Research article

The diversity of saproxylic beetles’ from the Natural Reserve Voievodeasa forest, North-Eastern Romania

Nicolai Olenici , Ecaterina Fodor

Nicolai Olenici
"Marin Drăcea" National Research-Development Institute in Forestry. Email: olenicifp@yahoo.com
Ecaterina Fodor
University of Oradea, Faculty of Environmental Protection, Department of Forestry and Forest Engineering

Online First: June 28, 2021
Olenici, N., Fodor, E. 2021. The diversity of saproxylic beetles’ from the Natural Reserve Voievodeasa forest, North-Eastern Romania. Annals of Forest Research DOI:10.15287/afr.2020.2144


Nature reserves harbor considerable richness and diversity of saproxylic organisms since dead wood is preserved in situ, this being also the case of Voivodeasa beech-spruce-fir forest in North-Eastern Romania, the area investigated under the present research.

  1. The employed sampling design consisted in 20 flight interception traps placed in a square grid (100 x 100 m). The beetle content of the traps was collected every two weeks, from May to September. The number of intercepted beetles reached 13,554 individuals, of which 7,174 individuals (assigned to 336 species placed in 217 genera and 58 families) were identified at species level and 6,390 individuals, at genus or family level. The majority of the identified species were obligate saproxylic species (217 species). However, the unexpected high species richness corresponded to an area with modest representation of deadwood due to previous status of commercial forest.
  2. The identified beetles were members of different habitat-guilds depending on what type of substrate they colonize: recently dead wood (23%), decomposed dead wood (41%), wood inhabiting fungi (34%) and tree-hollow detritus (2%). According to their trophic position, the identified saproxylic beetles pertained to the following guilds: xylophagous (40%), mycetophagous (39%), predatory (14%), and species relying on other food resources (5%). Non-metric Multidimensional Scaling ordination using Bray-Curtis distance, performed to compare the saproxylic beetles’community at different sampling dates across the vegetation season suggested that species turn-over took place in the time window of one month.
  3. The analysis of abundance/dominance structure of the saproxylic beetle community employing classical community indices (abundance, dominance, constancy and Dzuba index) showed that 7% of the species were abundant, and 68% were rare, Fisher’s log series fitting the distribution of abundances.  In terms of constancy, 11% were eu-constant and 62% - accidental species. Considering the dominance, only 0.4% represented eu-dominant species while 89% were sub-recedent species. According to Dzuba ecological significance index, four species were characteristic for the saproxylic beetle community: Ptilinus pecticornis, Enicmus rugosus, Cis rugulosus and Taphorychus bicolor, most of the identified species being accessory or accidental (33% and 65%). PCA ordination performed on abundance constancy, dominance and ecological significance scores, showed that all indices were highly correlated with PC1 and further testing using multivariate regression with dominance held as independent variable, showed high correlation among indices. Species ranked according to these indices as rare, accidental or accesory clustered separatelly in the ordination space while dominant and eu-dominant species established another distinct cluster.
  4. Species richness estimation based on Chao 1 nonparametric index exceeded the observed richness of saproxylic beetles (estimated number of species = 266.67, observed number of species = 217). Inspection of the individual-based rarefaction curve showed that the number of species did not stabilize after pooling all captured individuals in all samples across the sampling period. The observed richness corresponds to the case of hyperdiverse communities where sampling never leads to the stabilization of species richness under a realistic sampling scheme.
  5. Species diversity: The rank-abundance curves constructed on aggregated catches and catches of saproxylic beetles at different sampling dates showed variation in terms of species richness and eveness, with species re-ordering across the sampling period. The diversity profiles constructed on Shannon, Gini-Simpson, Berger-Parker and eveness indices for the pooled sample and for separate samples across the vegetation season indicated  the aggregated saproxylic community as highly diverse and also highly uneven, with rich representation of rare species, dominated by few abundant species contrasting the community at the end of the vegetation season characterized by high eveness and few species.
  6. Network structure: We assembled four bipartite, unweighted, and undirected networks to approach the temporal changes across the sampling period extended over one vegetation season using the specific metrics derived from the community network analysis: connectance, nestedness, average degree, modularity. The networks corresponded to aggregated community of saproxylic beetles and to xylophagous, mycetophagous and predatory guilds. The topology of beetles’ community and of the three main trophc guilds networks linked to time sequences are characterized by high connectance, high nestedness and modularity, with the exception of the mycetophgous sub-network not displaying significant modularity. The topologies reflect the temporal partition of the ecological niche, with nestedness and modularity relating to species’phenologies during the adult stage.
  7. Among the identified species, 13% indicate high degree of naturalness of the Voievodeasa forest: of these, 9 species are old-growth forests relicts. Other 62 species are included in the Red List of European Saproxylic Beetles of which five are near threatened (Protaetia fieberi, Cucujus cinnaberinus, Crepidophorus mutilatus, Ceruchus chrysomelinus, Prostomis mandibularis), Ischnodes sanguinolentus is vulnerable and Rhysodes sulcatus is an endangered species.
  8. During the study, two Coleoptera species, new for Romanian insect fauna were identified: Denticollis interpositus Roubal, 1941 and Hylis procerulus (Mannerheim 1823).

