Soil organic carbon storage varies with stand ages and soil depths following afforestation


  • Guolong Hou Hong Kong Baptist University
  • Claudio O. Delang Hong Kong Baptist University
  • Xixi Lu National University of Singapore
  • Lei Gao Inner Mongolia University



carbon sequestration, afforestation, stand age, soil depth


Soil organic carbon (SOC) is the largest component of the terrestrial biosphere carbon pool. Afforestation is an effective solution to mitigate Carbon (C) emission and sequester C into soils. However, how and to which extent afforestation influences SOC stock changes are not well understood. This study conducts a quantitative review that synthesizes 544 data points from 261 sites from 90 papers, to examine the impact of afforestation on SOC changes in three soil layers (0-20 cm, 20-40 cm and 40-60 cm). 212 data points are obtained by standardization and/or extrapolationwith high reliability. The results indicate that stand age has significant effects on the SOC stock dynamics under different conditions of previous land use types, plant functional types, temperature or precipitation. The effect is greatest at the topsoil layer of 0-20 cm. Previous land use types significantly influence SOC accumulations, but these effects are not significant in the first 10 years or after 30 years of afforestation. Besides, afforestation on grassland seems to sequester more SOC than that of cropland in the long term. Plant functional types also significantly affect SOC dynamics, with deciduous hardwood reporting a continuous increase of SOC contents at soil depth of 0-60 cm during the whole afforestation period. On the other hand, the accumulation of SOC in evergreen hardwood and evergreen softwood start from the third decades. Higher SOC accumulation rates are observed under evergreen hardwood but no significant differences were found between deciduous hardwood and evergreen softwood for the longer period after afforestation (>20 years). Mean annual temperature and precipitation negatively affect SOC accumulation in the first two decades of afforestation, however, the effects become positive in the later years.We also found that initial SOC stocks did not play a major role in SOC sequestration. In other words, lower SOC soils could also sequestrate a significant amount of SOC after reforestation.

