Amiryousefi A., Hyvönen J., Poczai P., 2018. IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34:3030-3031. DOI: 10.1093/bioinformatics/bty220
Beier S., Thiel T., Münch T., Scholz U., Mascher M., 2017. MISA-web: a web server for SSR prediction. Bioinformatics 33:2583-2585. DOI: 10.1093/bioinformatics/btx198
Bock R., 2017. Witnessing genome evolution: experimental reconstruction of endosymbiotic and horizontal gene transfer. Annu Rev Genet. 51:1-22. DOI: 10.1146/annurev-genet-120215-035329
Chan P.P., Lowe T.M., 2019. tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. Methods Mol Biol. 1962:1-14. DOI: 10.1007/978-1-4939-9173-0_1
Curtu A.L., Gailing O., Finkeldey R., 2007.Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evolutionary Biology 7:218. DOI: 10.1186/1471-2148-7-218
Darling, A.C.E., 2004. Mauve: Multiple Alignment of Conserved Genomic Sequence with Rearrangements. Genome Res 14:1394-1403. DOI: 10.1101/gr.2289704
Dong W., Xu C., Li W., Xie X., Lu Y., Liu Y., Jin X., Suo Z., 2017. Phylogenetic Resolution in Juglans Based on Complete Chloroplast Genomes and Nuclear DNA Sequences. Front. Plant Sci. 8:1148. DOI: 10.3389/fpls.2017.01148
Doyle J.J., Doyle J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull Bot Soc Am. 19:11-15.
Dugas D.V., Hernandez D., Koenen, et al., 2015.Mimosoid legume plastid genome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP. Sci. Rep. 5:1-13. DOI: 10.1038/srep16958
Edgar R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792-1797. DOI: 10.1093/nar/gkh340
Hu Y., Chen X., Feng X., Woeste K.E., Zhao P., 2016. Characterization of the complete chloroplast genome of the endangered species Carya sinensis (Juglandaceae). Conservation Genet Resour 8:467-470. DOI: 10.1007/s12686-016-0601-4
Hu Y., Woeste K.E., Zhao P., 2017.Completion of the Chloroplast Genomes of Five Chinese Juglans and Their Contribution to Chloroplast Phylogeny. Front. Plant Sci. 7:1955. DOI: 10.3389/fpls.2016.01955
Huang Y., Xiao L., Zhang Z. et al., 2019. The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition. GigaScience, 8: 1-17. DOI: 10.1093/gigascience/giz036
Katoh K., Rozewicki J., Yamada K.D., 2017. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics bbx108. DOI: 10.1093/bib/bbx108
Laslett D., Canback B., 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11-16. DOI: 10.1093/nar/gkh152
Lemos R.P.M., Matielo C.B.D'O., Beise D.C., Rosa V.G., Sarzi D.S., Roesch L.F.W., Stefenon V.M., 2018. Characterization of Plastidial and Nuclear SSR Markers for Understanding Invasion Histories and Genetic Diversity of Schinus molle L. Biology 7:43. DOI: 10.3390/biology7030043
Librado P., Rozas J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452. DOI: 10.1093/bioinformatics/btp187
Liu C., Shi L., Zhu Y., Chen H., Zhang J., Lin X., Guan X., 2012. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics 13:715. DOI: 10.1186/1471-2164-13-715
Lohse M., Drechsel O., Kahlau S., Bock R., 2013. Organellar Genome - DRAW - a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:W575-W58. DOI: 10.1093/nar/gkt289
Lopes A.S., Pacheco T.G., Santos K.G., Vieira L.N., Guerra M.P., Nodari R.O., Souza E.M., Pedrosa F.O., Rogalski M., 2017. The Linum usitatissimum L. plastome reveals atypical structural evolution, new editing sites, and the phylogenetic position of Linaceae within Malpighiales. Plant Cell Rep. 37:307-328. DOI: 10.1007/s00299-017-2231-z
Lopes A.S., Pacheco T.G., Nimz T., Vieira L.N., Guerra M.P., Nodari R.O., Souza E.M., Pedrosa F.O., Rogalski M., 2018.The complete plastome of macaw palm [Acrocomia aculeata (Jacq.) Lodd. ex Mart.] and extensive molecular analyses of the evolution of plastid genes in Arecaceae. Planta 247:1011-1030. DOI: 10.1007/s00425-018-2841-x
Manos P.S., Soltis P.S., Soltis D.E., et al., 2007.Phylogeny of Extant and Fossil Juglandaceae Inferred from the Integration of Molecular and Morphological Data Sets. Syst. Biol. 56:412-430. DOI: 10.1080/10635150701408523
Matielo C.B.D'O., Lemos R.P.M., Sarzi D.S., Machado L.O., Beise D.C., Dobbler P.C.T., Castro R.M., Fett M.S., Roesch L.F.W., Camargo F.O., Stefenon V.M., 2019. Whole plastid genome sequences of two drug-type Cannabis: insights into the use of plastid in forensic analyses. Journal of Forensic Sciences DOI: 10.1111/1556-4029.14155
Park I., Yang S., Kim W.J., et al., 2019. Sequencing and Comparative Analysis of the Chloroplast Genome of Angelica polymorpha and the Development of a Novel Indel Marker for Species Identification. Molecules 24:138. DOI: 10.3390/molecules24061038
Perdereau P.C., Kelleher C.T., DouglasG.C., Hodkinson T.R., 2014. High levels of gene flow and genetic diversity in Irish populations of Salix caprea L. inferred from chloroplast and nuclear SSR markers. BMC Plant Biology 14:202. DOI: 10.1186/s12870-014-0202-x
Poletto I., Muniz M.F.B., Poletto T., Stefenon V.M., Baggiotto C., Ceconi D.E., 2015. Germination and development of pecan cultivar seedlings by seed stratification. Pesq. Agropec. Bras. 50:1232-1235.