Albrecht L., 1991. Die Bedeutung des toten Holzes im Wald [The importance of dead wood in the forest]. Forstwissenschaftliches Centrablatt 110(2): 106-113.

Anonimous, 2010. Amenajamentul Unității de Producție II Bercheza, Ocolul Silvic Marginea. [The management plan of the Production Unit II Bercheza, Forest District Marginea].

Assing V., Schülke M., 2011. Freude-Harde-Lohse-Klausnitzer – Die Käfer Mitteleuropas [The beetles of Central Europe]. Band 4. Staphylinidae I. Zweite neubearbeitete Auflage. Spektrum Akademischer Verlag, Heidelberg, 560 p.

Avolio M.L., La Pierre K.J., Houseman G.R., Koerner S.E., Grman E., Isbell F., Johnson D.S., Wilcox K.R., 2015. A framework for quantifying the magnitude and variability of community responses to global change drivers. Ecosphere 6(12): 280. https://doi.org/10.1890/ES15-00317.1

Barabási A-L., 2016. Network Science. Cambridge University Press. Cambridge, 475 p.

Bascompte J., Jordano P., Melián C.J., Olesen J.M., 2003. The nested assembly of plant-animal mutualistic networks. PNAS 100(16): 9383-9387. https://doi.org/10.1073/pnas.1633576100

Bässler C. Müller J., Dziock F., Brandl R. 2010. Effects of resource availability and climate on the diversity of wood-decaying fungi. Journal of Ecology 98(4): 822-832. https://doi.org/10.1111/j.1365-2745.2010.01669.x

Basualdo C.V., 2011. Choosing the best non-parametric richness estimator for benthic macroinvertebrates databases. Revista de la Sociedad Entomológica Argentina 70 (1-2): 27-38.

Bense U., 1995. Longhorn beetles. Illustrated key to the Cerambycidae and Vesperidae of Europe. Margraf Verlag, Weikersheim, Germany, 512 p.

Berger W.H., Parker L.F., 1970. Diversity of planktonic foraminifera in deep-sea sediments. Science 168(3937): 1345-1347.

Blondel D.V., Guillaume J.-L., Lambiotte R., Lefebre E., 2008. Fast-unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 10: P 10008t. https://doi.org/10.1088/1742-5468/2008/10/p10008

Blüthgen N., 2010. Why network analysis is often disconnected from community ecology: A critique and an ecologist guide. Basic and Applied Ecology 11: 185-195. https://doi.org/10.1016/j.baae.2010.01.001

Bouget C., Brustel H., Nageleisen L.-M., 2005. Nomenclature des groupes écologiques d’insectes liés au bois: synthèse et mise au point sémantique [Nomenclature of wood-inhabiting groups in forest entomology: synthesis and semantic adjustments]. Comptes Rendus Biologies 326: 936-948. https://doi.org/10.1016/j.crvi.2005.08.003

Brunet J., Isacsson G., 2009. Influence of snag characteristics on saproxylic beetle assemblages in a south Swedish beech forest. Journal of Insect Conservation 13(5): 515-528. https://doi.org/10.1007/s10841-008-9200-3

Cálix M., Alexander K.N.A., Nieto A., Dodelin B., Soldati F., Telnov D., Vazquez-Albalate X., Aleksandrowicz O., Audisio P., Istrate P., Jansson N., Legakis A., Liberto A., Makris C., Merkl O., Mugerwa Pettersson R., Schlaghamersky J., Bologna M.A., Brustel H., Buse J., Novák V., Purchart L., 2018. European red list of saproxylic beetles. Brussels, Belgium: IUCN. Available at: http://www.iucnredlist.org/initiatives/europe/publi cations

Chao A., 1984. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11: 265-270.

