Climate change and disturbances will shape future temperate forests in the transition zone between Central and SE Europe
DOI:
https://doi.org/10.15287/afr.2021.2111Keywords:
climate warming, disturbance factors, ice storm, bark beetle outbreaks, spruce decline, salvage logging, tree species composition, temperate forestAbstract
It is expected that climate change as well as abiotic and anthropogenic disturbances will strongly influence temperate forests. Besides changes in the main climate variables, various disturbance factors may significantly worsen conditions for mesic Slovenian forests (SE Europe) dominated by European beech (Fagus sylvatica), Norway spruce (Picea abies) and European silver fir (Abies alba). In Slovenia, the climate has warmed in recent decades, with an average annual rate of increase of about 0.4°C per decade or even more than 0.5°C per decade in summer. In addition, disturbances have caused considerable damage to trees in the most extensive forest types in Slovenia, starting with a widespread ice storm in 2014, followed by bark beetle outbreaks, windthrows and salvage logging interventions. After 2014, salvage logging increased from about one third to two thirds of the total annual felling. Over the last two decades, we have observed a decline in Norway spruce growing stock, with the highest rate of decrease in areas below 500 m a.s.l., and an increasing trend for European beech. Overall, the three dominant species (beech, spruce, silver fir), which together account for more than 70% of the total growing stock, have shown a declining trend over the last 20 years. The patterns observed are broadly consistent with earlier predictions developed for different climate change scenarios and with those reported in many other European countries. Adaptive forest management, which implements close-to-nature silviculture, has been traditionally practised in the region under study and has the potential to play an important role in reducing the risks associated with the impacts of climate change and disturbances in the future.
References
Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., McDowell N., et al., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259: 660-684. https://doi.org/10.1016/j.foreco.2019.117691
Anić I., Vukelić J., Mikac S., Bakšić D., Ugarković D., 2009. Utjecaj globalnih klimatskih promjena na ekološku nišu obične jele (Abies alba Mill.) u Hrvatskoj. [Effects of global climate change on the ecological niche of silver fir (Abies alba Mill.) in Croatia]. Šumarski list 133(3-4): 135-144. https://hrcak.srce.hr/36397
ARSO, 2019. Archive of measurements – observed and measured meteorological data in Slovenia. Agencija Republike Slovenije za okolje [Slovenian Environment Agency]. http://meteo.arso.gov.si/met/sl/archive/ (accessed November 2019)
Attiwill P.M., 1994. The disturbance of forest ecosystems: the ecological basis for conservation management. For. Ecol. Manag. 63: 247-300. https://doi.org/10.1016/0378-1127(94)90114-7
Bengtsson J., Nilsson S.G., Franc A., Menozzi P., 2000. Biodiversity, disturbances, ecosystem function and management of European forests. For. Ecol. Manag. 132: 39-50. https://doi.org/10.1016/S0378-1127(00)00378-9
Blennow K., Andersson M., Sallnäs O., Olofsson E., 2010. Climate change and the probability of wind damage in two Swedish forests. For. Ecol. Manage. 259: 818-830. https://doi.org/10.1016/j.foreco.2009.07.004
Boisvert-Marsh L., Périé C., de Blois S., 2014. Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5(7): 83. https://doi.org/10.1890/ES14-00111.1
Bouchard M., Aquilué N., Périe C., Lambert M.-C., 2019. Tree species persistence under warming conditions: A key driver of forest response to climate change. For. Ecol. Manage. 442: 96-104. https://doi.org/10.1016/j.foreco.2019.03.040
Box E.O., Crumpacker D.W., Hardin E.D., 1999. Predicted effects of climatic change on distribution of ecologically important native tree and shrub species in Florida. Clim. Chang. 41: 213-248. https://doi.org/10.1023/A:1005483507351
Brice M.-H., Cazelles K., Legendre P., Fortin M.-J., 2019. Disturbances amplify tree community responses to climate change in the temperate-boreal ecotone. Glob. Ecol. Biogeogr. 28: 1668-1681. https://doi.org/10.1111/geb.12971
Broadmeadow M.S.J., Ray D., Samuel C.J.A., 2005. Climate change and the future for broadleaved tree species in Britain. Forestry 78: 145-161. https://doi.org/10.1093/forestry/cpi014
Brook B., Sodhi N., Bradshaw C., 2008. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23: 453-460. https://doi.org/10.1016/j.tree.2008.03.011.
