Extractive composition and bioactivity of Uncaria acida and Uncaria glabrata wood

Authors

  • Masendra Masendra Universitas Gadjah Mada
  • Brandon Aristo Verick Purba Universitas Gadjah Mada
  • Lies Indrayanti Universitas Palangkaraya, Indonesia
  • Ganis Lukmandaru Universitas Gadjah Mada

DOI:

https://doi.org/10.15287/afr.2020.1979

Keywords:

Wood extractives, Antifungi, Bajakah, Phytomedicine, Polyphenols

Abstract

Uncaria acida (red bajakah) and Uncaria glabrata (white bajakah) belong to the liana woody species. Both are naturally cultivated in Indonesia, particularly in Kalimantan (Borneo) island. This study, aims to investigate the extractive composition of U. acida and U. glabrata wood considering that extracts from different lianas usually are used as anticancer drugs (breast cancer). The phenolic, alkaloid, and saponin contents were measured by colorimetric and GC-MS methods, while the antioxidant, antifungal, and cytotoxicity were investigated using DPPH, Phanerodontia chrysosporium (white-rot), and brine shrimp lethality tests, respectively. The results showed that the total tannins, phenols, and saponins in U. acida were higher compared to U. glabrata, while the total flavonoids, alkaloids, polysaccharides, and antioxidant activity was lower. The GC-MS analysis indicated the presence of aromatic compounds, fatty acids, and triterpenoids in both species. High concentration of phenols, alkaloids, saponins, fatty acids, and steroids are known to provide support in terms of antioxidant, cytotoxicity, and antifungal activities.

Author Biographies

Masendra Masendra, Universitas Gadjah Mada

Department of Forest Products Technology, Faculty of Forestry, Universitas Gadjah MadaDepartment of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada

Brandon Aristo Verick Purba, Universitas Gadjah Mada

Department of Forest Products Technology, Faculty of Forestry, Universitas Gadjah Mada

Lies Indrayanti, Universitas Palangkaraya, Indonesia

Department of Forestry, Faculty of Agriculture, Universitas Palangkaraya

Ganis Lukmandaru, Universitas Gadjah Mada

Department of Forest Products Technology, Faculty of Forestry, Universitas Gadjah Mada

