A machine learning approach to model leaf area index in Eucalyptus plantations using high-resolution satellite imagery and airborne laser scanner data

Authors

  • Andrés Hirigoyen National Institute of Agricultural Research (INIA)
  • Cristina Acosta-Muñoz University of Cordoba
  • Antonio Jesús Ariza Salamanca University of Cordoba
  • María Ángeles Varo-Martinez University of Cordoba
  • Cecilia Rachid-Casnati National Institute of Agricultural Research (INIA)
  • Jorge Franco University of the Republic
  • Rafael Navarro-Cerrillo University of Cordoba

DOI:

https://doi.org/10.15287/afr.2021.2073

Abstract

As a forest structural parameter, leaf area index (LAI) is crucial for efficient intensive plantation management. Leaf area is responsible for the energy absorption needed for photosynthetic production and transpiration, both affecting growth. Currently, LAI can be estimated either by remote-sensing methods or ground-based methods. However, unlike ground-based methods, remote estimation provides a cost-effective and ecologically significant advance. The aim of our study was to evaluate whether machine learning algorithms can be used to quantify LAI, using either optical remote sensing or LiDAR metrics in Eucalyptus dunnii and Eucalyptus grandis stands. First, empirical relationships between LAI and remote-sensing data using LiDAR metrics and multispectral high-resolution satellite metrics, were assessed. Selected variables for LAI estimation were: forest canopy cover, laser penetration index, canopy relief ratio (from among the LiDAR data), the green normalized difference vegetation index, and normalized difference vegetation index (from among spectral vegetation indices). We compared the accuracy of three machine learning algorithms: artificial neural networks (ANN), random forest (RF) and support vector regression (SVR). The coefficient of determination ranged from 0.60, for ANN, to 0.84, for SVR. The SVR regression methods showed the best performance in terms of overall model accuracy and RMSE (0.60). The results show that the remote sensing data applied through machine learning algorithms provide an effective method to estimate LAI in eucalypt plantations. The methodology proposed is directly applicable for operational forest planning at the landscape level.