Chao A., Shen T.-J., 2004. Nonparametric prediction in species sampling. Journal of Agricultural, Biological and Environmental Statistics 9(3): 253–269. https://doi.org/10.1198/108571104X3262

Chao A., Gotelli N.J., Hsieh T.C., Sander E.L., Ma K.H., Colwell R.K., Ellison A.M., 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84(1): 45-67. https://doi.org/10.1890/13-0133.1

Chumak V., Obrist M.K., Moretti M., Duelli P., 2015. Arthopod diversity in pristine vs. managed beech forests in Transcarpathia (Western Ukraine). Global Ecology and Conservation 3: 72-82. https://doi.org/10.1016/j.gecco. 2014.11.001

Coddington J.A., Agnarsson I., Miller J.A., Kuntner M., Hormiga G., 2009. Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. Journal of Animal Ecology 78(3): 573-584. https://doi.org/10.1111/j.1365-2656.2009.01525.x

Colwell R.K. 2013. EstimateS, version 9.1: Statistical Estimation of Species Richness and Shared Species from Samples (software and User’s Guide). Freeware for Windows and MacOs. http://purl.oclc.org/estimates.

Dajoz R., 2000. Insects and forests: The role and diversity of insects in the forest environment. Intercept Limited, Andover, xii + 668 p.

Doniţă N., Popescu A., Paucă-Comănescu M., Mihăilescu S., Biriș I.-A., 2005. Habitatele din România [The habitats of Romania]. Vol. 1. Ed. Tehnică Silvică, București, 496 p.

Dudley N. (Ed.), 2008. Guidelines for applying protected area management categories. Gland, Switzerland: IUCN. x + 86 pp. With Stolton S., Shadie P., Dudley N., 2013. IUCN WCPA Best practice guidance on recognising protected areas and assigning management categories and governance types, Best Practice Protected Area Guidelines Series No. 21, Gland, Switzerland: IUCN. x, 86 p. +iv, 31 p.

Dunne J.A., Williams R.J., Martinez N.D., 2002. Food-web structure and network theory: The role of connectance and size. PNAS 99(20): 12917-12922. https://doi.org/10.1073/pnas.192407699

Eckelt A., Müller J., Bense U., Brustel H., Bussler H., Chittaro Y., Cizek L., Frei A., Holzer E., Kadej M., Kahlen M., Köhler F., Möller G., Mühle H., Sanchez A., Schaffrath U., Schmidl J., Smolis A., Szallies A., Németh T., Wurst C., Thorn S., Christensen R.H.B., Seibold S., 2018. “Primeval forest relict beetles” of Central Europe: a set of 168 umbrella species for the protection of primeval forest remnants. Journal of Insect Conservation 22: 15–28. https://doi.org/10.1007/s10841-017-0028-6

Engelmann H.D., 1978. Zur Dominanzklassifizierung von Bodenarthropoden [For the dominance classification of soil arthropods]. Pedobiologia, 18: 378-380.

Franc N., Götmark F., Økland B., Nordénc B., Palttoc H., 2007. Factors and scales potentially important for saproxylic beetles in temperate mixed oak forest. Biological Conservation 135(1): 86–98. https://doi.org/10.1016/j.biocon.2006.09.021

Freude H., Harde K.W., Lohse G.A., 1966. Die Käfer Mitteleuropas [The beetles of Central Europe]. Band 9. Cerambycidae, Chrysomelidae. Goecke & Evers, Krefeld, 299 p.

Freude H., Harde K.W., Lohse G.A., 1969. Die Käfer Mitteleuropas [The beetles of Central Europe]. Band 8. Teredilia, Heteromera, Lamellicornia. Goecke & Evers, Krefeld, 388 p.

Freude H., Harde K.W., Lohse G.A., 1971. Die Käfer Mitteleuropas [The beetles of Central Europe]. Band 3. Adephaga 2 – Palpicornia, Histeroidea, Staphylinoidea 1. Goecke & Evers, Krefeld, 365 p.

Freude H., Harde K.W., Lohse G.A., 1974. Die Käfer Mitteleuropas [The beetles of Central Europe]. Band 5. Staphylinidae II (Hypocyphtinae und Aleocharinae), Pselaphidae. Goecke & Evers, Krefeld, 381 p.

Freude H., Harde K.W., Lohse G.A., 1979. Die Käfer Mitteleuropas [The beetles of Central Europe]. Band 6. Diversicornia. Goecke & Evers, Krefeld, 367 p.

