., Wertz B., & Socha J. 2013. Aboveground biomass allocation in Scots pines of different biosocial positions in the stand. Sylwan 157(10): 737–746.

Ochał W., Socha J., & Grabczyński S. 2014. Dokładność wzorów empirycznych służących do określania biomasy nadziemnych komponentów drzew olszy czarnej (Alnus glutinosa (L.) Gaertn.). Sylwan 158(6): 431–442.

Orzeł S. 2015. Skład gatunkowy i biomasa nadziemna krzewów w podszycie drzewostanów Puszczy Niepołomickiej. Sylwan 159(10): 848–856.

Pardé J. 1980. Forest biomass. Forestry Abstracts 41(8): 343–362.

Parresol B.R. 1999. Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science 45(4): 573–593.

Peichl M., & Arain M.A. 2007. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. Forest Ecology and Management 253(1–3): 68–80. https://doi.org/16/j.foreco.2007.07.003

Poorter H., Jagodzinski A.M., Ruiz‐Peinado R., Kuyah S., Luo Y., Oleksyn J., Usoltsev V.A., Buckley T.N., Reich P.B., & Sack L. 2015. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist 208(3): 736–749. https://doi.org/10.1111/nph.13571

Poorter H., & Sack L. 2012. Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Frontiers in Plant Science 3(DEC): 259. https://doi.org/10.3389/fpls.2012.00259

Proutsos N., & Tigkas D. 2020. Growth response of endemic black pine trees to meteorological variations and drought episodes in a Mediterranean Region. Atmosphere 11(6): 554. https://doi.org/10.3390/atmos11060554

Qi Y., Wei W., Chen C., & Chen L. 2019. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Global Ecology and Conservation 18(18): e00606. https://doi.org/10.1016/j.gecco.2019.e00606

Ruiz-Peinado R., del Rio M., & Montero G. 2011. Nuevos modelos para estimar la capacidad de fijación de carbono de las coníferas Españolas. Forest Systems 20(1): 176–188. https://doi.org/10.5424/fs/2011201-11643

Schall P., Lödige C., Beck M., & Ammer C. 2012. Biomass allocation to roots and shoots is more sensitive to shade and drought in European beech than in Norway spruce seedlings. Forest Ecology and Management 266: 246–253. https://doi.org/10.1016/j.foreco.2011.11.017

Sevgi O., & Akkemik U. 2007. A dendroecological study on Pinus nigra Arn. at different altitudes of northern slopes of Kazdaglari, Turkey. Journal of Environmental Biology 28(1): 73–75.

Shinozaki K., Yoda K., Hozumi K., & Kira T. 1964. A quantitative analysis of plant form - the pipe model theory. Japanese Journal of Ecology 14(3): 97–105.

Sikanja S. 2015. Height curve as a new aspect of black pine (Pinus nigra) plantations in the Sumadija region. Acta Agriculturae Serbica 20(39): 29–39. https://doi.org/10.5937/aaser1539029s

Socha J., Hawryło P., Pierzchalski M., Stereńczak K., Krok G., Wężyk P., & Tymińska-Czabańska L. 2020. An allometric area-based approach—a cost-effective method for stand volume estimation based on ALS and NFI data. Forestry: An International Journal of Forest Research 93(3): 344–358. https://doi.org/10.1093/forestry/cpz062

Socha J., & Wezyk P. 2007. Allometric equations for estimating the foliage biomass of Scots pine. European Journal of Forest Research 126(2): 263–270. https://doi.org/10.1007/s10342-006-0144-4

Somogyi Z., Cienciala E., Mäkipää R., Muukkonen P., Lehtonen A., & Weiss P. 2007. Indirect methods of large-scale forest biomass estimation. European Journal of Forest Research 126(2): 197–207. https://doi.org/10.1007/s10342-006-0125-7

Sprugel D. G. 1983. Correcting for Bias in log-transformed allometric equations. Ecology 64(1): 209–210. https://doi.org/10.2307/1937343

Stankova T.V., & Shibuya M. 2007. Stand density control diagrams for Scots pine and Austrian black pine plantations in Bulgaria. New Forests 34(2): 123–141. https://doi.org/10.1007/s11056-007-9043-x

Szymczak S., Häusser M., Garel E., Santoni S., Huneau F., Knerr I., Trachte K., Bendix J., & Bräuning A. 2020. How do Mediterranean pine trees respond to drought and precipitation events along an elevation gradient? Forests 11(7): 758. https://doi.org/10.3390/f11070758

Tausch R. 1989. Comparison of regression methods for biomass estimation of sagebrush and bunchgrass. Great Basin Naturalist 49(3).