Author Biographies

Guolong Hou, Hong Kong Baptist University

ProfessorDepartment of Geography

Claudio O. Delang, Hong Kong Baptist University

Department of GeographyProfessor 

Xixi Lu, National University of Singapore

ProfessorDepartment of Geography

Lei Gao, Inner Mongolia University



Bárcena T. G., Kiær L. P., Vesterdal L., Stefánsdóttir H. M., Gundersen P., Sigurdsson B. D., 2014. Soil carbon stock change following afforestation in Northern Europe: a meta-analysis. Global Change Biology 20(8): 2393-2405. DOI: 10.1111/gcb.12576 Berthrong S. T., Jobbagy E. G., Jackson R. B., 2009. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological Applications 19(8): 2228-2241. DOI: 10.1890/08-1730.1 Bonan G. B., 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882): 1444-1449. DOI: 10.1126/science.1155121 Callesen I., Liski J., Raulund-Rasmussen K., Olsson M. T., Tau-Strand L., Vesterdal L., Westman C. J., 2003. Soil carbon stores in Nordic well-drained forest soils-relationships with climate and texture class. Global Change Biology 9(3): 358-370. DOI: 10.1046/j.1365-2486.2003.00587.x De Deyn G. B., Cornelissen J. H., Bardgett R. D., 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters 11(5): 516-531. DOI: 10.1111/j.1461-0248.2008.01164.x Deng L., Liu G. B., Shangguan Z. P., 2014a Land use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: a synthesis. Global Change Biology 20: 3544-3556. DOI: 10.1111/gcb.12508 Deng L., Shangguan Z. P., Sweeney S., 2014b. “Grain for Green” driven land use change and carbon sequestration on the Loess Plateau, China. Scientific Reports 4. DOI: 10.1038/srep07039 de Vries W., Reinds G. J., Posch M., Sanz M. J., Krause G. H. M., Calatayud V., Renaud J. P., Dupouey J. L., Sterba H., Vel E. M., Dobbertin M., Gundersen P., Voogd J. C. H., 2003. Intensive monitoring of forest ecosystems in Europe; technical report 2003. FIMCI. Deng L., Shangguan Z. P., 2017. Afforestation drives soil carbon and nitrogen changes in China. Land Degradation & Development 28(1): 151-165. DOI: 10.1002/ldr.2537 Don A., Schumacher J., Freibauer A., 2011. Impact of tropical land-use change on soil organic carbon stocks-a meta-analysis. Global Change Biology 17(4): 1658-1670. DOI: 10.1111/j.1365-2486.2010.02336.x Eclesia R. P., Jobbagy E. G., Jackson R. B., Biganzoli F., Piñeiro G., 2012. Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America. Global Change Biology 18(10): 3237-3251. DOI: 10.1111/j.1365-2486.2012.02761.x FAO 2010. Global Forest Resources Assessment 2010. Main report. Fu B. J., Wang Y. F., Lu Y. H., He C. S., Chen L. D., Song C. J., 2009. The effects of land-use combinations on soil erosion: a case study in the Loess Plateau of China. Progress in Physical Geography 33(6): 793-804. DOI: 10.1177/0309133309350264 Gao Y., Zhou X., Wang Q., Wang C., Zhan Z., Chen L., Yan J., Qu R., 2013. Vegetation net primary productivity and its response to climate change during 2001-2008 in the Tibetan Plateau. Science of the Total Environment 444: 356-362. DOI: 10.1016/j.scitotenv.2012.12.014 Guo L. B., Gifford R. M.,2002. Soil carbon stocks and land use change: a meta-analysis. Global Change Biology 8(4): 345-360. DOI: 10.1046/j.1354-1013.2002.00486.x IPCC 2005. IPCC special report on carbon dioxide capture and storage. Intergovernmental Panel on Climate Change, Geneva (Switzerland). Working Group III. IPCC 2006. Revised IPCC guidelines for national greenhouse gas inventories. Intergovernmental Panel on Climate Change Publication, Cambridge University Press, Cambridge. IPCC 2007. IPCC Special report on land use, land-use change and forestry. Cambridge University Press, Cambridge. IPCC 2011. IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge. Jobbágy E. G., Jackson R. B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10(2): 423-436. DOI: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 Keenan R. J., Reams G. A., Achard F., de Freitas J. V., Grainger A., Lindquist E., 2015. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management 352: 9-20. DOI: 10.1016/j.foreco.2015.06.014 Kukal S. S., Bawa S. S., 2014. Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded Shiwaliks hills of lower Himalayas. Land Degradation & Development 25(5): 407-416. DOI: 10.1002/ldr.2151 Laganiere J., Angers D. A., Pare D., 2010). Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Global Change Biology 16(1): 439-453. DOI: 10.1111/j.1365-2486.2009.01930.x Lal R., 2005. Forest soils and carbon sequestration. Forest Ecology and Management 220: 242-258. DOI: 10.1016/j.foreco.2005.08.015 Lal R., Kimble J. M., Follett R. F., Stewart B. A., (Eds.). (1997). Soil Processes and the Carbon Cycle (Vol. 11). CRC Press. Li D., Niu S., Luo Y., 2012). Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytologist 195(1): 172-181. DOI: 10.1111/j.1469-8137.2012.04150.x Liu X., Yang T., Wang Q., Huang F., Li L., 2017). Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions: A meta-analysis. Science of the Total Environment. DOI: 10.1016/j.scitotenv.2017.10.009 Mann L. K. 1986. Changes in soil carbon storage after cultivation. Soil Science 142(5), 279-288. DOI: 10.3334/CDIAC/tcm.007 Morris S. J., Bohm S., Haile-Mariam S. H. A. W. E. L., Paul E. A., 2007. Evaluation of carbon accrual in afforested agricultural soils. Global Change Biology 13(6): 1145-1156. DOI: 10.1111/j.1365-2486.2007.01359.x Paul K. I., Polglase P. J., Nyakuengama J. G., Khanna P. K., 2002. Change in soil carbon following afforestation. Forest Ecology and Management 168(1-3): 241-257. DOI: 10.1016/S0378-1127(01)00740-X Pérez-Cruzado C., Mansilla-Salinero P., Rodríguez-Soalleiro R., Merino A., 2012. Influence of tree species on carbon sequestration in afforested pastures in a humid temperate region. Plant and Soil 353(1-2): 333-353. DOI: 10.1007/s11104-011-1035-0 Poeplau C., Don A., Vesterdal L., Leifeld J., Van Wesemael B. A. S., Schumacher J., Gensior, A., 2011. Temporal dynamics of soil organic carbon after land-use change in the temperate zone-carbon response functions as a model approach. Global Change Biology 17(7): 2415-2427. DOI: 10.1111/j.1365-2486.2011.02408.x Post W. M., Emanuel W. R., Zinke P. J., Stangenberger A. G., 1982. Soil carbon pools and world life zones. Nature 298(5870): 156. DOI: 10.1038/298156a0 Post W. M., Kwon K. C., 2000. Soil carbon sequestration and land‐use change: processes and potential. Global Change Biology 6(3): 317-327. DOI: 10.1046/j.1365-2486.2000.00308.x Scharlemann J. P., Tanner E. V., Hiederer R., Kapos V. 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management 5(1): 81-91. DOI: 10.4155/cmt.13.77 Shi S., Zhang W., Zhang P., Yu Y., Ding F., 2013. A synthesis of change in deep soil organic carbon stores with afforestation of agricultural soils. Forest Ecology and Management 296: 53-63. DOI: 10.1016/j.foreco.2013.01.026 Song X., Peng C., Zhou G., Jiang H., Wang W., 2014. Chinese grain for green program led to highly increased soil organic carbon levels: A meta-analysis. Scientific Reports 4: 4460. DOI: 10.1038/srep04460 Stockmann U., Adams M. A., Crawford J. W., Field D. J., Henakaarchchi N., Jenkins M., Wheeler I., 2013. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment 164: 80-99. DOI: 10.1016/j.agee.2012.10.001 Strong W. L., Roi G. L., 1983. Root-system morphology of common boreal forest trees in Alberta, Canada. Canadian Journal of Forest Research 13(6): 1164-1173. DOI: 10.1139/x83-155 Veldkamp E., Becker A., Schwendenmann L., Clark D. A., Schulte-Bisping H., 2003. Substantial labile carbon stocks and microbial activity in deeply weathered soils below a tropical wet forest. Global Change Biology 9(8): 1171-1184. DOI: 10.1046/j.1365-2486.2003.00656.x Vesterdal L., Ritter E., Gundersen P., 2002. Change in soil organic carbon following afforestation of former arable land. Forest Ecology and Management 169(1-2): 137-147. DOI: 10.1016/S0378-1127(02)00304-3 Vesterdal L., Clarke N., Sigurdsson B. D., Gundersen P., 2013. Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management 309: 4-18. DOI: 10.1016/j.foreco.2013.01.017 Wang H. M., Wang W. J., Chen H., Zhang Z., Mao Z., Zu Y. G., 2014. Temporal changes of soil physic‐chemical properties at different soil depths during larch afforestation by multivariate analysis of covariance. Ecology and Evolution 4(7): 1039-1048. DOI: 10.1002/ece3.947 Wu H., Guo Z., Peng C., 2003. Land use induced changes of organic carbon storage in soils of China. Global Change Biology 9(3): 305-315. DOI: 10.1046/j.1365-2486.2003.00590.x Xiong X., Grunwald S., Myers D. B., Ross C. W., Harris W. G., Comerford, N. B., 2014. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration. Science of the Total Environment 493: 974-982. DOI: 10.1016/j.scitotenv.2014.06.088 Zhang K., Dang H., Tan S., Cheng X., Zhang Q., 2010. Change in soil organic carbon following the ‘Grain-for-Green’ program in China. Land Degradation & Development 21(1): 13-23. DOI: 10.1002/ldr.954





Research article