Freude H., Harde K.W., Lohse G.A., 1981. Die Käfer Mitteleuropas [The beetles of Central Europe]. Band 10. Bruchidae, Anthribidae, Scolytidae, Platypodidae, Curculionidae. Goecke & Evers, Krefeld, 310 p.

Freude H., Harde K.W., Lohse G.A., 1983. Die Käfer Mitteleuropas [The beetles of Central Europe]. Band 11. Curculionidae 2. Goecke & Evers, Krefeld, 342 p.

Freude H., Harde K.W., Lohse G.A., 2009. Die Käfer Mitteleuropas [The beetles of Central Europe]. Band 7. Spektrum-Verlag, Heidelberg. Unveränderter Nachdruck, 310 p.

Gerstmeier R., 1998. Checkered beetles. Illustrated key to the Cleridae of the Western Palaearctic. Margraf Verlag, Weikersheim, 241 p. + 8 pl.

Gimmel M.L., Ferro M.L., 2018. General overview of saproxylic Coleoptera. In Ulyshen M.D. (ed.), Saproxylic Insects – Diversity, Ecology and Conservation. Zoological Monographs 1, Springer, pp. 51-128.

Girvan M., Newman M.E.J., 2002. Community structure in social and biological networks. PNAS 99(12): 7821-7826. https://doi.org/10.1073/pnas.122653799

Gossner M., Engel K., Jessel B. 2008. Plant and arthropod communities in young oak stands: are they determined by site history? Biodiversity and Conservation 17: 3165-3180. https://doi.org/10.1007/s10531-008-9418-0

Gossner M.M., Lachat T., Brunet J., Isacsson G., Bouget C., Brustel H., Brandl R., Weisser W.W., Müller J., 2013. Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conservation Biology 27(3): 605–614. https://doi.org/10.1111/cobi.12023

Gotelli N.J., Chao A., 2013. Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In Levin S.A. (ed.), Encyclopedia of Biodiversity, second edition. Academic Press, Waltham, MA, Volume 5, pp. 195-211.

Gotelli N.J., Colwell R.K., 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379-391.

Grove S.J., 2002. Saproxylic insect ecology and the sustainable management of forests. Annual Review of Ecology and Systematics 33: 1–23. https://doi.org/10.1146/annurev.ecolsys.33.010802.150507

Guimerá R., Amaral L.A.N., 2005. Functional cartography of complex metabolic networks. Nature 433: 895-900. https://doi.org/10.1038/nature03288

Hammer Ø., Harper D.T., Ryan P.D., 2001. PAST: paleontological statistics software package for education and data analysis. Paleontologia Electronica: http://palaeo-electronica.org

Hedin J., Ranius T., Nilsson S.G., Smith H.G., 2007. Restricted dispersal in a flying beetle assessed by telemetry. Biodiversity and Conservation 17: 675-684. https://doi.org/10.1007/s10531-007-9299-7

Henderson P.A., 2003. Practical methods in ecology. Blackwell Publishing, Oxford, 163 p.

Hickin N.E., 1963. The insect factor in wood decay: an account of wood-boring insects with particular reference to timber indoor. Hutchinson Co. (Publishers) Ltd., London, 336 p.

Hill M., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427-432. https://doi.org/10.2307/1934352

Hubbell S.P., 2005. Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology 19(1): 166-172. https://doi.org/10.1111/j.0269-8463.2005.00965.x

Hurlbert S.H., 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52(4): 577-586. https://doi.org/10.2307/1934145

Hyvärinen E., 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. Dissertationes Forestales 21, 55 p.

Ichim R., 1988. Istoria pădurilor şi silviculturii din Bucovina [History of forests and forestry in Bucovina]. Editura Ceres, Bucureşti, 216 p.

Jonsell M., González Alonso C., Forshage M., van Achterberg C., Komonen A., 2016. Structure of insect community in the fungus Inonotus radiatus in riparian boreal forests. Journal of Natural History, https://doi.org/10.1080/00222933.2016.1145273

Jonsell M., Nordlander G., Ehnström B., 2001. Substrate associations of insects breeding in fruiting bodies of wood-decaying fungi. Ecological Bulletins 49: 173-194.

Jonsson B.G., Siitonen J., 2012. Dead wood and sustainable forest management. In Stokland J.N., Siitonen J., Jonsson B.G. (eds.), Biodiversity in Dead Wood. Cambridge University Press, Cambridge, pp. 302-337.