References

Adwas A.A., Elsayed A.S.I., Azab A.E., Quwaydir F.A., 2019. Oxidative stress and antioxidant mechanisms in human body. MedCrave 6(1): 43-47. https://doi.org/10.15406/jabb.2019.06.00173Amir M., Mujeeb M., Khan A., Ashraf K., Sharma D., Aqil M., 2012. Phytochemical analysis and in vitro antioxidant activity of Uncaria gambir. International Journal of Green Pharmacy 6: 67-72. https://doi.org/10.4103/0973-8258.97136Apea-Bah F.B., Hanafi M., Dewi R.T., Fajriah S., Darmawan A., et al. 2009. Assessment of the DPPH and α-glucosidase inhibitory potential of gambier and qualitative identification of major bioactive compound. Journal of Medicinal Plants Research 3: 736-757.Arbain D., Byrne L.T., Magda M.P., Sargent M.V., Syarif M., 1992. A new glucoalkaloid from Uncaria glabrata. Journal of the Chemical Society, Perkin Transactions 1: 665–666.Arbain D., Afrida, Sargent M.V., Skelton B.W., White A.H., 1998. The alkaloids of Uncaria cf. glabrata. Australian Journal of Chemistry 51: 961-964. https://doi.org/10.1071/C98078Arbain D., Putri M.M., Sargent M.V., Syarif M., 1993. The alkaloids of Uncaria glabrata. Australian Journal of Chemistry 46: 863-872. https://doi.org/10.1071/CH9930863Ashraf M, Bengtson D.A., 2007. Effect of tannic acid on feed intake, survival and growth of striped bass (Morone saxatilis) larvae. International Journal of Agriculture & Biology 9(5): 751-754.Azad A.K., Jainul M.A., Labu Z.K., 2018. Cytotoxic activity on brine shrimp, MCF-7 cell line and thrombolytic potential: seven different medicinal plant leaves extract. Journal of Scientific Research 10(2): 175-178. https://doi.org/10.3329/jsr.v10i2.34820Baba S.A., Malik S.A., 2015. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. Journal of Taibah University for Science 9(4): 449-454. https://doi.org/10.1016/j.jtusci.2014.11.001Bizuayehu D., Atlabachew M., Ali M.T., 2016. Determination of some selected secondary metabolites and their invitro antioxidant activity in commercially available Ethiopian tea (Camellia sinensis). SpringerPlus 5: 1-9. https://doi.org/10.1186/s40064-016-2056-1Brighente I.M.C., Dias M., Verdi L.G., Pizzolatti M.G., 2007. Antioxidant activity and total phenolic content of some Brazilian species. Pharmaceutical Biology 45(2): 156-161. https://doi.org/10.1080/13880200601113131Diouf P.N., Stevanovic T., Cloutier A., 2009. Antioxidant properties and polyphenol contents of Trembling aspen bark extracts. Wood Science Technology 43(4): 457-470. https://doi.org/10.1007/s00226-009-0240-yDuarte T.L., Lunce J., 2005. Review: When is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C. Free Radical Research 39(7): 671-686. https://doi.org/10.1080/10715760500104025DuBois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F., 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28(3): 350-356. https://doi.org/10.1021/ac60111a017Dutta M., Chattopadhyay A., Ghosh A.K., Chowdhury U.R., Bhowmick D., et al. 2015. Benzoic acid, one of the major components of aqueous bark extract of Terminalia arjuna protects against Copper-Ascorbate induced oxidative stress in human placental mitochondria through antioxidant mechanism(s): an in vitro study. Journal of Pharmacy Research 9(1): 64-88.Fujiwara H., Iwasaki K., Furukawa K., Seki T., He M., et al. 2006. Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer's beta-amyloid proteins. Journal of Neuroscience Research 84: 427–433. https://doi.org/10.1002/jnr.20891Halliwell B., 2007. Biochemistry of oxidative stress. Biochemistry Society Transactions 35: 1147-1150.Imamura S., Tabuchi M., Kushida H., Nishi A., Kanno H., et al. 2011. The blood - brain barrier permeability of geissoschizine methyl ether in Uncaria hook, a galenical constituent of the traditional Japanese medicine Yokukansan. Cellular and Molecular Neurobiology 31: 787-793. https://doi.org/10.1007/s10571-011-9676-3Jiang X., Cao Y., Jørgensen L.G., Strobel B.W., Hansen H.C.B., Cedergreen N., 2018. Where does the toxicity come from in saponin extract? Chemosphere 204: 243-250. https://doi.org/10.1016/j.chemosphere.2018.04.044Kankeaw U., Masong K., 2015. The antioxidant activity from hydroquinone derivatives by the synthesis of Cinnamomium verum J.Presl bark’s extracted. International Journal of Chemical Engineering and Applications 6(2): 91-94. https://doi.org/10.7763/IJCEA.2015.V6.458Kassim