Genetic variability and predicted gain in progeny tests of native Atlantic Forest timber species: Cariniana legalis, Cordia trichotoma, and Zeyheria tuberculosa

Authors

  • Aline Pinto dos Santos Universidade Estadual de Santa Cruz – UESC
  • Andrei Caique Pires Nunes Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia – UFSB, Itabuna
  • Marlon dos Santos Pereira Birindiba Garuzzo Univeridade Federal de Viçosa, Viçosa
  • Ronan Xavier Corrêa Universidade Estadual de Santa Cruz – UESC, Salobrinho, Ilhéus
  • Felipe Garbelini Marques Symbiosis Investimentos e Participações S. A., Trancoso

DOI:

https://doi.org/10.15287/afr.2022.2106

Keywords:

Forest breeding, Genetic variation, Genetic values, Forward selection

Abstract

Over the years, the Atlantic Forest has been one of the biomes most affected by fragmentation and despite the scarcity of studies related to their genetic and breeding aspects, native Atlantic Forest species can provide various high-quality timber products. In this context, the objectives of this work were to estimate genetic parameters and predict genetic gain with selection of provenance/progeny tests of Cordia trichotoma, Zeyheria tuberculosa, and Cariniana legalis, for diameter at breast height (DBH) and survival rate. Seed trees from different provenances were selected and measured, and their seeds were collected and tested in the areas of Porto Seguro - Bahia state, Brazil. All test individuals were evaluated for DBH (cm) survival rate (%) and stem straightness. The variance components and genetic parameters were estimated for DBH and survival rate. The narrow-sense individual heritability (h2i) for DBH of the three species ranged from 0.26 to 0.72, showing moderate to high genetic control. However, based on the likelihood ratio test (LRT) there is no genetic variability among genotypes of Z. tuberculosa. For survival rate, high genetic control (0.54) was observed only for C. trichotoma, while for C. legalis and Z. tuberculosa h2i value was 0.11 and 0.0, respectively. After genetic parameter analyses, the expected genetic gains were estimated for seed trees, potential genitors and potential clones. For seed trees, gains based on the additive genetic values (u+a) for DBH by selecting the top 10 individuals of each species per family ranged between 17.17 and 30.31%. In the case of potential genitors, by selecting the top ten individuals based on u + a value, are expected gains between 19.17 and 49.65%. The ranking of the top ten potential clones based on genotypic values (u +g) for each species showed gains between 32.43 and 56.53%. Conducting genetic breeding for C. trichotoma and C. legalis presents high potential of genetic gains and efforts should be taken into account for supporting breeding strategies for those species. In the case of Z. tuberculosa, the absence of genetic variability seems to be a result of the Atlantic Forest deforestation and genetic basis narrowing