Jordano P., 2010. Coevolution in multispecific interactions among free-living species. Evolution: Education and Outreach 3: 40-46. https://doi.org/10.1007/s12052-009-0197-1

Jost L., 2007. Partitioning diversity into independent alpha and beta components. Ecology 88(10): 2427-2459. https://doi.org/10.1890/06-1736.1

Kirisits T., 2007. Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi. In Lieutier F., Day K.R., Battisti A., Grégoire J.-C., Evans H.F. (eds.), Bark and wood boring insects in living trees in Europe - A synthesis. Springer, pp. 181–235.

Koch K., 1989. Die Käfer Mitteleuropas. Ökologie. [The beetles of Central Europe. Ecology]. Band 1. Goecke & Evers, Krefeld, 440 p.

Koch K., 1989. Die Käfer Mitteleuropas. Ökologie [The beetles of Central Europe. Ecology]. Band 2. Goecke & Evers, Krefeld, 382 p.

Koch K., 1992. Die Käfer Mitteleuropas. Ökologie [The beetles of Central Europe. Ecology]. Band 3. Goecke & Evers, Krefeld, 389 p.

Komonen A., Kouki J., 2005. Occurrence and abundance of fungus–dwelling beetles (Ciidae) in boreal forests and clearcuts: habitat associations at two spatial scales. Animal Biodiversity and Conservation 28(2): 137–147.

Kostanjsek F., Sebek P., Baranova B., Seric Jelaska L., Riedl V., Cizek L., 2018. Size matters! Habitat preferences of the wrinkled bark beetle, Rhysodes sulcatus, the relict species of European primeval forests. Insect Conservation and Diversity. https://doi.org/10.1111/ icad.12295

Kunttu P., Junninen K., Kouki J., 2015. Dead wood as an indicator of forest naturalness: A comparison of methods. Forest Ecology and Management 353: 30-40. https://doi.org/10.1016/j.foreco.2015.05.017

Lachat T., Wermelinger B., Gossner M.M., Bussler H., Isacsson G., Müller J., 2012. Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecological Indicators 23: 323–331. https://doi.org/10.1016/j.ecolind.2012.04.013

Lassauce A., Paillet Y., Jactel H., Bouget C., 2011. Deadwood as a surrogate for forest biodiversity: meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecological Indicators 11: 1027–1039. https://doi.org.10.1016/j.ecolind. 2011.02.004

Lohse G.A., Lucht W.H., 1989. Die Käfer Mitteleuropas [The beetles of Central Europe]. Band 12 - 1. Supplementband mit Katalogteil. Goecke & Evers, Krefeld, 346 p.

Lohse G.A., Lucht W.H., 1992. Die Käfer Mitteleuropas [The beetles of Central Europe]. Band 13 - 2. Supplementband mit Katalogteil. Goecke & Evers, Krefeld, 375 p.

Lohse G.A., Lucht W.H., 1994. Die Käfer Mitteleuropas [The beetles of Central Europe]. Band 14 - 3. Supplementband mit Katalogteil. Goecke & Evers, Krefeld, 403 p.

Lompe A., 2002. Die Käfer Europas. Ein Bestimmungswerk im Internet [The beetles of Europe. A determination work on the Internet]. www.coleo-net.de/coleo/index.htm

Longino J.T., Coddington J., Colwell R.K., 2002. The ant fauna of a tropical forest: estimating species richness in three different ways. Ecology 83: 689-702. https://doi.org/10.1890/0012-9658(2002)083[0689:TAFOAT]2.0.CO;2

Lucht W.H., Klausnitzer B., 1998. Die Käfer Mitteleuropas [The beetles of Central Europe]. Band 15 - 4. Supplementband. Goecke & Evers, Krefeld, 398 p.

MacArthur R.H., 1957. On the relative abundance of bird species. Proceedings of the National Academy of Sciences USA 3: 293–295.

Magurran A.E., 2004. Measuring biological diversity. Blackwell Publishing, Oxford, 256 p.

Magurran A.E., 2005. Species abundance distributions: pattern or process. Functional Ecology 19: 177-181.

Magurran A.E., 2008. Diversity over time. Folia Geobotanica 43:319–327. https://doi.org/10.1007/s12224-008-9013-x

Margalef R., 1972. Homage to Evelyn Hutchinson, or why is there an upper limit to diversity. Transactions of the Connecticut Academy of Arts and Sciences 44: 211-235.