Čarni A., Marinček L., Seliškar A., Zupančič M., 2002. Vegetacijska karta gozdnih združb Slovenije, 1:400.000. [The Vegetation Map of Forest Communities of Slovenia, 1:400.000]. ZRC SAZU, Biološki inštitut Jovana Hadžija, Ljubljana.
Chmura D.J., Anderson P.D., Howe G.T., Harrington C.A., Halofsky J.E., Peterson D.L., Shaw D.C., St.Clair J.B., 2011. Forest responses to climate change in the northwestern United States: Ecophysiological foundations for adaptive management. For. Ecol. Manage. 261: 1121-1142. https://doi.org/10.1016/j.foreco.2010.12.040
Dakskobler I., 2008. A review of beech sites in Slovenia. Zbornik Gozdarstva in Lesarstva, 87: 3-14 [in Slovenian]. http://www.dlib.si/details/URN:NBN:SI:doc-43YP658B
Danneyrolles V., Dupuis S., Fortin G., Leroyer M., de Römer A., et al., 2019. Stronger influence of anthropogenic disturbance than climate change on century-scale compositional changes in northern forests. Nat. Commun. 10: 1265. https://doi.org/10.1038/s41467-019-09265-z
de Groot M., 2014. Trendi in napovedi gostote populacij smrekovih podlubnikov po žledolomu 2014 v Sloveniji: stanje pomlad 2014. Napovedi o zdravju gozdov. https://doi.org/10.20315/NZG.20
de Groot M., Kolšek M., Kavčič A., 2016. Napoved ulova smrekovih lubadarjev (Ips typographus in Pityogenes chalcographus) v kontrolne feromonske pasti tipa Theysohn za leto 2016. Napovedi o zdravju gozdov. https://doi.org/10.20315/NZG.26
de Groot M., Ogris N., Kobler A., 2018. The effects of a large-scale ice storm event on the drivers of bark beetle outbreaks and associated management practices. For. Ecol. Manage. 408: 195-201. https://doi.org/10.1016/j.foreco.2017.10.035
de Mandiburu F., 2020. Package “agricolae”. Statistical Procedures for Agricultural Research, version 1.3-3. Available at CRAN repository. https://cran.r-project.org/web/packages/agricolae/index.html
Diaci J., 2006. Nature-based silviculture in Slovenia: origins, development and future trends. In: Diaci J. (Ed.), Nature-based Forestry in Central Europe. Alternatives to Industrial Forestry and Strict preservation. Studia Forestalia Slovenica, Ljubljana, pp. 119-132.
Diaci J., Roženbergar D., Fidej G., Nagel T.A., 2017. Challenges for uneven-aged silviculture in restoration of post-disturbance forests in Central Europe: A synthesis. Forests 8: 378. https://doi.org/10.3390/f8100378
Dobor L., Hlásny T., Zimová S., 2020. Contrasting vulnerability of monospecific and species-diverse forests to wind and bark beetle disturbance: The role of management. Ecol. Evol. 10.: 12233-12245. https://doi.org/10.1002/ece3.6854
ESRI, 2018. ArcGIS 10.6 Geographic Information Systems (GIS) software package. Environmental Systems Research Institute.
EUROSTAT, 2018. GISC0: Geographical information and maps – Countries 2016, Eurostat.
Falk W., Hempelmann N., 2013. Species favourability shift in Europe due to climate change: A case study for Fagus sylvatica L. and Picea abies (L.) Karst. based on an ensemble of climate models. J. Climatol. 18 p. https://doi.org/10.1155/2013/787250
Ficko A., Poljanec A., Boncina A., 2011. Do changes in spatial distribution, structure and abundance of silver fir (Abies alba Mill.) indicate its decline? For. Ecol. Manage. 261: 844-854. https://doi.org/10.1016/j.foreco.2010.12.014
Geßler A., Keitel C., Kreuzwieser J., Matyssek R., Seiler W., Rennenberg H., 2007. Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21(1): 1-11. https://doi.org/10.1007/s00468-006-0107-x
Goldammer J.G., Shukhinin A., Csiszar I., 2005. The current fire situation in the Russian Federation: implications for enhancing international and regional cooperation in the UN framework and the global programs on fire monitoring and assessment. Int. Forest Fire News 32: 13-42.