References

Amini F., Mirlohi A., Majidi M.M., ShojaieFar S., Kölliker R., 2011. Improved polycross breeding of tall fescue through marker‐based parental selection. Plant breeding, 130(6):701-707. https://doi.org/10.1111/j.1439- 0523.2011.01884.xAssis T.F., Resende M.D.V.D., 2011. Genetic improvement of forest tree species. Crop Breeding and Applied Biotechnology, 11(SPE): 44-49. https://doi.org/10.1590/ S1984-70332011000500007Batista C.M., Freitas M.L.M., Moraes M.A., Zanatto A.C.S., Santos P.C., Zanata M., Sebbenn A.M., 2012. Estimativas de parâmetros genéticos e a variabilidade em procedências e progênies de Handroanthus vellosoi. Pesquisa Florestal Brasileira, 32(71):269. https://doi.org/10.4336//2012. pfb.32.71.26Batista F.G., Melo R.R., Medeiros D.T., OliveiraA.G.S., Freitas C.B.A., Silva E.D.G., Pimenta A.S., 2020. Longitudinal variation of wood quality in the fi forest species from Caatinga. Revista Brasileira de Ciências Agrárias, 15(4):e8572.https://doi.org/:10.5039/agraria.v15i4a8572Beltrame R., Bisognin D.A., Mattos B.D., Cargnelutti Filho A., Haselein C.R., Gatto D.A., Santos, G.A.D., 2012. Desempenho silvicultural e seleção precoce de clones de híbridos de eucalipto. Pesquisa Agropecuária Brasileira, 47(6):791-796. https://doi.org/10.1590/S0100- 204X2012000600009Bush D., Marcar N., Arnold R., Crawford D., 2013. Assessing genetic variation within Eucalyptus camaldulensis for survival and growth on two spatially variable saline sites in southern Australia. Forest Ecology and Management, 306:68-78. https://doi.org/10.1016/j.foreco.2013.06.008Carvalho A.M. et al., 2018. Avaliações de qualidade da madeira em espécies nativas de plantios florestais. In: Rolim S. G., Piotto D. (2018). Silvicultura e tecnologia de espécies da mata atlântica. Belo Horizonte: Ed. Rona. p. 45-52.Castro C.A.O., Nunes A.C.P., Roque J.V., Teófi R.F., Santos O.P., Santos G.A., Resende M.D.V., 2019. Optimization of Eucalyptus benthamii progeny test based on Near-Infrared Spectroscopy approach and volumetric production. Industrial Crops and Products, 141:111786. https://doi. org/10.1016/j.indcrop.2019.111786Cubbage F., Kanieski B., Rubilar R., Bussoni A., Olmos V.M., Balmelli G., Donagh P.M., Lord R., Hernández C., Zhang P., Huang J., Korhonen J., Yao R., Hall P., Torre R.D., Diaz- Balteiro L., Carrero O., Monges E., Thu H.T.P., Frey G., Howard M., Chavet M., Mochan S., Hoefl V.A., Chudy R., Maass D., Chizmar S., Abt R., 2020. Global timber investments, 2005 to 2017. Forest Policy and Economics, 112. https://doi.org/10.1016/j.forpol.2019.102082Cruz S.L., Pedrozo CA., Oliveira V.X.A., SilvaA.M., Resende M.D.V., Gonçalves D.A., 2020. Parâmetros genéticos e seleção inicial de procedências e progênies de taxi-branco (Tachigali vulgaris) em Roraima. Ciência Florestal, 30(1):258-269. https://doi.org/10.5902/1980509831631Falconer D.S., 1987. Introduction to quantitative genetics. Viçosa, Minas Gerais.Hodge G.R., Dvorak W.S., 2015. Provenance variation and within-provenance genetic parameters in Eucalyptus urophylla across 125 test sites in Brazil, Colombia, Mexico, South Africa and Venezuela. Tree Genetics & Genomes, 11(3):57. https://doi.org/10.1007/s11295-015-0889-3IBÀ – Indústria Brasileira de Árvores, 2021. Ibá annual report. Instituto Brasileiro de Economia. São Paulo, 93 p. Ishibashi V., Flores Júnior P.C., Martinez D.T., Higa A.R.,2021. Genetic selection of Pinus taeda L. through Multi- environment trial. Curitiba, 51(1):211-219. http://dx.doi. org/10.5380/rf.v51i1.68057Kubota T.Y.K., Moraes M.A., Silva E.C.B., Pupin S., Aguiar A.V., Moraes M.L.T., Sebbenn A.M., 2015. Variabilidade genética para caracteres silviculturais em progênies de polinização aberta de Balfourodendron