Martikainen P., Kouki J., 2003. Sampling the rarest: threatened beetles in boreal forest biodiversity inventories. Biodiversity and Conservation 12: 1815-1831.

May R.M., 1973. Stability and complexity in model ecosystems. Princeton University Press, Princeton, N.J., 255 p.

May R.M., 1975. Patterns of species abundance and diversity. In Cody M.L., Diamond J.M. (eds.), Ecology and evolution of communities. Harvard University Press, Cambridge, pp. 81-120.

Mayers C.G., McNew D.L., Harrington T.C., Roeper R.A., Fraedrich S.W., Biedermann P.H., Castrillo L.A., Reed S.E., 2015. Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. Fungal Biology 119(11): 1075–1092. https://doi.org/10.1016/j.funbio. 2015.08.002

Morris K., Caruso, T., Buscot, F., Fischer, M., Hancock, C., Maier, T.S., Meiners, T., Müller, C., Obermaier E., Prati, D., Socher, S.A., Sonnemann, I., Wäschke, N., Wubet, T., Wurst, S., Rillig, M.C. 2014. Choosing and using diversity indices: insights for ecological applications from German Biodiversity Exploratories. Ecology and Evolution 4(18): 3514-3524. https://doi.org/10.1002/ece3.1155

Mrvar A., Batagelj V., 2016. Analysis and visualization of large networks with program package Pajek. Complex Adaptive Systems Modeling 4: 6. https://doi.org/10.1186/s40294-016-0017-8

Müller J., Bussler H., Bense U., Brustel H., Flechtner G., Fowles A., Kahlen M., Möller G., Mühle H., Schmidl J., Zabransky P., 2005. Urwald relict species – Saproxylic beetles indicating structural qualities and habitat tradition. Waldoekologie online 2: 106–113.

Müller J., Bussler H., Kneib T., 2008. Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in Southern Germany. Journal of Insect Conservation 12: 107–124. https://doi.org/10.1007/s10841-006-9065-2

Muona J., 1999. Trapping beetles in boreal coniferous forest - how many species do we miss? Entomologica Fennica 177: 11-16.

Newman M.E., 2003. The structure and function of complex networks. SIAM Review 45(2): 167-256. https://doi.org/10.1137/ S003614450342480

Nieto A., Alexander, K.N.A., 2010. European red list of saproxylic beetles. Publications Office of the European Union, Luxembourg, viii + 44p.

Nikitsky N.B., Schigel D.S., 2004. Beetles in polypores of the Moscow region, Russia: checklist and ecological notes. Entomologica Fennica 15: 6–22.

Nitzu E., Olenici N., 2009. The first study on the beetle fauna in the Giumalau spruce primeval forest (Eastern Carpathians, Romania), mainly based on a quantitative analysis of terrestrial and saproxylic species. In: Buse J., Alexander K.N.A., Ranius T., Assmann T. (eds.), Saproxylic beetles – their role and diversity in European woodland and tree habitats. Proceedings of the 5th Symposium and Workshop on the Conservation of Saproxylic Beetles. Pensoft, Sofia-Moscow, pp. 27-48.

Olenici N., Knížek M., Olenici V., Duduman M.-L., Biriş I.-A., 2014. First report of three scolytid species (Coleoptera: Curculionidae, Scolytinae) in Romania. Annals of Forest Research 57(1): 87- 95. https://doi.org/10.15287/afr.2014.196

Olesen J.M., Bascompte J., Dupont Y.L., Jordano P., 2007. The modularity of pollination networks. PNAS 104 (50): 19891-19896. https://doi.org/10.1073/pnas.0706375104

Parisi F., Pioli S., Lombardi P., Fravolini G., Marchetti M., Tognetti R. 2018. Linking dead wood traits with saproxylic invertebrates and fungi in European forests – a review. iForest 11: 423-436. https://doi.org/10.3832/ifor2670-011

Patil G.P., Taillie C., 1979. An overwiev of diversity. In Grassle J.F., Patil G.P., Smith W., Taillie C. (eds.), Ecological diversity in theory and practice. International Co-operative Publishing House, Fairland, Md., pp. 3-27.

Pfeffer A., 1995. Zentral- und westpaläarktische Borken- und Kernkäfer. Coleoptera: Scolytidae, Platypodidae [Central and West Palearctic bark and pinhole borer beetles. Coleoptera: Scolytidae, Platypodidae]. Pro Entomologia, c/o Naturhistorisches Museum Basel, 310 p.