References

Alonso J., 2011. Modelación de procesos hidrológicos asociados a la forestación con Eucalyptus en el Uruguay. Facultad de Ingeniería, Universidad de la República.Altmann A., Toloşi L., Sander O., Lengauer T., 2010. Permutation importance: A corrected feature importance measure. Bioinformatics, 26(10): 1340-1347. https://doi.org/10.1093/bioinformatics/btq134Alvares C.A., Mattos E.M. de, Campoe O.C., Marrichi A.H.C., Stape J.L., 2015. Uso de sensoriamento remoto na estimativa do índice de área foliar em Eucalyptus. XVII Simpósio Brasileiro de Sensoriamento Remoto, pp. 6429-6436.Ariza Salamanca A.J., Navarro-Cerrillo R.M., Bonet-García F.J., Pérez-Palazón M.J., Polo M.J., 2019. Integration of a Landsat time-series of NBR and hydrological modeling to assess Pinus pinaster Aiton. Forest Defoliation in South-Eastern Spain. Remote Sensing, 11(19): 2291. https://doi.org/10.3390/rs11192291Castaño J.P., Giménez A., Ceroni M., Furest J., Aunchayna R., Bidegain M., 2011. Caracterización agroclimática del Uruguay 1980-2009. Serie Técnica INIA, 193: 33.De Almeida A.Q., Ribeiro A., Delgado R.C., Rody Y.P., De Oliveira A.S., Leite F.P., 2015. Índice de área foliar de eucalyptus estimado por índices de vegetação utilizando imagens TM - landsat 5. Floresta e Ambiente, 22: 368-376. https://doi.org/10.1590/2179-8087.103414De Godoy Goergen L.C., De Vargas Kilca R., Da Silva Narvaes I., Silva M.N., Silva E.A., Pereira R.S., Adami M., 2016. Distinção de espécies de eucalipto de diferentes idades por meio de imagens TM/Landsat 5. Pesquisa Agropecuaria Brasileira, 51: 53-60. https://doi.org/10.1590/S0100-204X2016000100007Fassnacht F.E., Hartig F., Latifi H., Berger C., Hernández J., Corvalán P., Koch B., 2014. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment, 154: 102-114. https://doi.org/10.1016/j.rse.2014.07.028Frazier A.E., Hemingway B.L., 2021. A technical review of planet smallsat data: Practical considerations for processing and using planetscope imagery. Remote Sensing, 13(19): 3930. https://doi.org/10.3390/rs13193930Gitelson A.A., Merzlyak M.N., 1997. Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18: 2691-2697.Gitelson A.A., Merzlyak M.N., 1998. Remote sensing of chlorophyll concentration in higher plant leaves. Advances in Space Research, 22(5): 689-692. https://doi.org/10.1016/S0273-1177(97)01133-2Gleason C.J., Im J., 2012. Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sensing of Environment, 125: 80-91. https://doi.org/10.1016/j.rse.2012.07.006Hopkinson C., Chasmer L., 2009. Testing LiDAR models of fractional cover across multiple forest ecozones. Remote Sensing of Environment, 113(1): 275-288. https://doi.org/10.1016/j.rse.2008.09.012Huete A., Van Leeuwen W., 1999. MODIS vegetation index (MOD13). Algorithm Theoretical Basis Document, 3(213): 295-309.Ingram J.C., Dawson T.P., Whittaker R.J., 2005. Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks. Remote Sensing of Environment, 94(4): 491-507. https://doi.org/10.1016/j.rse.2004.12.001Jain P., Coogan S.C.P., Subramanian S.G., Crowley M., Taylor S., Flannigan M.D., 2020. A review of machine learning applications in wildfire science and management. Environmental Reviews, 28(4): 478-505. https://doi.org/10.1139/er-2020-0019Jensen J.L.R., Humes K.S., Vierling L.A., Hudak A.T., 2008. Discrete return lidar-based prediction of leaf area index in two conifer forests. Remote Sensing of Environment, 112(10): 3947-3957. https://doi.org/10.1016/j.rse.2008.07.001Jonckheere I., Fleck S., Nackaerts K., Muys B., Coppin P., Weiss M., Baret F., 2004. Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121(1-2): 19-35. https://doi.org/10.1016/j.agrformet.2003.08.027Jordan C.F., 1969. Derivation of leaf‐area index from quality of light on the forest floor. Ecology, 50(4): 663-666.Lary D.J., Alavi A.H., Gandomi A.H., Walker A.L., 2016. Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7(1): 3-10. https://doi.org/10.1016/j.gsf.2015.07.003Le Maire G., Marsden C., Nouvellon Y., Stape J.L., Ponzoni F.J., 2012. Calibration of a species-specific spectral vegetation index for leaf area index (LAI) monitoring: Example with MODIS reflectance time-series on eucalyptus Plantations. Remote Sensing, 4(12): 3766-3780. https://doi.org/10.3390/rs4123766Luo S., Wang C., Xi X., Nie S., Fan X., Chen H., Yang X., Peng D., Lin Y., Zhou G., 2019. Combining hyperspectral imagery and LiDAR pseudo-waveform for predicting crop LAI, canopy height and above-ground biomass. Ecological Indicators, 102: 801-812. https://doi.org/10.1016/j.ecolind.2019.03.011Megown R.A., Webster M., Jacobs S., 1999. Using Landsat TM imagery to estimate LAI in a Eucalyptus plantation. 1-13.Mesas-Carrascosa F.J., Castillejo-González I.L., De la Orden M.S., Porras A.G.F., 2012. Combining LiDAR intensity with aerial camera data to discriminate agricultural land uses. Computers and Electronics in Agriculture, 84: 36-46. https://doi.org/10.1016/j.compag.2012.02.020Morsdorf F., Kötz B., Meier E., Itten K.I., Allgöwer B., 2006. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sensing of Environment, 104(1): 50-61. https://doi.org/10.1016/j.rse.2006.04.019Mountrakis G., Im J., Ogole C., 2011. Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3): 247-259. https://doi.org/10.1016/j.isprsjprs.2010.11.001Pavithra B., Kalaivani K., Ulagapriya K., 1998. Remote sensing techniques for mangrove mapping. International Journal of Engineering and Advanced Technology, 8: 27-30.Pearse G.D., Morgenroth J., Watt M.S., Dash J.P., 2017. Optimising prediction of forest leaf area index from discrete airborne lidar. Remote Sensing of Environment, 200: 220-239. https://doi.org/10.1016/j.rse.2017.08.002Peduzzi A., Wynne R.H., Fox T.R., Nelson R.F., Thomas V.A., 2012. Estimating leaf area index in intensively managed pine plantations using airborne laser scanner data. Forest Ecology and Management, 270: 54-65. https://doi.org/10.1016/j.foreco.2011.12.048Planet Labs, 2018. Precision Ag insights from frequent imaging smarter farming throughout the season. 22.R Core Development Team, 2013. A language and environment for statistical computing. 1.Rouse jr. J.W., Haas R.H., Schell J.A., Deering D.W., 1973. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation.Scurlock J.M.O., Asner G.P., Gower S.T., 2001. Worldwide historical estimates of leaf area index, 1932–2000. ORNL/TM-2001/268, 34. https://doi.org/0RNL/TM-2001/268Shen X., Cao L., Chen D., Sun Y., Wang G., Ruan H., 2018. Prediction of forest structural parameters using airborne full-waveform LiDAR and hyperspectral data in subtropical forests. Remote Sensing, 10(11): 1729. https://doi.org/10.3390/rs10111729Solberg S., Næsset E., Hanssen K.H., Christiansen E., 2006. Mapping defoliation during a severe insect attack on Scots pine using airborne laser scanning. Remote Sensing of Environment, 102(3-4): 364-376. https://doi.org/10.1016/j.rse.2006.03.001Staben G., Lucieer A., Scarth P., 2018. Modelling LiDAR derived tree canopy height from Landsat TM, ETM+ and OLI satellite imagery - A machine learning approach. International Journal of Applied Earth Observation and Geoinformation, 73: 666-681. https://doi.org/10.1016/j.jag.2018.08.013Sumnall M., Peduzzi A., Fox T.R., Wynne R.H., Thomas V.A., Cook B., 2016a. Assessing the transferability of statistical predictive models for leaf area index between two airborne discrete return LiDAR sensor designs within multiple intensely managed Loblolly pine forest locations in the south-eastern USA. Remote Sensing of Environment, 176: 308-319. https://doi.org/10.1016/j.rse.2016.02.012Sumnall M.J., Fox T.R., Wynne R.H., Blinn C., Thomas V.A., 2016b. Estimating leaf area index at multiple heights within the understorey component of Loblolly pine forests from airborne discrete-return lidar. International Journal of Remote Sensing, 37: 78-99. https://doi.org/10.1080/01431161.2015.1117683Tavares Júnior I da S., Torres C.M.M.E., Leite H.G., Castro N.L.M. de, Soares C.P.B., Castro R.V.O., Farias A.A., 2020. Machine learning: Modeling increment in diameter of individual trees on Atlantic Forest fragments. Ecological Indicators, 117: 106685. https://doi.org/10.1016/j.ecolind.2020.106685Tesfamichael S.G., van Aardt J., Roberts W., Ahmed F., 2018. Retrieval of narrow-range LAI of at multiple lidar point densities: Application on Eucalyptus grandis plantation. International Journal of Applied Earth Observation and Geoinformation, 70: 93-104. https://doi.org/10.1016/j.jag.2018.04.014Tseng Y.H., Lin L.P., Wang C.K., 2016. Mapping CHM and LAI for heterogeneous forests using airborne full-waveform LiDAR data. Terrestrial, Atmospheric and Oceanic Sciences, 27: 537-548. https://doi.org/10.3319/TAO.2016.01.29.04(ISRS)Watson D.J., 1947. Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of Botany, 11: 41-76. https://doi.org/10.1093/oxfordjournals.aob.a083148Weiss M., Baret F., Smith G.J., Jonckheere I., Coppin P., 2004. Review of methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling. Agricultural and Forest Meteorology, 121: 37-53. https://doi.org/10.1016/j.agrformet.2003.08.001Whitehead D., Beadle C.L., 2004. Physiological regulation of productivity and water use in Eucalyptus: A review. Forest Ecology and Management, 193: 113-140. https://doi.org/10.1016/j.foreco.2004.01.026Xue J., Su B., 2017. Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017. https://doi.org/10.1155/2017/1353691Yan G., Hu R., Luo J., Weiss M., Jiang H., Mu X., Xie D., Zhang W., 2019. Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives. Agricultural and Forest Meteorology, 265: 390-411. https://doi.org/10.1016/j.agrformet.2018.11.033Yuan H., Yang G., Li C., Wang Y., Liu J., Yu H., Feng H., Xu B., Zhao X., Yang X., 2017. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models. Remote Sensing, 9. https://doi.org/10.3390/rs9040309Zaletnyik P., Laky S., Toth C., 2010. LIDAR waveform classification using self-organizing map. American Society for Photogrammetry and Remote Sensing Annual Conference 2010: Opportunities for Emerging Geospatial Technologies, 2: 1055-1066.Zhao K., Popescu S., 2009. Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA. Remote Sensing of Environment, 113: 1628-1645. https://doi.org/10.1016/J.RSE.2009.03.006Zhou H., Wang C., Zhang G., Xue H., Wang J., Wan H., 2020. Generating a spatio-temporal complete 30 m leaf area index from field and remote sensing data. Remote Sensing, 12: 2394. https://doi.org/10.3390/rs12152394Zhou Y., Qiu F., 2015. Fusion of high spatial resolution WorldView-2 imagery and LiDAR pseudo-waveform for object-based image analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 101: 221-232. https://doi.org/10.1016/j.isprsjprs.2014.12.013

Downloads

Published

2021-12-29

Issue

Section

Research article