Above-ground biomass allocation and potential carbon sink of black pine – a case study from southern Poland
DOI:
https://doi.org/10.15287/afr.2022.2174Keywords:
Pinus nigra, Allometric biomass model, Carbon sequestration, Biomass expansion factor, Tree social status, Biomass accumulationAbstract
Biomass allocation is a key factor for understanding the forest carbon balance and reflects plants’ ecological strategies in different environmental conditions. Allocation patterns and biomass models outside of the native range of black pine have not been analyzed in the context of the observed climate changes. The study's goals were to develop biomass equations for mature black pine from southern Poland and assess biomass and carbon allocation patterns and the potential of trees of different social statuses for carbon sequestration. A total of 129 felled black pine trees were measured, among which 14 were destructively sampled to determine biomass and carbon content in tree components. The developed set of biomass equations provided allocation patterns and accumulation of trees of different social statuses.Biomass and carbon allocation patterns were different but related to tree social status. The introduction of diameter at crown base significantly improved the accuracy of the developed models. The analyzed trees allocated relatively more in stem than in crown in comparison with that observed in other studies.Biomass and carbon allocation patterns of the analyzed black pines differ from those of the native range. They should be considered in biomass modeling with factors influencing social status structure.References
Abeli T., Gentili R., Mondoni A., Orsenigo S., Rossi G., 2014. Effects of marginality on plant population performance. Journal of Biogeography. https://doi.org/10.1111/jbi.12215Aguirre A., del Río M., Condés S., 2019. Productivity estimations for monospecific and mixed pine forests along the Iberian Peninsula aridity gradient. Forests 10(5): 430. https://doi.org/10.3390/f10050430Balenović I., Jazbec A., Marjanović H., Paladinić E., Vuletić D., 2015. Modeling tree characteristics of individual black pine (Pinus nigra Arn.) trees for use in remote sensing-based inventory. Forests 6(12): 492–509. https://doi.org/10.3390/f6020492Bellon S., Tumiłowicz J.K.S., 1977. Obce gatunki drzew w gospodarstwie leśnym (Foreign tree species in forest holding). PWRiL, Warszawa.Bijak S., Zasada M., 2007. Oszacowanie biomasy korzeni w drzewostanach sosnowych Borow Lubuskich. Sylwan 151(12): 21–29.Bronisz K., Bronisz A., Zasada M., Bijak S., Wojtan R., Tomusiak R., Dudek A., Michalak K., Wróblewski L., 2009. Biomasa aparatu asymilacyjnego w drzewostanach sosnowych zachodniej Polski. Sylwan 153(11): 758–767.Buotte P.C., Law B.E., Ripple W.J., Berner L.T., 2020. Carbon sequestration and biodiversity co‐benefits of preserving forests in the western United States. Ecological Applications 30(2). https://doi.org/10.1002/eap.2039Bureau for Forest Management and Geodesy. 2013. Forest Management Plan for Piczów Forest District for period 01.01.2013 r. - 31.12.2022 r.Cairns M.A., Brown S., Helmer E.H., Baumgardner G.A., 1997. Root biomass allocation in the world’s upland forests. Oecologia 111(1): 1–11. https://doi.org/10.1007/s004420050201Caudullo G., Welk E., San-Miguel-Ayanz J., 2017. Chorological maps for the main European woody species. Data in Brief 12: 662–666. https://doi.org/10.1016/j.dib.2017.05.007Cervellini M., Zannini P., Di Musciano M., Fattorini S., Jiménez-Alfaro B., Rocchini D., Field R., Vetaas O.R., Irl S.D.H., Beierkuhnlein C., Hoffmann S., Fischer J.C., Casella L., Angelini P., Genovesi P., Nascimbene J., Chiarucci A., 2020. A grid-based map for the Biogeographical Regions of Europe. Biodivers. Data J. 8, 53720. https://doi.org/10.3897/BDJ.8.E53720de Medeiros C.M., Hernández-Lambraño R.E., Ribeiro K.A.F., Sánchez Agudo J.Á., 2018. Living on the edge: do central and marginal populations of plants differ in habitat suitability? Plant Ecology 219(9): 1029–1043. https://doi.org/10.1007/s11258-018-0855-xDemšar J. 