M.J., Hussin M.H., Achmad A., Dahon N.H., Suan T.K., Hamdan H.S. 2011. Determination of total phenol, condensed tannin and flavonoid contents and antioxidant activity of Uncaria gambir extracts. Majalah Farmasi Indonesia 22(1): 50-59. http://dx.doi.org/10.14499/indonesianjpharm0iss0pp50-59Kim Y., Hwang J., Kim S., Kim E., Jeon Y., Moon S., Jeon B., Park P., 2012. Antioxidant activity and protective effects of Uncaria rhynchophylla extracts on t-BHP-induced oxidative stress in chang cells. Biotechnology and Bioprocess Engineering 17: 1213-1222. https://doi.org/10.1007/s12257-012-0278-9Kuni B.E., Hardiansyah G., Idham, 2015. Ethnobotany of Dayak Kerabat tribe in the Tapang Perodah village sub-district of Sekadau Hulu the district of Sekadau. Jurnal Hutan Lestari 3(3): 383-400. http://dx.doi.org/10.26418/jhl.v3i3.11211Lukmandaru G., 2013. Antifungal activities of certain components of teak wood extractives. Jurnal Ilmu Teknologi Kayu Tropis 11(1): 11-18.Makkar H.P.S.; Siddhuraju P., Becker K., 2007. Molecular Biology: Plant secondary metabolites. 1st Edition, Humana Press Inc., Totowa, New Jersey, USA, pp. 93-100.Makoto O., Yoshimichi F., Fumio T., Shingo I., 2003. Fatty Acid Compositions of Lipids in Cat's Claw (Uncaria tomentosa) and Maca (Lepidium meyenii). Food Preservation Science 29(1): 37-40.Mena P., Calani L., Bruni R., Rio D.D., 2015. Bioactivation of high-molecular-weight polyphenols by the gut microbiome. In: Diet-microbe interactions in the gut; Effects on human health and disease. Tuohy K., Rio D.D. (eds.). Academic Press, London. https://doi.org/10.1016/B978-0-12-407825-3.00006-XMohan V.R., Tresina P.S., Daffodil E.D., 2016. Antinutritional factors in legume seeds: characteristics and determination. In: Encyclopedia of Food and Health. Caballero B., Finglas P.M., Toldrá F. (eds.). Academic Press, Oxford. https://doi.org/10.1016/B978-0-12-384947-2.00036-2Moraes R.C., Lana A.J.D., Kaiser S., Carvalho A.R., De Oliveira L.F.S., et al. 2015. Antifungal activity of Uncaria tomentosa (Wild.) D.C. against resistant non-albicans Candida isolates. Industrial Crops and Products 69: 7-14. https://doi.org/10.1016/j.indcrop.2015.01.033 Nahdi M.S., Kurniawan A.P., 2019. The diversity and ethnobotanical study of medicinal plants in the southern slope of Mount Merapi, Yogyakarta, Indonesia. Biodiversitas 20(8): 2279-2287. https://doi.org/10.13057/biodiv/d200824Nandika D., Syamsu K., Ariana, Kusumawardhani D.T., Fitriamna., 2019. Bioactivities of catechin from gambir (Uncaria gambir Roxb.) against wood-decaying fungi. BioResources 14(3): 5646- 5656. https://doi.org/10.15376/biores.14.3.56646-5656Navarro-Hoyos M., Alvarado-Corella D., Moreira-Gonzalez I., Arnaez-Serrano E., Monagas-Juan M., 2018. Polyphenolic composition and antioxidant activity of aqueous and ethanolic extracts from Uncaria tomentosa bark and leaves. Antioxidants 7(5): 65. https://doi.org/10.3390/antiox7050065Navarro-Hoyos M., Sanchez-Patan F., Masis R.M., Martin-Alvarez P., Ramirez W.Z., et al. 2015. Phenolic assessment of Uncaria tomentosa L. (Cat`s claw): leaves, stem, bark, and wood extracts. Molecules 20: 22703-22717. https://doi.org/10.3390/molecules201219875Orlando G., Chiavaroli A., Leone S., Brunetti L., Politi M., et al. 2015. Inhibitory effects induced by Vicia faba, Uncaria rhyncophylla, and Glyrrhiza glabra water extracts on oxidative stress biomarkers and dopamine turnover in HypoE22 cells and isolated rat striatum challenged with 6-hydroxydopamine. Antioxidants 8(602): 1-14. https://doi.org/10.3390/antiox8120602Padmaja G., 1989. Evaluation of techniques to reduce assay-able tannin and cyanide in cassava leaves. Journal Agriculture Food and Chemistry 37: 712-716. https://doi.org/10.1021/jf00087a029Pavei C., Kaiser S., Verza S.G., Borre G.L., Ortega G.G., 2012. HPLC-PDA method for quinovic acid glycosides assay in Cat's claw (Uncaria tomentosa) associated with UPLC/Q-TOF-MS analysis. Journal of Pharmaceutical and Biomedical Analysis 62: 250–257. https://doi.org/10.1016/j.jpba.2011.12.031Plaza M., Domínguez-Rodríguez G., Castro-Puyana M., Marina M.L., 2018. Polyphenols analysis and related challenges. In: Polyphenols: Properties, Recovery, and Applications (Galanakis C.M. ed.). Woodhead Publishing: Austria.Quattrocchi U., 2000. CRC World dictionary of plant names. Volume IV. CRC Press: Boca Raton; New York; Washington DC; USA. London, UK.Rahman A.U., Choudhary M.I., 1999. Chemistry and biology of steroidal alkaloids from marine organisms. In: The Alkaloids: Chemistry and Biology (Cordell, G.A. ed.). Academic Press: California. 