Goldblum D., Rigg L.S., 2010. The deciduous forest – boreal forest ecotone. Geogr. Compass 4: 701-717. https://doi.org/10.1111/j.1749-8198.2010.00342.x
Good P., Barring L., Giannakopoulos C., Holt T., Palutikof J.P., 2006. Nonlinear regional relationships between climate extremes and annual mean temperatures in model projections for 1961-2099 over Europe. Clim. Res. 13: 19-34. https://doi.org/10.3354/cr031019
Grecs Z., Kolšek M., 2017. Natural disasters are increasingly affecting forest management. Gozdarski vestnik 74: 185-202 https://www.dlib.si/stream/URN:NBN:SI:doc-GJ3IQ0UK/70df1336-a113-4d71-acf5-70a5d5bdff1c/PDF [in Slovenian].
Habitat Directive, 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31992L0043: EN:HTML
Hanewinkel M., Cullmann D.A., Schelhaas M.-J., Nabuurs G.-J., Zimmermann N.E., 2013. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 3: 203–207. https://doi.org/10.1038/nclimate1687
Hijmans R.J., Graham C.H., 2006. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Chang. Biol. 12: 2272-2281. https://doi.org/10.1111/j.1365-2486.2006.01256.x
IPCC, 2001. Climate Change 2001: impacts, adaptation and vulnerability. In: McCarthy J.J., Canziani O.F., Leary N.A., Dokken D.J., White K.S. (eds.), Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK
IPCC, 2007. Climate Change 2007: impacts, adaptation and vulnerability. In: Parry M.L., Canziani O.F., Palutikof J.P., van der Linden P.J., Hanson C.E. (eds.), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 976 p.
IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team: Pachauri R.K., Meyer L.A. (eds.). IPCC, Geneva, Switzerland, 151 p.
Kausrud K., Økland B., Skarpaas O., Gregoire J.C., Erbilgin N., Stenseth N.C., 2012. Population dynamics in changing environments: the case of an eruptive forest pest species. Biol. Rev. 87: 34-51. https://doi.org/10.1111/j.1469-185X.2011.00183.x
Kellomäki S., Leinonen S. (eds.) 2005. Management of European forests under changing climatic conditions. Final report of the project Silvistrat. University of Joensuu, Research Notes 163, Joensuu, Finland, 427 p.
Koca D., Smith S., Sykes M.T., 2006. Modelling regional climate change effects on potential natural ecosystems in Sweden. Clim. Chang. 78: 381-406. https://doi.org/10.1007/s10584-005-9030-1
Kutnar L., Kobler A., 2011. Prediction of forest vegetation shift due to different climate-change scenarios in Slovenia. Šumarski list, 135: 113-126. https://hrcak.srce.hr/67619
Kutnar L., Kobler A., 2014. Possible impacts of global warming on forest tree species composition in Slovenia. In: Zlatic M., Kostadinov S. (Ed.) Challenges; Sustainable Land Management – Climate Changes. Adavances in GeoEcology, 43, Catena Verlag, pp. 221-230.
Kutnar L., Kobler A., 2013. The current distribution of black locust (Robinia pseudoacacia L.) in Slovenia and predictions for the future. Acta Silvae et Ligni 102: 21-30 [in Slovenian]. http://eprints.gozdis.si/121/1/Acta_102-2-LK.pdf
Kutnar L., Matijašić D., Pisek R., 2011. Conservation status and potential threats to Natura 2000 forest habitats in Slovenia. Šumarski list 135: 215-230. http://hrcak.srce.hr/71628
Kutnar L., Nagel T. A., Kermavnar J., 2019. Effects of disturbance on understory vegetation across Slovenian forest ecosystems. Forests 10: 1048, https://doi.org/10.3390/f10111048
Lasch P., Linder M., Erhard M., Suckow F., Wenzel A., 2002. Regional impact assessment on forest structure and functions under climate change-the Brandenburg case study. For. Ecol. Manage. 162: 73-86. https://doi.org/10.1016/S0378-1127(02)00051-8
Lexer M.J., Honninger K., Scheifinger H., Matulla C., Groll N., et al., 2002. The sensitivity of Austrian forests to scenarios of climatic change: a large-scale risk assessment based on a modified gap model and forest inventory data. For. Ecol. Manage. 162: 53-72. https://doi.org/10.1016/S0378-1127(02)00050-6
Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., et al., 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manage. 259: 698-709. https://doi.org/10.1016/j.foreco.2009.09.023
Maracchi G., Sirotenko O., Bindi M., 2005. Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Clim. Chang. 70: 117-135. https://doi.org/10.1007/1-4020-4166-7_6
Martínez-Vilalta J., Pińol J., 2002. Drought induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For. Ecol. Manage. 161: 247-256. https://doi.org/10.1016/S0378-1127(01)00495-9
Moriondo M., Good P., Durao R., Bindi M., Gianakopoulos C., Corte-Real J., 2006. Potential impact of climate change on fire risk in the Mediterranean area. Clim. Res. 31: 85-95. https://doi.org/10.3354/cr031085
Nagel T.A., Firm D., Rozenbergar D., Kobal M., 2016. Patterns and drivers of ice storm damage in temperate forests of Central Europe. Eur. J. Forest. Res. 135: 519-530. https://doi.org/10.1007/s10342-016-0950-2
Nagel T.A., Mikac S., Dolinar M., Klopcic M., Keren S., Svoboda M., Diaci J., Boncina A., Paulic V., 2017. The natural disturbance regime in forests of the Dinaric Mountains: A synthesis of evidence. For. Ecol. Manage. 388: 29-42. https://doi.org/10.1016/j.foreco.2016.07.047
Ogris N., Grecs Z., 2016. Prenamnožitev osmerozobega in šesterozobega smrekovega lubadarja v Sloveniji v 2016. Napovedi o zdravju gozdov. https://doi.org/10.20315/NZG.27
Parmesan C., Yohe G.A., 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37-42. https://doi.org/10.1038/nature01286
Pearson R.G., Dawson T.P., 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12(5): 361-371. https://doi.org/10.1046/j.1466-822X.2003.00042.x
Pereira M.G, Trigo R.M., da Camara C.C., Pereira J.M.C., Leite S.M., 2005. Synoptic patterns associated with large summer forest fires in Portugal. Agric. For. Meteorol. 129: 11-25. https://doi.org/10.1016/j.agrformet.2004.12.007
Peuke A.D., Schraml C., Hartung W., Rennenberg H., 2002. Identification of drought-sensitive beech ecotypes by physiological parameters. New Phytol. 154: 373-387. https://doi.org/10.1046/j.1469-8137.2002.00400.x
Polemio M., Casarano D., 2004. Rainfall and drought in Southern Italy (1821-2001). UNESCO/IAHS/IWHA, 286 p.
Pretzsch H., Durský J., 2002. Growth reaction of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L) to possible climatic changes in Germany. A sensitivity study. Forstwiss. Cent.bl. 121(S1): 145-154.
Runkle J.R., 1985. Disturbance regimes in temperate forests. In: Pickett S.T.A., White P.S. (eds.), The ecology of natural disturbance and patch dynamics. Academic Press. pp. 17-33.
R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Schelhaas M.J., Nabuurs G.J., Schuck A., 2003. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Chang. Biol. 9: 1620-1633. https://doi.org/10.1046/j.1365-2486.2003.00684.x
Seidl R, Fernandes P.M., Fonseca T.F., et al., 2011a. Modelling natural disturbances in forest ecosystems: a review. Ecol. Model. 222: 903-924. https://doi.org/10.1016/j.ecolmodel.2010.09.040
Seidl R., Schelhaas M.-J., Lexer M.J. 2011b. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Chang. Biol. 17: 2842-2852. https://doi.org/10.1111/j.1365-2486.2011.02452.x
Seidl R., Schelhaas M.-J., Rammer W., Verkerk P.J., 2014. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 4: 806-810. https://doi.org/10.1038/nclimate2318
Seidl R., Thom D., Kautz M., Martin-Benito D., Peltoniemi M., et al., 2017. Forest disturbances under climate change. Nat. Clim. Chang. 7: 395-402. https://doi.org/10.1038/nclimate3303
Skoberne P., 2004. Strokovni predlog za omrežje Natura 2000. [Expertise proposal for Natura 2000 network]. Proteus 66: 400-406.