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1–30.Durkaya A., Durkaya B., Cakil E., 2010. Predicting the above-ground biomass of crimean pine (Pinus nigra) stands in Turkey. Journal of Environmental Biology 31(1–2): 115–118.Durkaya B., Durkaya A., Yagci H., 2019. Biomass equations in natural black pines. Fresenius Environmental Bulletin 28(2): 1132–1139.Dutcă I., McRoberts R.E., Næsset E., Blujdea V.N.B., 2019. A practical measure for determining if diameter (D) and height (H) should be combined into D2H in allometric biomass models. Forestry: An International Journal of Forest Research 92(5): 627–634. https://doi.org/10.1093/forestry/cpz041Dutcă I., Negruţiu F., Ioraş F., Maher K., Blujdea V.N.B., Ciuvăţ L.A., 2014. The influence of age, location and soil conditions on the allometry of young Norway spruce (Picea abies L. Karst.) trees. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 42(2): 579–582. https://doi.org/10.15835/nbha4229714Enescu C.M., de Rigo D., Caudullo G., Mauri A.H.D.T., 2016. Pinus nigra in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J., de Rigo D., Caudullo G., Houston Durrant T., Mauri (Eds.), European Atlas of Forest Tree Species. pp. 126–127.Forrester D.I., Dumbrell I.C., Elms S.R., Paul K.I., Pinkard E.A., Roxburgh S.H., & Baker T.G. 2020. Can crown variables increase the generality of individual tree biomass equations? Trees - Structure and Function (0123456789). https://doi.org/10.1007/s00468-020-02006-6Gargaglione V., Peri P.L., & Rubio G. 2010. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient. Forest Ecology and Management 259(6): 1118–1126. https://doi.org/16/j.foreco.2009.12.025Gill R.A., & Jackson R.B. 2000. Global patterns of root turnover for terrestrial ecosystems. New Phytologist 147(1): 13–31. https://doi.org/10.1046/j.1469-8137.2000.00681.xGower S.T., Krankina O., Olson R.J., Apps M., Linder S., & Wang C. 2007. Net primary production and carbon allocation patterns of boreal ecosystems. Ecological Applications 10: 999–1018.Grote R., & Reiter I.M. 2004. Competition-dependent modelling of foliage biomass in forest stands. Trees - Structure and Function 18(5): 596–607. https://doi.org/10.1007/s00468-004-0352-9Guner S., & Comez A. 2017. Biomass equations and changes in carbon stock in afforested black pine (Pinus nigra Arnold. subsp. pallasiana (Lamb.) Holmboe) stands in Turkey. Fresenius Environmental Bulletin 26(3): 2368–2379.Hackenberg J., Wassenberg M., Spiecker H., & Sun D. 2015. Non destructive method for biomass prediction combining TLS derived tree volume and wood density. Forests 6(4): 1274–1300. https://doi.org/10.3390/f6041274Herrero de Aza C., Turrión M.B., Pando V., & Bravo F. 2011. Carbon in heartwood, sapwood and bark along the stem profile in three Mediterranean Pinus species. Annals of Forest Science 68: 1067–1076. https://doi.org/10.1007/s13595-011-0122-yHoughton R.A. 1996. Converting terrestrial ecosystems from sources to sinks of carbon. Ambio 25: 267–272.Isajev V., Fady B., Semerci H., & Andonovski V. 2004. EUFORGEN Technical Guidelines for genetic conservation and use for European black pine (Pinus nigra). International Plant Genetic Resources Institute, Rome, Italy 6.Jagodziński A.M., Dyderski M.K., Gȩsikiewicz K., & Horodecki P. 2018. Tree- and stand-level biomass estimation in a Larix decidua Mill. Chronosequence. Forests 9(10). https://doi.org/10.3390/f9100587Jagodziński A.M., Dyderski M.K., Gęsikiewicz K., & Horodecki P. 2019a. Effects of stand features on aboveground biomass and biomass conversion and expansion factors based on a Pinus sylvestris L. chronosequence in Western Poland. European Journal of Forest Research 138(4): 673–683. https://doi.org/10.1007/s10342-019-01197-zJagodziński A.M., Dyderski M.K., Gęsikiewicz K., & Horodecki P. 2019b. Tree and stand level estimations of Abies alba Mill. aboveground biomass. Annals of Forest Science 76(2). https://doi.org/10.1007/s13595-019-0842-yJagodziński A.M., Jarosiewicz G., & Karolewski P. 2012. Carbon concentration in the biomass of common species of understory shrubs. Sylwan 