riedelianum (Engler). Embrapa Florestas-Artigo em periódico indexado (ALICE).Kumar N., Markar S., Kumar V., 2014. Studies on heritability and genetic advance estimates in timely sown bread wheat (Triticum aestivum L.). Bioscience Discovery, 5(1):64-69. Lopes R. R., Franke L. B., Souza C. H. L. D., Bertoncelli P., Graminho L. A., Pereira É. A., 2018. Genetic parameters and predicted gains with selection of interspecifi hybrids of Paspalum for seed production. Crop Breeding and Applied Biotechnology, 18(3):284-291. https://doi. org/10.1590/1984-70332018v18n3a42Martins K., Santos W.S.D.D., Quadros T.M.C., Aguiar A.V.D., Machado J.A.R., Sebbenn A.M., Freitas M.L.M., 2018. Genetic variation and eff population size of a Myracrodruon urundeuva (Engler) Fr. Allem. provenance and progeny test. Journal of Forest Research, 23(4):228- 236. https://doi.org/10.1080/13416979.2018.1483130Matias F.I., Valle C.B.D., Gouveia B.T., Moro G.V., Barrios S.C.L., 2020. Using additive indices and principal components to select sexual genitors and hybrids of Urochloa decumbens. Crop Breeding and Applied Biotechnology, 20(2). https://doi.org/10.1590/1984- 70332020v20n2a18McKown A.D., Guy R.D., Klápště J., Geraldes A., Friedmann M., Cronk Q.C., Douglas C.J., 2014. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytologist, 201(4):1263-1276. https://doi.org/10.1111/ nph.12601Mihai G., Alexandru A., Mirancea I., 2019. Genetic variation and early selection in Larix decidua Mill. from progeny test in Romania. Annals of Forest Science, 76(3):81. https://doi.org/10.1007/s13595-019-0864-5Oliveira R.S., Ribeiro C.V.G., Neres D.F., Porto A.C.M., Ribeiro D., Siqueira L., Zauza E.A.V., Coelho A.S.G., Reis C.A.F., Alfenas A.C., Novaes E., 2020. Evaluation of genetic parameters and clonal selection of Eucalyptus in the Cerrado region. Crop Breeding and Applied Biotechnology, 20(3): e29982031. http://dx.doi.org/10.1590/1984-70332020v20n3a35Otsubo H.D.C.B., Moraes M.L.T.D., Moraes M.A.D., José Neto M., Freitas M.L.M., Costa R.B.D., Sebbenn A.M., 2015. Variação genética para caracteres silviculturais em três espécies arbóreas da região do bolsão sul-mato-grossense. Cerne, 21(4):535-544. htt ps://10.1590/01047760201521041317Resende M. D. V. D., 2016. Software Selegen-REML/ BLUP: a useful tool for plant breeding. Crop breeding and applied biotechnology, 16(4):330-339. https://doi. org/10.1590/1984-70332016v16n4a49Resende M.D.V., 2002. Genética biométrica e estatística no melhoramento de plantas perenes. Embrapa Informação Tecnológica, Colombo: Embrapa Florestas, pp 975.Resende M.D.V., Duarte J.B., 2007. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Goiânia Pesq Agropec. Trop 37:182-194.Riva L.C., Moraes M.A., Cambuim J., Zulian D.F., Sato L.M., Caldeira F.A., Panosso A. R., Moraes M.LT., 2020. Genetic control of wood quality of Myracrodruon urundeuva populations under anthropogenic disturbance. Crop Breeding and Applied Biotechnology, 20(4):e320920411. http://dx.doi.org/10.1590/1984-70332020v20n4a64Rocha M.D.G.D.B., Pires I.E., Rocha R.B., Xavier A., Cruz C.D., 2007. Seleção de genitores de Eucalyptus grandis e de Eucalyptus urophylla para produção de híbridos interespecífi utilizando REML/BLUP e informação de divergência genética. Revista Árvore, 31(6):977-987. https://doi.org/10.1590/S0100-67622007000600001Santos E. A., Viana A. P., Freitas J.C.O., Rodrigues D.L., Tavares R.F., Paiva C.L., Souza M.M., 2015. Genotype selection by REML/BLUP methodology in a segregating population from an interspecifi Passifl spp. crossing. Euphytica, 204(1):1-11. https://doi.org/10.1007/s10681-015-1367-6Santos T.S., Martins K., Aguiar A.V., Baptista Filho M.J., Menucelli J.R., Faria R.F.P, Moura R.D., Machado J.A.R., Longui