DOI: 10.1590/S0100-204X2015001200014
Poletto T., Stefenon V.M., Poletto I., Muniz M.F.B., 2018. Pecan Propagation: Seed Mass as a Reliable Tool for Seed Selection. Horticulturae 4:26. DOI: 10.3390/horticulturae4030026
Poletto T., Poletto I., Silva L.M.M., Muniz M.F.B., Reiniger L.R.S., Richards N., Stefenon V.M., 2019.Morphological, chemical and genetic analysis of southern Brazilian pecan(Carya illinoinensis) accessions. Scientia Horticulturae DOI: 10.1016/j.scienta.2019.108863
Rogalski M., Vieira L.N., Fraga H.P., Guerra M.P., 2015.Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology. Front Plant Sci 6:586. DOI: 10.3389/fpls.2015.00586
Stanford A.M., Harden R., Parks C.R., 2000. Phylogeny and biogeography of Juglans (Juglandaceae) based on matK and its sequence data. Am. J. Bot. 87:872-882. DOI: 10.2307/2656895
Stefenon V.M., Kablunde G., Lemos R.P.M.,Rogalski M., Nodari R.O., 2019a. Phylogeography of plastid DNA sequences suggests post-glacial southward demographic expansion and the existence of several glacial refugia for Araucaria angustifolia. Scientific Reports 9:2752. DOI: 10.1038/s41598-019-39308-w
Stefenon V.M., Sarzi D.S., Roesch L.F.W., 2019b. High throughput sequencing analysis of Eugenia uniflora: insights into repetitive DNA, gene content and potential biotechnological applications. 3 Biotech 9:200. DOI: 10.1007/s13205-019-1729-1
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S., 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. DOI: 10.1093/molbev/mst197
Tillich M., Lehwark P., Pellizzer T., 2017. GeSeq - versatile and accurate annotation of organelle genomes. Nucleic Acids Research 45:W6-W11. DOI: 10.1093/nar/gkx391
Vieira L.N., Rogalski M., Faoro H., Fraga H.P., Anjos K.G., Picchi G.F.A., Nodari R.O., Pedrosa F.O., Souza E.M., Guerra M.P., 2016. The plastome sequence of the endemic Amazonian conifer, Retro- phyllum piresii (Silba) C.N.Page, reveals different recombination events and plastome isoforms. Tree Genet Genomes 12:10. DOI: 10.1007/s11295-016-0968-0
Wheeler G.L., Dorman H.E., Buchanan A., Challagundla L., Wallace L.E., 2014. A review of the prevalence, utility, and caveats of using chloroplast simple sequence repeats for studies of plant biology. Appl Plant Sci. DOI: 10.3732/apps.1400059
Wicke S., Schneeweiss G.M., dePamphilis C.W., Müller K.F., Quandt D., 2011.The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273-297
DOI: 10.1007/s11103-011-9762-4
Wolfe K.H., Li W.H., Sharp P.M., 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 84:9054-9058. DOI: 10.1073/pnas.84.24.9054
Ye L., Fu C., Wang Y., Liu J., Gao L., 2018. Characterization of the complete plastid genome of a Chinese endemic species Carya kweichowensis. Mitochondrial DNA Part B: Resources 3:492-493. DOI: 10.1080/23802359.2018.1464414
Zhai D-C., Yao Q., Cao X-F., Hao Q-Q., Ma M-T., Pan J., Bai X-H., 2019.Complete chloroplast genome of the wild-type Hickory Carya cathayensis. Mitochondrial DNA Part B: Resources 4:1457-1458. DOI: 10.1080/23802359.2019.1598815
Zhu A., Guo W., Gupta S., Fan W., Mower J.P., 2016. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol 209:1747-1756.
DOI: 10.1111/nph.13743