156(9): 650–662.Jagodzinski A.M., & Oleksyn J. 2009. Ekologiczne konsekwencje hodowli drzew w roznym zageszczeniu. II. Produkcja i alokacja biomasy, retencja biogenow (Ecological consequences of silviculture at variable stand densities. II. Biomass production and allocation, nutrient retention). Sylwan 153(03): 147–157.Jagodziński A.M., Zasada M., Bronisz K., Bronisz A., & Bijak S. 2017. Biomass conversion and expansion factors for a chronosequence of young naturally regenerated silver birch (Betula pendula Roth) stands growing on post-agricultural sites. Forest Ecology and Management 384(November): 208–220. https://doi.org/10.1016/j.foreco.2016.10.051Janssen E., Kint V., Bontemps J.D., Özkan K., Mert A., Köse N., Icel B., & Muys B. 2018. Recent growth trends of black pine (Pinus nigra J.F. Arnold) in the eastern mediterranean. Forest Ecology and Management 412: 21–28. https://doi.org/10.1016/j.foreco.2018.01.047Jiang Y., & Wang L. 2017, July 1. Pattern and control of biomass allocation across global forest ecosystems. Ecology and EvolutionJohn Wiley and Sons Ltd. DOI: 10.1002/ece3.3089Konôpka B., Pajtík J., Šebeň V., Merganičová K., & Surový P. 2020. Silver birch aboveground biomass allocation pattern, stem and foliage traits with regard to intraspecific crown competition. Central European Forestry Journal 66(3): 159–169. https://doi.org/10.2478/forj-2020-0013Kraft G. 1884. Beiträge zur Lehre von den Durchfor- stungen, Schlagstellungen und Lichtungshieben in Waldbeständen. Klindsworth, Hannover.Lin Y., Jaakkola A., Hyyppä J., & Kaartinen H. 2010. From TLS to VLS: Biomass Estimation at Individual Tree Level. Remote Sensing 2(8): 1864–1879. https://doi.org/10.3390/rs2081864Lucas-Borja M.E., & Vacchiano G. 2018. Interactions between climate, growth and seed production in Spanish black pine (Pinus nigra Arn. ssp. salzmannii) forests in Cuenca Mountains (Spain). New Forests 49(3): 399–414. https://doi.org/10.1007/s11056-018-9626-8Martín-Benito D., Cherubini P., Del Río M., & Cañellas I. 2008. Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees - Structure and Function 22(3): 363–373. https://doi.org/10.1007/s00468-007-0191-6Mikulová K., Jarolímek I., Bacigál T., Hegedüšová K., Májeková J., Medvecká J., Slabejová D., Šibík J., Škodová I., Zaliberová M., & Šibíková M. 2019. The Effect of Non-Native Black Pine (Pinus nigra J. F. Arnold) Plantations on environmental conditions and undergrowth diversity. Forests 10(7): 548. https://doi.org/10.3390/f10070548Molinier M., López-Sánchez C.A., Toivanen T., Korpela I., Corral-Rivas J.J., Tergujeff R., & Häme T. 2016. Relasphone-mobile and participative in situ forest biomass measurements supporting satellite image mapping. Remote Sensing 8(10). https://doi.org/10.3390/rs8100869Muukkonen P., & Mäkipää R. 2006. Biomass equations for European trees: addendum. Silva Fennica 40(4). https://doi.org/10.14214/sf.475Nabuurs G.J., Masera O., Andrasko K., Benitez-Ponce P., Boer R., Dutschke M., Elsiddig E., Ford-Robertson J., Frumhoff P., Karjalainen T., Krankina O., Kurz W.A., Matsumoto M., Oyhantcabal W., Ravindranath N.H., Sanchez M.J.S., & Zhang X. 2007. Forestry. In: Metz B., Davidson O.R., Bosch P.R., Dave R., & Meyer L.A. (Eds.), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. pp. 541–584. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Newton P.F. 2004. A stem analysis computational algorithm for estimating volume growth and its empirical evaluation under various sampling strategies. Comput. Electron. Agric. 44, 21–31. https://doi.org/10.1016/j.compag.2004.02.004O’Brien R.M. 2007. A caution regarding rules of thumb for variance inflation factors. Quality and Quantity 41(5): 673–690. https://doi.org/10.1007/s11135-006-9018-6Ochał W. 2013. Nadziemna biomasa drzew w młodych drzewostanach olszy czarnej (Alnus glutinosa (L.) Gaertn.). Acta Agraria et Silvestria Ser Sylvestris 51: 75–89.Ochał W., Grabczyński S., Orzeł S., Wertz B., & Socha J. 2013. Aboveground biomass allocation in Scots pines of different biosocial positions in the stand. Sylwan 157(10): 737–746.Ochał W., Socha J., & Grabczyński S. 2014. Dokładność wzorów empirycznych służących do określania biomasy nadziemnych komponentów drzew olszy czarnej (Alnus glutinosa (L.) Gaertn.). Sylwan 158(6): 431–442.Orzeł S. 2015. Skład gatunkowy i biomasa nadziemna krzewów w podszycie drzewostanów Puszczy Niepołomickiej. Sylwan 159(10): 848–856.Pardé J. 1980. Forest biomass. Forestry Abstracts 41(8): 343–362.Parresol B.R. 1999. Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science 45(4): 573–593.Peichl M., & Arain M.A. 2007. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. Forest Ecology and Management 253(1–3): 68–80. https://doi.org/16/j.foreco.2007.07.003Poorter H., Jagodzinski A.M., Ruiz‐Peinado R., Kuyah S., Luo Y., Oleksyn J., Usoltsev V.A., Buckley T.N., Reich P.B., & Sack L. 2015. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist 208(3): 736–749. https://doi.org/10.1111/nph.13571Poorter H., & Sack L. 2012. Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Frontiers in Plant Science 3(DEC): 259. https://doi.org/10.3389/fpls.2012.00259Proutsos N., & Tigkas D. 2020. Growth response of endemic black pine trees to meteorological variations and drought episodes in a Mediterranean Region. Atmosphere 11(6): 554. https://doi.org/10.3390/atmos11060554Qi Y., Wei W., Chen C., & Chen L. 2019. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Global Ecology and Conservation 18(18): e00606. https://doi.org/10.1016/j.gecco.2019.e00606Ruiz-Peinado R., del Rio M., & Montero G. 2011. Nuevos modelos para estimar la capacidad de fijación de carbono de las coníferas Españolas. Forest Systems 20(1): 176–188. https://doi.org/10.5424/fs/2011201-11643Schall P., Lödige C., Beck M., & Ammer C. 2012. Biomass allocation to roots and shoots is more sensitive to shade and drought in European beech than in Norway spruce seedlings. Forest Ecology and Management 266: 246–253. https://doi.org/10.1016/j.foreco.2011.11.017Sevgi O., & Akkemik U. 2007. A dendroecological study on Pinus nigra Arn. at different altitudes of northern slopes of Kazdaglari, Turkey. Journal of Environmental Biology 28(1): 73–75.Shinozaki K., Yoda K., Hozumi K., & Kira T. 1964. A quantitative analysis of plant form - the pipe model theory. Japanese Journal of Ecology 14(3): 97–105.Sikanja S. 2015. Height curve as a new aspect of black pine (Pinus nigra) plantations in the Sumadija region. Acta Agriculturae Serbica 20(39): 29–39. https://doi.org/10.5937/aaser1539029sSocha J., Hawryło P., Pierzchalski M., Stereńczak K., Krok G., Wężyk P., & Tymińska-Czabańska L. 2020. An allometric area-based approach—a cost-effective method for stand volume estimation based on ALS and NFI data. Forestry: An International Journal of Forest Research 93(3): 344–358. https://doi.org/10.1093/forestry/cpz062Socha J., & Wezyk P. 2007. Allometric equations for estimating the foliage biomass of Scots pine. European Journal of Forest Research 126(2): 263–270. https://doi.org/10.1007/s10342-006-0144-4Somogyi Z., Cienciala E., Mäkipää R., Muukkonen P., Lehtonen A., & Weiss P. 2007. Indirect methods of large-scale forest biomass estimation. European Journal of Forest Research 126(2): 197–207. https://doi.org/10.1007/s10342-006-0125-7Sprugel D. G. 1983. Correcting for Bias in log-transformed allometric equations. Ecology 64(1): 209–210. https://doi.org/10.2307/1937343Stankova T.V., & Shibuya M. 2007. Stand density control diagrams for Scots pine and Austrian black pine plantations in Bulgaria. New Forests 34(2): 123–141. https://doi.org/10.1007/s11056-007-9043-xSzymczak S., Häusser M., Garel E., Santoni S., Huneau F., Knerr I., Trachte K., Bendix J., & Bräuning A. 2020. How do Mediterranean pine trees respond to drought and precipitation events along an elevation gradient? Forests 11(7): 758. https://doi.org/10.3390/f11070758Tausch R. 1989. Comparison of regression methods for biomass estimation of sagebrush and bunchgrass. Great Basin Naturalist 49(3).Teobaldelli M., Somogyi Z., Migliavacca M., & Usoltsev V.A. 2009. Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. Forest Ecology and Management 257(3): 1004–1013. https://doi.org/10.1016/j.foreco.2008.11.002Thomas S.C., & Martin A.R. 2012. Carbon content of tree tissues: A synthesis. Forests 3(2): 332–352. https://doi.org/10.3390/f3020332Tigerstedt P.M.A. 1994. Adaptation, variation and selection in marginal areas. Euphytica 77(3): 171–174. https://doi.org/10.1007/BF02262628Tolunay D. 2009. Carbon concentrations of tree components, forest floor and understorey in young Pinus sylvestris stands in north-western Turkey. Scandinavian Journal of Forest Research 24(5): 394–402. https://doi.org/10.1080/02827580903164471Tolunay D. 2011. Total carbon stocks and carbon accumulation in living tree biomass in forest ecosystems of Turkey. Turkish Journal of Agriculture and Forestry 35(3): 265–279. https://doi.org/10.3906/tar-0909-369Valentine H.T., Baldwin V.C., Gregoire T.G., & Burkhart H.E. 1994. Surrogates for foliar dry matter in loblolly pine. Forest Science 40(3): 576–585.Vanninen P. 2004. Allocation of above-ground growth in Pinus sylvestris - Impacts of tree size and competition. Silva Fennica 38(2): 155–166. https://doi.org/10.14214/sf.425Vanninen P., Ylitalo H., Sievänen R., & Mäkelä A. 1996. Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees 10(4): 231–238. https://doi.org/10.1007/bf02185674Węgiel A., & Polowy K. 2020. Aboveground carbon content and storage in mature scots pine stands of different densities. Forests 11(2). https://doi.org/10.3390/f11020240Wertz B., Bembenek M., Karaszewski Z., Ochał W., Skorupski M., Strzeliński P., Węgiel A., & Mederski P.S. 2020. Impact of stand density and tree social status on aboveground biomass allocation of scots pine Pinus sylvestris L. Forests 11(7): 765. https://doi.org/10.3390/f11070765Whittaker R., & Likens G.E. 1973. Carbon in the biota. In: Woodwell G.M. & Pecan E.V. (Eds.), Carbon and the Biosphere. p. 281−302. Washington DC: U.S. Atomic Energy Commission.Wirth C., Schumacher J., & Schulze E.-D. 2004. Generic biomass functions for Norway spruce in Central Europe - a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology 24(2): 121–139.Wojtan R., Tomusiak R., Zasada M., Dudek A., Michalak K., Wroblewski L., Bijak S., & Bronisz K. 2011. Współczynniki przeliczeniowe suchej biomasy drzew i ich części dla sosny pospolitej (Pinus sylvestris L.) w zachodniej Polsce. Sylwan 155(4): 236–243.Zajączkowski G., Jabłoński M., Jabłoński T., Kowalska A., Małachowska J., & Piwnicki J. 2019. Raport o stanie lasów w Polsce 2018.Zhang H., Wang K., Xu X., Song T., Xu Y., & Zeng F. 2015. Biogeographical patterns of biomass allocation in leaves, stems and roots in China’s forests. Scientific Reports 5(1): 15997. https://doi.org/10.1038/srep15997Zhou W., Cheng X., Wu R., Han H., Kang F., Zhu J., & Tian P. 2018. Effect of intraspecific competition on biomass partitioning of Larix principis-rupprechtii. Journal of Plant Interactions 13(1): 1–8. https://doi.org/10.1080/17429145.2017.1406999Zianis D., Muukkonen P., Mäkipää R., & Mencuccini M. 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs: 63.
Downloads
Published
Issue
Section
License
All the papers published in Annals of Forest Research are available under an open access policy (Gratis Gold Open Access Licence), which guaranty the free (of taxes) and unlimited access, for anyone, to entire content of the all published articles. The users are free to “read, copy, distribute, print, search or refers to the full text of these articles”, as long they mention the source.
The other materials (texts, images, graphical elements presented on the Website) are protected by copyright.
The journal exerts a permanent quality check, based on an established protocol for publishing the manuscripts. The potential article to be published are evaluated (peer-review) by members of the Editorial Board or other collaborators with competences on the paper topics. The publishing of manuscript is free of charge, all the costs being supported by Forest Research and Management Institute.
More details about Open Access:
Wikipedia: http://en.wikipedia.org/wiki/Open_access