E.L., 2021a. growth and wood quality traits in a Dipteryx alata Vog. (Fabaceae) progeny and provenance test. Forest Science, 67(4): 468-477. https:// doi.org/10.1093/forsci/fxab010Santos W., Aguiar A.V., Souza B.M., Araujo D., Machado C., Moraes M.L.T., Sebbenn A.M., Freitas M.L.M., 2021b. Performance and genetic variation in a provenance test of Araucaria cunninghamii. Pesquisa Agropecuária Brasileira, 56:e02170. https://doi.org/10.1590/S1678- 3921.pab2021.v56.02170Santos W., Aguiar A.V., Souza D.C.L., Dini D.G.T., Souza F.B., Dalastra C., Machado J.A.R., Sousa V.A., Moraes M.L.T., Freitas M.L.M., Sebbenn A.M., 2018a. Genetic variation and eff population size in Dipteryx alata progenies in pederneiras, São Paulo, Brazil. Revista Árvore, 42(3):e420310. http://dx.doi.org/10.1590/1806- 90882018000300010Santos W., Silva M.S.C., Deniz, L.D., Kieras, W.S., Shimizu J.Y., Sousa V.A., Aguiar A.V, 2018b. Identifi de procedências e progênies de Pinus maximonoi com potencial produtivo para madeira, Piracicaba. Scientia Forestalis, 46(117):127-136. http://dx.doi.org/10.18671/ scifor.v46n117.12Sato A. S., Freitas M.L.M., Lima I.L., Zimback L., Toniato M.T.Z., Sebbenn A.M., 2010. Genetic variation among and within provenances and progenies of Corymbia maculata (Hook.) KD Hill and LAS Johnson, in Pederneiras, SP. Cerne, 16(1):60-67.Schoville S.D., Bonin A., François O., Lobreaux S., Melodelima C., Manel S., 2012. Adaptive genetic variation on the landscape: methods and cases. Annual Review of Ecology, Evolution, and Systematics, 43:23-43. https://doi.org/10.1146/annurev-ecolsys-110411-160248Senna S., Freitas M.L.M., Zanatto A.C.S., Morais E., Zanata M., Moraes M.L.T., Sebbenn A.M., 2012. Variação e parâmetros genéticos em teste de progênies de polinização livre de Peltophorum dubium (Sprengel) taubert em Luiz Antônio-SP. Scientia Forestalis/Forest Sciences, 40:345-352.Silva Júnior A.L., Cabral R.L.R., Sartori L., Souza L.C., Miranda F.D., Caldeira M.V.W., Moreira S.O., Godinho T.O., 2020. Evaluation of diversity and genetic structure as strategies for conservation of natural populations of Dalbergia nigra (Vell.) Allemão ex Benth. Cerne, 26(4):435-443.Silva J.M., Aguiar A.V., Mori E.S., Moraes M.L.T., 2012. Divergência genética entre progênies de Pinus caribaea var caribaea com base em caracteres quantitativos. Pesquisa Florestal Brasileira, 32(69):69. https://doi. org/10.4336/2012.pfb.32.69.69Silva L.G.C., Moreira J.F.L, Holanda H.B.B., Rocha E.L.B., Dias P.C., 2018. Evaluation of carnauba progenies and estimates of genetic parameters in the juvenile phase. Rev. Caatinga. Mossoró, 31(4):917-925. http://dx.doi. org/10.1590/1983-21252018v31n414rcSturion J.A., Resende M.D.V., 2010. Melhoramento genético da erva-mate. Colombo: Embrapa Florestas.Sundstrom L.M., Henry L.A., 2017. Private forest governance, public policy impacts: The forest stewardship council in Russia and Brazil. Forests, 8(11), 445. https:// doi.org/10.3390/f8110445.Wani S.A., Khan P.A., Dar Z.A., 2019. Role of genetics in tree improvement. The Pharma Innovation Journal, 8(5):63-66.Weng Y.H., Lu P., Adams G.W., Fullarton M.S., Tosh K.J., 2015. Genetic parameters of growth and stem quality traits for jack pine second-generation progeny tested in New Brunswick. Canadian Journal of Forest Research, 45(1):36-43. https://doi.org/10.1139/cjfr-2014-0106Zaruma D.U.G., Canuto D.S.O., Pupin S., Cambuim J., Silva A.M., Mori E.S., Moraes M., 2015. Variabilidade genética em procedências e progênies de Dipteryx alata vogel para fi de conservação genética e produção de sementes. Scientia Forestalis, 43(107), 609-615. http:// hdl.handle.net/11449/17761.

Downloads

Published

2022-06-27

Issue

Section

Research article