Quinto J., Marcos-Garcia M.A., Diaz-Castellazo C., Rico-Gray V., Brustel H., Galante E., Micó E., 2012. Breaking down complex saproxylic communities: understanding sub-networks structure and implications to network robustness. PLOS ONE 7(9): e54082. https://doi.org/10.1371/journal.pone.0045062

R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Rabinowitz D, 1981. Seven forms of rarity. In Synge H. (ed.), The Biological aspects of rare plant conservation. John Wiley & Sons, Somerset, NJ, pp. 205-217.

Radu S., 2007. The ecological role of deadwood in natural forests. In Gafta D., Akeroyd J. (Eds.), Nature Conservation: Concept and Practice. Springer, Berlin, pp. 137–141.

Ramírez-Hernández A., Martínez-Falcón A.P., Micó E., Almendarez S., Reyes-Castillo P., Escobar F., 2019. Diversity and deadwood-based interaction networks of saproxylic beetles in remnants of riparian cloud forest. PLoS ONE 14(4): e0214920. https://doi.org/10.1371/journal. pone.0214920

Rényi A., 1961. On measure of entropy and information. In: Neyman J. (ed.), Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. I, University of California Press, Berkeley, pp. 547-561.

Rodríguez-Gironés M.A., Santamaría L., 2006. A new algorithm to calculate the nestedness temperature of presence-absence matrices. Journal of Biogeography 33: 924-935. https://doi.org/10.1111/j.1365-2699.2006. 01444.x

Schlosser R.G., Wagner G.P., 2004. Modularity in development and evolution. Univeristy of Chicago Press, Chicago, 600 p.

Schmidl J., Bussler H., 2004. Ökologische Gilden xylobionter Käfer Deutschlands. Einsatz in der landschaftsökologischen Praxis – ein Bearbeitungs-standard [Ecological guilds of xylobiontic (saproxylic) beetles in Germany and their use in landscape ecological surveys – A methodical standard]. Naturschutz und Landschaftsplanung 36(7): 202-218.

Schwarz B., Vázquez D.P., Cara Donna P.J., Knigh T.M., Benadi G., Dormann C.F., Gauzens B., Motivans E., Resasco J., Blüthgen N. et al., 2020. Temporal scale‐dependence of plant–pollinator networks. Oikos 129(5): 1289-1302. https://doi.org/10.1111/oik.07303

Schwenke W., 1974. Familienreihe Malacodermata [Family series Malacodermata]. In: Schwenke W. (ed.), Die Forstschädlinge Europas [The forest pests of Europe]. 2. Band – Käfer [Beetles]. Verlag Paul Parey, Hamburg und Berlin, pp. 10-18.

Seibold S., Bässler C., Baldrian P., Thorn S., Müller J., Gossner M., 2014. Wood resource and not fungi attract early successional saproxylic species of Heteroptera – an experimental approach. Insect Conservation and Diversity 7(6): 533-542. https://doi.org/10.1111/icad.12076

Seibold S., Bässler C., Brandl R., Gossner M.M., Thorn S., Ulyshen M.D., Müller, J. 2015. Experimental studies of dead-wood biodiversity – A review identifying global gaps in knowledge. Biological Conservation 191: 139-149. https://doi.org/10.1016/j.biocon.2015.06.006

Shannon C.E., 1948. A mathematical theory of communication. The Bell System Technical Journal 27(3): 379-423.

Shepard R.N., 1966. Metric structures in ordinal data. Journal of Mathematical Psychology 3: 287-315.

Schigel D.S., 2012. Fungivory and host associations of Coleoptera: a bibliography and review of research approaches, Mycology, 3:4, 258-272. https://doi.org/10.1080/ 21501203.2012.741078

Siitonen J., Jonsson B.G., 2012. Other associations with dead woody material. In Stokland J.N., Siitonen J., Jonsson B.G. (eds), Biodiversity in deadwood. Cambridge University Press, Cambridge, pp. 58-81.

Simpson E.H., 1949. Measurement of diversity. Nature 163: 688.

Song C., Saavedra S., 2020. Telling ecological networks apart by their structure: An environment-dependent approach. PLoS Computational Biology 16(4): e1007787. https://doi.org/10.1371/journal.pcbi.1007787

Speight M.C.D., 1989. Saproxylic invertebrates and their conservation. Nature and Environment Series, No. 42. Council of Europe, Strasbourg, 79 p.