Teobaldelli M., Somogyi Z., Migliavacca M., & Usoltsev V.A. 2009. Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. Forest Ecology and Management 257(3): 1004–1013. https://doi.org/10.1016/j.foreco.2008.11.002

Thomas S.C., & Martin A.R. 2012. Carbon content of tree tissues: A synthesis. Forests 3(2): 332–352. https://doi.org/10.3390/f3020332

Tigerstedt P.M.A. 1994. Adaptation, variation and selection in marginal areas. Euphytica 77(3): 171–174. https://doi.org/10.1007/BF02262628

Tolunay D. 2009. Carbon concentrations of tree components, forest floor and understorey in young Pinus sylvestris stands in north-western Turkey. Scandinavian Journal of Forest Research 24(5): 394–402. https://doi.org/10.1080/02827580903164471

Tolunay D. 2011. Total carbon stocks and carbon accumulation in living tree biomass in forest ecosystems of Turkey. Turkish Journal of Agriculture and Forestry 35(3): 265–279. https://doi.org/10.3906/tar-0909-369

Valentine H.T., Baldwin V.C., Gregoire T.G., & Burkhart H.E. 1994. Surrogates for foliar dry matter in loblolly pine. Forest Science 40(3): 576–585.

Vanninen P. 2004. Allocation of above-ground growth in Pinus sylvestris - Impacts of tree size and competition. Silva Fennica 38(2): 155–166. https://doi.org/10.14214/sf.425

Vanninen P., Ylitalo H., Sievänen R., & Mäkelä A. 1996. Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees 10(4): 231–238. https://doi.org/10.1007/bf02185674

Węgiel A., & Polowy K. 2020. Aboveground carbon content and storage in mature scots pine stands of different densities. Forests 11(2). https://doi.org/10.3390/f11020240

Wertz B., Bembenek M., Karaszewski Z., Ochał W., Skorupski M., Strzeliński P., Węgiel A., & Mederski P.S. 2020. Impact of stand density and tree social status on aboveground biomass allocation of scots pine Pinus sylvestris L. Forests 11(7): 765. https://doi.org/10.3390/f11070765

Whittaker R., & Likens G.E. 1973. Carbon in the biota. In: Woodwell G.M. & Pecan E.V. (Eds.), Carbon and the Biosphere. p. 281−302. Washington DC: U.S. Atomic Energy Commission.

Wirth C., Schumacher J., & Schulze E.-D. 2004. Generic biomass functions for Norway spruce in Central Europe - a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology 24(2): 121–139.

Wojtan R., Tomusiak R., Zasada M., Dudek A., Michalak K., Wroblewski L., Bijak S., & Bronisz K. 2011. Współczynniki przeliczeniowe suchej biomasy drzew i ich części dla sosny pospolitej (Pinus sylvestris L.) w zachodniej Polsce. Sylwan 155(4): 236–243.

Zajączkowski G., Jabłoński M., Jabłoński T., Kowalska A., Małachowska J., & Piwnicki J. 2019. Raport o stanie lasów w Polsce 2018.

Zhang H., Wang K., Xu X., Song T., Xu Y., & Zeng F. 2015. Biogeographical patterns of biomass allocation in leaves, stems and roots in China’s forests. Scientific Reports 5(1): 15997. https://doi.org/10.1038/srep15997

Zhou W., Cheng X., Wu R., Han H., Kang F., Zhu J., & Tian P. 2018. Effect of intraspecific competition on biomass partitioning of Larix principis-rupprechtii. Journal of Plant Interactions 13(1): 1–8. https://doi.org/10.1080/17429145.2017.1406999

Zianis D., Muukkonen P., Mäkipää R., & Mencuccini M. 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs: 63.

Downloads

Published

2022-12-30

Issue

Section

Research article