Teak growth, yield- and thinnings’ simulation in volume and biomass in Colombia

Authors

  • Danny A. Torres Office National des Forêts International, Paris, France
  • Jorge I. del Valle Departament of Forest Sciences, Universidad Nacional de Colombia - Sede Medellín
  • Guillermo Restrepo Independent consultant, Medellín, Colombia

DOI:

https://doi.org/10.15287/afr.2019.1722

Keywords:

allometric models, compatible growth and yield models, independent validation, Tectona grandis, thinnings simulation of volume and biomass

Abstract

In the Colombian Caribbean, 44 permanent sampling plots (PSPs) on teak (Tectona grandis) plantations in 20 stands ranging in age from 3 to 20 years have been measured annually for 17 years. We have developed a compatible growth and yield model using the state-space approach and Kopf’s growth equation fitted by nonlinear mixed-effects-models (NLMEMs). For each site index class, the transition function of the basal area depends on the initial basal area (G1) and the initial age (t1), projected to a future basal area (G2) and its age (t2). In the transition function, the previous thinnings were added to not underestimate the total yield. We use NLMEMs to prevent autocorrelation by modeling annual measurements in the PSPs. The transition function is inserted in allometric stand models of three key variables: volume over bark, the volume under bark, and above-ground biomass. Tree allometric models for volume over bark, the volume under bark, and biomass were parameterized, self-validated, independently validated, and recalibrated. Stand allometric models for the same three key variables, as a function of the stand basal area, were parameterized by using NLMEMs to evaluate proportional variance to the mean and variance as a potential function of the mean. In both tree and stand allometric models, the assumptions of the regression have been fulfilled. The resulting growth and yield model allows for the estimation of current growth and predicts future yields in volumes and above-ground biomass arising from thinnings treatments. The proposed model is a useful tool for teak efficient plantations management. The proposed growth models for teak in this paper may have a potential utility in newly teak planted areas, where such tools are scarce or non-existent.