Stevens J.T., Safford H.D., Harrison S., Latimer A.M., 2015. Forest disturbance accelerates thermophilization of understory plant communities. J. Ecol. 103: 1253-1263. https://doi.org/10.1111/1365-2745.12426
Stojanović D., Kržić A., Matović B., Orlović S., Duputie A., Djurdjević V., Galić Z., Stojnić S., 2013. Prediction of the European beech (Fagus sylvatica L.) xeric limit using a regional climate model: An example from southeast Europe. Agric. For. Meteorol. 176: 94-103. https://doi.org/10.1016/j.agrformet.2013.03.009
Stojanović D.B, Matović B., Orlović S., Kržič A., Trudić B., Galić Z., Stojnić S., Pekeč S., 2014. Future of the main important forest tree species in Serbia from the climate change perspective. South-east European Forestry 5(2): 117-124. http://dx.doi.org/10.15177/seefor.14-16
Taccoen A., Piedallu C., Seynave I., Perez V., Gégout-Petit A., et al., 2019. Background mortality drivers of European tree species: climate change matters. Proc. R. Soc. B 286: 20190386. https://doi.org/10.1098/rspb.2019.0386
Temperli C., Veblen T.T., Hart S.J., Kulakowski D., Tepley A.J., 2015. Interactions among spruce beetle disturbance, climate change and forest dynamics captured by a forest landscape model. Ecosphere 6(11): 231, 20 p. https://doi.org/10.1890/ES15-00394.1
Thom D., Seidl R., Steyrer G., Krehan H., Formayer H., 2013. Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. For. Ecol. Manage. 307: 293-302. https://doi.org/10.1016/j.foreco.2013.07.017
Thom D., Seidl T., 2016. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 91: 760-781. https://doi.org/10.1111/brv.12193
Thom D., Rammer W., Seidl R., 2017. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Glob. Chang. Biol. 23: 269-282. https://doi.org/10.1111/gcb.13506
Thom D., Sommerfeld A., Sebald J., Hagge J., Müller J., Seidl R., 2020. Effects of disturbance patterns and deadwood on the microclimate in European beech forests. Agric. For. Meteorol. 291: 108066. https://doi.org/10.1016/j.agrformet.2020.108066
Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., et al., 2004. Extinction risk from climate change. Nature 427: 145-148. https://doi.org/10.1038/nature02121
Thurm E.A., Hernandez L., Baltensweiler A., Ayan S., Rasztovits E., et al., 2018. Alternative tree species under climate warming in managed European forests. For. Ecol. Manage. 430: 485-497. https://doi.org/10.1016/j.foreco.2018.08.028
Vanderwel M.C., Purves D.W., 2014. How do disturbances and environmental heterogeneity affect the pace of forest distribution shifts under climate change? Ecography 37: 10-20. https://doi.org/10.1111/j.1600-0587.2013.00345.x
Vitasse Y., Bottero A., Rebetez M., Conedera M., Augustin S., Brang P., Tinner W., 2019. What is the potential of silver fir to thrive under warmer and drier climate? Eur. J. For. Res. 138: 547-560. https://doi.org/10.1007/s10342-019-01192-4
White P.S., Pickett S.T.A., 1985. Natural disturbance and patch dynamics: An introduction. In: Pickett S.T.A., White P.S. (Eds.), The ecology of natural disturbance and patch dynamics. Academic Press. pp. 3-13.
ZGS, 2005-2019. Poročila Zavoda za gozdove Slovenije o gozdovih za leta od 2004 do 2018 [Annual Reports of Slovenia Forest Service for year 2004 to year 2018].
ZGS, 2010a. Forest stands data. Zavod za gozdove Slovenije [Slovenia Forest Service].
ZGS, 2010b. Forest compartments data. Zavod za gozdove Slovenije [Slovenia Forest Service].
ZGS, 2015. Forest compartments data. Zavod za gozdove Slovenije [Slovenia Forest Service].
ZGS, 2018a. Forest stands data. Zavod za gozdove Slovenije [Slovenia Forest Service].
ZGS, 2018b. Forest compartments data. Zavod za gozdove Slovenije [Slovenia Forest Service].
Zohner C.M., Benito B.M., Svenning J.C., Renner S.S., 2016. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nature Climate Change, 6 (12): 1120-1123.
Zupančič M., 1999. Smrekovi gozdovi v Sloveniji [Spruce forests in Slovenia]. Dela Razreda za naravoslovne vede, vol. 36, Slovenska akademija znanosti in umetnosti, Ljubljana, 222 p.Published
Issue
Section
License
All the papers published in Annals of Forest Research are available under an open access policy (Gratis Gold Open Access Licence), which guaranty the free (of taxes) and unlimited access, for anyone, to entire content of the all published articles. The users are free to “read, copy, distribute, print, search or refers to the full text of these articles”, as long they mention the source.
The other materials (texts, images, graphical elements presented on the Website) are protected by copyright.
The journal exerts a permanent quality check, based on an established protocol for publishing the manuscripts. The potential article to be published are evaluated (peer-review) by members of the Editorial Board or other collaborators with competences on the paper topics. The publishing of manuscript is free of charge, all the costs being supported by Forest Research and Management Institute.
More details about Open Access:
Wikipedia: http://en.wikipedia.org/wiki/Open_access