Stokland J.N., 2012. The saproxilic food web. In Stokland J.N., Siitonen J., Jonsson B.G. (eds), Biodiversity in dead wood. Cambridge University Press, Cambridge, pp. 28-57.

Stokland J.N., Siitonen, J., 2012. Species diversity of saproxylic organisms. In Stokland, J.N., Siitonen, J., Jonsson, B.G. (eds), Biodiversity in dead wood. Cambridge University Press, Cambridge, pp. 248-274.

Stokland J.N., Siitonen, J., Jonsson, B.G., 2012. Biodiversity in dead wood. Cambridge University Press, Cambridge, 524 p. https://doi.org/10.1017/CBO9781139025843

Stugren B., 1982. Bazele ecologiei generale [The basics of general ecology]. Editura Ştiinţifică şi Enciclopedică, Bucureşti, 435 p.

Sverdrup-Thygeson A., Gustafsson L., Kouki J. 2014. Spatial and temporal scales relevant for conservation of dead-wood associated species: current status and perspectives. Biodiversity and Conservation 23(3): 513-535. https://doi.org/10.1007/s10531-014-0628-3

Teodosiu M., 2014a. Naturalitatea pădurii: concepte, caracteristici și implicații asupra conservării [Forest naturalness: concepts, characteristics and implications for conservation]. Bucovina Forestieră 14(1): 68-76.

Teodosiu M., 2014b. Evaluarea naturalității și a structurii arboretelor în rezervațiile Pădurea Voievodeasa și Codrul Secular Loben din Obcinele Bucovinei [Evaluation of stand naturalness and structure in forest reserves Pădurea Voievodeasa and Codrul Secular Loben from Obcinele Bucovinei]. Bucovina Forestieră 14(2): 173-184.

Tóthmérész B., Magura T., 2005. Diversity and scalable diversity characteristics. European Carabidology. Proceedings of the 1st European meeting 2003. DIAS Report no. 114: 353-368.

Tylianakis J.M., Laliberte´ E., Nielsen A., Bascompte J., 2010. Conservation of species interaction networks. Biological Conservation 143: 2270–2279. https://doi.org/10. 1016/j.biocon.2009.12.004

Ulrich W., 2008. Nestedness – a FORTRAN program for measuring order and disorder in ecological communities. Version 2.0 http://www.home.umk.pl/ ~ulrichw/Downloads/NestednessManual.pdf

Ulyshen M.D. (Ed.), 2018. Saproxylic Insects – Diversity, Ecology and Conservation. Zoological Monographs 1, Springer, 904 p.

Vásquez D.P., Chacoff N.P., Cagnolo L., 2009. Evaluating multiple determinants of the plant- animal mutualistic networks. Ecology 90(8): 2039-2046. https://doi.org/10.1890/08-1837.1

Volkov I., Banavar J.R., He F., Hubbell S.P., Maritan A., 2005. Density dependence explains tree species abundance and diversity in tropical forests. Nature 438: 658–661. https://doi.org/10.1038/nature04030

Wende B., Gossner M.M., Grass I., Arnstadt T., Hofrichter M., Floren A., et al. 2017. Trophic level, successional age and trait matching determine specialization of deadwood-based interaction networks of saproxylic beetles. Proceedings of The Royal Society B: Biological Sciences 284: 20170198. https://doi.org/10.1098/rspb.2017.0198

Whittaker R.H., 1965. Dominance and diversity in land plant communities: numerical relations of species express the importance of competition in community function and evolution. Science 147: 250–260. https://doi.org/10.1126/science.147.3655.250

Witkowski Z.J., Król W., Solarz W. (eds), 2003. Carpathian list of endangered species. WWF and Institute of Nature Conservation, Polish Academy of Sciences, Vienna-Krakow, xiii + 64 p.

Zaharia L., 2006. List of elaterid species (Coleoptera: Elateridae) from Romania. Complexul Muzeal de Științele Naturii "Ion Borcea" Bacău, Sudii și Cercetări 21: 284-292.

Zicha O. (ed.), 1999-2021. BioLib. http://www.biolib.cz


Supplimental Informatio
| DOWNLOAD 751KB
No metrics available for this article.

Related Articles

Related Authors

 



In Google Scholar

In Annals of Forest Research

In Google Scholar

 
  • Nicolai Olenici
  • Ecaterina Fodor
  • Nicolai Olenici
  • Ecaterina Fodor