References

Aguilar F. J., Nemmaoui A., Peñalver A., Rivas J. R., Aguilar M. A., 2019. Developing allometric equations for teak plantations located in the coastal region of Ecuador from terrestrial laser scanning data. Forests 10(12). https://doi.org/10.3390/f10121050" target="_blank">DOI: 10.3390/f10121050Alder D., 1980. Forest volume estimation and yield prediction. Vol. 2. FAO Forestry Paper 22/2, Rome, 194 p.Bohre P, Chaubey O. P., Singhal P. K., 2013. Biomass accumulation and carbon sequestration in Tectona grandis Linn. f. and Gmelina arborea Roxb. International Journal of Bio-Science and Bio-Technology 5(3): 153-173.Bermejo I., Cañellas I., San Miguel A., 2004. Growth and yield models for Teak plantations in Costa Rica. Forest Ecology and Management 289: 97-110. https://doi.org/10.1016/j.foreco.2003.07.031" target="_blank">DOI: 10.1016/j.foreco.2003.07.031Buvaneswaran C, George M, Pérez D, Kanninen M., 2006. Biomass of Teak plantations in Tamil Nadu, India and Costa Rica compared. Journal of Tropical Forest 18:195-197.Chaturvedi R. K., Raghubanshi A. S., 2016. Allometric models for accurate estimation of aboveground biomass of Teak in tropical dry forests of India. Forest Science 61. https://doi.org/10.5849/forsci.14-190" target="_blank">DOI: 10.5849/forsci.14-190Fang Z, Bailey R. L., Shiver B. D., 2001. A multivariate simultaneous prediction system for stand growth and yield with fixed and random effects. Forest Science 47: 550-562.García O., 1994. The state-space approach in growth modelling. Canadian Journal of Forestry Research 24: 1894-1903. https://doi.org/10.1139/x94-244" target="_blank">DOI: 10.1139/x94-244García O., 2013a. Forest stands as dynamical systems: An introduction. Modern Applied Science 7: 32-38. https://doi.org/10.5539/mas.v7n5p32" target="_blank">DOI: 10.5539/mas.v7n5p32García O., 2013b. Building a dynamic growth model for trembling aspen in Western Canada without age data. Canadian Journal of Forestry Research 43: 256-265. https://doi.org/10.1139/cjfr-2012-0366" target="_blank">DOI: 10.1139/cjfr-2012-0366Greene W. H., 2018. Econometric analysis. 8th ed. Pearson Education Inc., New York, 1176 p.Guendehou G. H. S., Lehtonen A., Moudachirou M., Mäquä R., Sinsin B., 2012. Stem biomass and volume models of selected tropical tree species in West Africa. Southern Forests 74: 77-88. https://doi.org/10.2989/20702620.2012.701432" target="_blank">DOI: 10.2989/20702620.2012.701432Jerez M, Quintero M, Quevedo A, Moret A., 2015. Simulador de crecimiento y secuestro de carbono para plantaciones de teca en Venezuela: una aplicación en SIMILE [Carbon growth and sequestration simulator for teak plantations in Venezuela: an application in SIMILE]. Bosque 36(3): 519-530. https://doi.org/10.4067/S0717-92002015000300018" target="_blank">DOI: 10.4067/S0717-92002015000300018Keogh R. M., 2005. Carbon models and tables for Teak (Tectona grandis Linn. f.), Central American and the Caribbean. Coillte Consult, Dublin, Ireland.Kiviste A., Álvarez J. G., Rojo A., Ruiz A. D., 2002. Funciones de crecimiento de aplicación en el ámbito forestal [Growth functions applied in forestry]. Ministerio de Ciencia y Tecnología, Monografías INIA: Forestal nº 4, Madrid, 195 p.Koirala A., Kizha A. R., Baral S., 2017. Modeling height-diameter relationship and volume of teak (Tectona grandis L. F.) in Central Lowlands of Nepal. Journal of Tropical Forestry and Environment 7(1): 28-42. https://doi.org/10.31357/jtfe.v7i1.3020" target="_blank">DOI: 10.31357/jtfe.v7i1.3020Kollert W., Kleine M., 2017. The global teak study. Analysis, evaluation and future potential of teak resources. International Union of Forestry Organizations. IUFRO World Series Volume 36, Vienna.Kenzo T., Himmapan W., Yoneda R., Tedsorn N., Vacharangkura T., Hitsuma G., Noda I., 2020. General estimation models for above- and below- ground biomass of teak (Tectona grandis) plantations in Thailand. Forest Ecology and Management 117701. https://doi.org/10.1016/j.foreco.2019.117701" target="_blank">DOI: 10.1016/j.foreco.2019.117701Ladrach W., 2009. Management of Teak plantation for solid wood products [Special Report]. ISTF News, pp. 1-25.Malimbwi R. E., Eid T., Chamshama S. A. O. (eds), 2016. Allometric tree biomass and volume models in Tanzania. Department of Forest Mensuration and Management, Sokoine University of Agriculture, Morogoro, Tanzania, 129 p.Mbaekwe E. I., Mackenzie J. A., 2008. The use of best-fit allometric model to estimate aboveground biomass accumulation and distribution in an age series of Teak (Tectona grandis L.f.) plantations at Gambari Forest Reserve, Oyo State, Nigeria. Tropical Ecology 49: 259-270.Meyer, H. A., 1938. The standard error of estimates of tree volume from the logarithmic volume equation. Journal of Forestry 36: 340-342.Meyer, H. A., 1941. A correction for a systematic error occurring in the application of the logarithmic volume equation. Penn. State Forestry School, Res. Pap. No. 7, 3 p.Moret A. Y., Jerez M., Mora A., 1998. Determinación de ecuaciones de volumen para plantaciones de teca (Tectona grandis L.) en la unidad experimental de la Reserva Forestal Caparo, estado Barinas - Venezuela [Determination of volume equations for teak plantations (Tectona grandis L.) in the experimental unit of the Caparo Forest Reserve, Barinas state - Venezuela]. Revista Forestal Venezolana 42: 41-50.Nord-Larsen Th., Johannsen V. K., 2007. A state-space approach to stand growth modelling of European beech. Annals of Forest Science 64: 365-374. https://doi.org/10.1051/forest:2007013" target="_blank">DOI: 10.1051/forest:2007013Nunifu T. K., Murchison H. G., 1999. Provisional yield models of Teak (Tectona grandis Linn. F.) plantation in northern Ghana. Forest