391 p. https://doi.org/10.1016/S1099-4831(08)60040-1Ridsdale C.E., 1978. A revision of Mytragyna and Uncaria (Rubiaceae). Blumea 24: 43–100.Salim F., Ismail N.H., Awang K., Ahmad R., 2011. Rauniticine-allo-oxindole B and rauniticinic-allo acid B, new heteroyohimbine-type oxindole alkaloids from the stems of Malaysian Uncaria longiflora var. pteropoda. Molecules 16: 6541–6548. https://doi.org/10.3390/molecules16086541Sandoval M., Okuhama N.N., Zhang XZ., Condezo L.A., Lao J., et al. 2002. Anti-inflammatory and antioxidant activities of cat's claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content. Phytomedicine 9(4): 325-337. https://doi.org/10.1078/0944-7113-00117Sarah Q.S., Anny F.C., Misbahuddin M., 2017. Brine shrimp lethality assay. Bangladesh Journal of Pharmacology 12(2): 186-189. https://doi.org/10.3329/bjp.v12i2.32796Schnitzer S.A., Bongers F., (2002). The ecology of lianas and their role in forests. Trends in Ecology and Evolution 17: 223–230. https://doi.org/10.1016/S0169-5347(02)02491-6Sekine N., Ashitani T., Murayama T., Shibutani S., Hattori S., Takahashi K., 2009. Bioactivity of latifolin and its derivatives against termites and fungi. Journal of Agriculture Food Chemistry 57: 5707-712. https://doi.org/10.1021/jf900719pSingh D.K., Srivastva B., Sahu A., 2004. Spectrophoto-metric determination of Rauvolfia alkaloids, estimation of reserpine in pharmaceuticals. Analytical Science 20: 571-573. https://doi.org/10.2116/analsci.20.571Slade D., Ferreira D., Marais J.P.J., 2005. Circular dichroism, a powerful tool for the assessment of absolute configuration of flavonoids. Phytochemistry 66: 2177–2215. https://doi.org/10.1016/j.phytochem.2005.02.002Sofiana M.J., Warsidah, Iskandar D., 2020. Cytotoxicity activities of ethanol extract of hooks Uncaria tomentosa West Kalimantan. The Journal of Food and Medicinal Plants 1(1): 1-4. https://doi.org/10.25077/jfmp.1.1.1-4.2020Utami R.D., Zuhud E.A.M., Hikmat A., 2019. Medicinal ethnobotany and potential of medicine plants of Anak Rawa ethnic at the Penyengat village Sungai Apit Siak Riau. Media Konservasi 24(1): 40-51. https://doi.org/10.29244/medkon.24.1.40-51Uwalaka N.O., Borisade T.V., Rufai A.B., 2021. Liana abundance and colonization in a tropical moist secondary lowland rainforest in Nigeria. Taiwania 66(2): 174-183. https://doi.org/10.6165/tai.2021.66.174Velika B., Kron I., 2012. Antioxidant properties of benzoic acid derivatives against superoxide radical. Free Radicals and Antioxidants 2(4): 62-67. https://doi.org/10.5530/ax.2012.4.11Wijayanto A., Dumacay S., Gerardin-Charbonnier C., Sari R.K, Syafii W., Gerardin P., 2015. Phenolic and lipophilic extractives in Pinus merkusii Jungh. et de Vries knots and stemwood. Industrial Crops and Products 69: 466-471. https://doi.org/10.1016/j.indcrop.2015.02.061Xu Q.Q., Shaw P.C., Hu Z., Yang W., Ip S.P., et al. 2021. Comparison of the chemical constituents and anti-Alzheimer’s disease effects of Uncaria rhynchophylla and Uncaria tomentosa. Chinese Medicine 16: 110. https://doi.org/10.1186/s13020-021-00514-2Yamasaki T., Sato M., Mori T., Mohamed A.S.A., Fuiji K., Tsukioka J., 2002. Toxicity of tannins towards the free-living nematode Caenorhabditis elegans and the brine shrimp Artemia salina. Journal of Natural Toxins 11(3): 165-171.Zeka K., Alfa H.H., Ruparelia K.C., Arroo R.R.K., 2019. Use of natural products in the prevention and management of type 2 diabetes. Studies in Natural Products Chemistry 63: 197-210. https://doi.org/10.1016/B978-0-12-817901-7.00007-1Zhang J.G., Huang X.Y., Ma Y.B., Chen J.J., Geng C.A., 2020. UFLC‑PDA‑MS/MS profiling of seven Uncaria species integrated with melatonin/5‑hydroxytryptamine receptors agonistic assay. Natural Products and Bioprospecting 10: 23-36. https://doi.org/10.1007/s13659-020-00230-8Zhang Q., Chen L., Hu L., Liu W., Feng F., Qu W., 2016. Two new ortho benzoquinones from Uncaria rhyncophylla. Chinese Journal of Natural Medicines 14(3): 232-235. https://doi.org/10.1016/S1875-5364(16)30021-8

Downloads

Published

2021-12-25

Issue

Section

Research article