Ecology and Management 120: 171-178. https://doi.org/10.1016/S0378-1127(98)00529-5" target="_blank">DOI: 10.1016/S0378-1127(98)00529-5Pérez D., Kanninen M., 2005. Stand growth scenarios for Tectona grandis plantations in Costa Rica. Forest Ecology and Management 210: 425-442. https://doi.org/10.1016/j.foreco.2005.02.037" target="_blank">DOI: 10.1016/j.foreco.2005.02.037Picard N., Saint-André L., Henry M., 2012. Manual for building tree volume and biomass allometric equations. FAO-CIRAD, Montpellier, France, 182 p.Phillips G. B., 1995. Growth functions for Teak (Tectona grandis Linn. F.) plantations in Sri Lanka. The Commonwealth Forestry Review74: 361-375.Quintero A., Jerez M., Flores J., 2012. Modelo de rendimiento y crecimiento para plantaciones de teca (Tectona grandis L.) usando el enfoque de espacios de estado [Yield and growth model for teak plantations (Tectona grandis L.) using the space-state approach]. Ciencia e Ingeniería 33: 21-32.SAS (Statistical Analysis System). 2004. SAS Version 9.0. Raleigh (NC): SAS Institute Inc Cary.Satoo T., 1982. Forest biomass. Martinus Nijhoff / Dr W. Junk Publishers, The Hague, 152 p. https://doi.org/10.1007/978-94-009-7627-6_4" target="_blank">DOI: 10.1007/978-94-009-7627-6_4Sreejesh K. K., Thomas T. P., Prasanth K. M., Kripa P. K., 2013. Carbon sequestration potential of Teak (Tectona grandis) plantations in Kerala. Research Journal of Recent Sciences 2: 167-170.Sandeep S., Sivaram M., Sreejesh K. K., Thomas T. P., 2015. Evaluating generic pantropical allometric models for the estimation of above-ground biomass in the teak plantations of Southern Western Ghats, India. Journal of Tropical Forestry and Environment 5(1): 1-8. https://doi.org/10.31357/jtfe.v5i1.2492" target="_blank">DOI: 10.31357/jtfe.v5i1.2492Subasinghe S. M. C. U. P., 2016. Estimating the change of stem biomass and carbon with age and stem volume of Tectona grandis Linn. F. International Journal of Science, Environment and Technology 5: 1745-1756.Sunanda C., Jayaraman K., 2006. Prediction of stand attributes for even-aged Teak stands using multilevel models. Forest Ecology and Management 236: 1-11. https://doi.org/10.1016/j.foreco.2006.05.039" target="_blank">DOI: 10.1016/j.foreco.2006.05.039Tewari V. P., Mariswamy K. M., Arunkumar A. N., 2013. Total and merchantable volume equations for Tectona grandis Linn. F. plantations in Karnataka, India. Journal of Sustainable Forestry 32: 213-229. https://doi.org/10.1080/10549811.2013.762187" target="_blank">DOI: 10.1080/10549811.2013.762187Tewari V. P., Singh B, 2018a. A first-approximation simple dynamic growth model for forest teak plantations in Gujarat State of India. Southern Forests 80: 59-65. https://doi.org/10.2989/20702620.2016.1277644" target="_blank">DOI: 10.2989/20702620.2016.1277644Tewari V. P., Singh B, 2018b. Total wood volume equations for Tectona grandis Linn F. Stands in Gujarat, India. Journal of Forest and Environmental Science 34: 313-320.Tewari V.P., Álvarez-González, J.B., García, O., 2014. Developing a dynamic growth model for Teak plantations in India. Forest Ecosystems 1:9. https://doi.org/10.1186/2197-5620-1-9" target="_blank">DOI: 10.1186/2197-5620-1-9Tewari V.P., Álvarez-González, J.B., 2014. Development of a stand density management diagram for teak forests in Southern India. Journal of Forest and Environmental Science 30: 259-266. https://doi.org/10.7747/JFS.2014.30.3.259" target="_blank">DOI: 10.7747/JFS.2014.30.3.259Torres D. A., del Valle J. I., Restrepo G., 2012. Site index for Teak in Colombia. Journal of Forestry Research 23: 405-411. DOI: 10.1007/s11676-012-0277-x. https://doi.org/10.1007/s11676-012-0277-x" target="_blank">DOI: 10.1007/s11676-012-0277-xVanclay J. K., 1994. Modelling forest growth and yield: Application to mixed tropical forests. CAB International, Wallingfor (UK), 312 p.Wadsworth F. H., 1997. Forest production for tropical America. Agriculture Handbook 710. USDA Forest Service, Washington DC, USA, 563 p.Watanabe Y., Masunaga T., Owusu-Sekyere E., Buri M., Oladele O. I., Wakatsuki T., 2009. Evaluation of growth and carbon storage as influenced by soil chemical properties and moisture on teak (Tectona grandis) in Ashanti region. Journal of Food Agriculture and Environment 7(2): 640-645.Weiskittel A. R., Hann D.W., Kershaw J. A., Vanclay J. 2011. Forest growth and yield modeling. Wiley-Blankwell, Oxford, UK. https://doi.org/10.1002/9781119998518" target="_blank">DOI: 10.1002/9781119998518Zambrano T., Jerez M., Vincent L., 1995. Modelo preliminar de simulación del crecimiento en área basal para teca (Tectona grandis L.) en los llanos Occidentales de Venezuela [Preliminary simulation model of growth in the basal area for teak (Tectona grandis L.) in the Western Plains of Venezuela]. Revista Forestal Venezolana 39: 40-48.Zahabu E., Mugasha W. A., Katani J. Z., Malimbwi R. E., Mwangi R. E., Chamshama S. A. O., 2018. Allometric biomass and volume models for Tectona grandis plantations. In: Malimbwi R. E., Chamshama S. A. O. (eds.), Allometric tree biomass and volume models in Tanzania. Department of Forest Resources Assessment and Management College of Forestry, Wildlife and Tourism. Sokoine University of Agriculture, Morogoro, Tanzania, pp. 98-106.Zapata M, Colorado G. J., del Valle J. I., 2003. Ecuaciones de biomasa aérea para bosques primarios intervenidos y secundarios [Aerial biomass equations for primary and secondary forests]. In: Orrego S. A., del Valle J. I., Moreno F. H. (eds.), Contribuciones para la mitigación del cambio climático. Universidad Nacional de Colombia Sede Medellín-Centro Andino para la Economía en el Medio Ambiente, Bogotá, pp. 87-120.

Downloads

Published

2020-05-05

Issue

Section

Research article