Assessing the forest-wood chain at local level: A Multi-Criteria Decision Analysis (MCDA) based on the circular bioeconomy principles


  • Elisa Pieratti Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)
  • Alessandro Paletto Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)
  • Isabella De Meo Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)
  • Claudio Fagarazzi University of Florence
  • Matteo Giovanni Rillo Migliorini University of Florence



forest indicators, forest management strategies, cascading approach, bioenergy, renewable energy policy.


In the last years, the circular bioeconomy has been recognized as key approach to increase the competitiveness of enterprises and economic growth in the European Union (EU) member countries. In the circular bioeconomy context, forest-based sector can play a key role. The aim of the present study is to analyze the forest-wood chain at local level following the circular bioeconomy approach. In this study, a set of indicators to quantify the 4R ("Reduce", "Reuse", "Recycle", "Recover") of circular economy has been defined and tested in a study area in Italy (Monte Morello forest, Tuscany region). The indicators that have been identified are: improving production process efficiency; reuse and life-span of wood products; optimization of potential wood assortments and energy recover from the wood products. By means of the indicators and a Multi-Criteria Decision Analysis (MCDA), the current forest management strategy applied in the study area has been compared with other possible forest management scenarios, to evaluate the optimum solution. The results showed that, up to now, current forest management strategy did not optimize the commercial wood assortments because the timber harvested is wholly allocated for bioenergy production. The economic side can be improved, and the life-span of wood products increased by means of the valorization of the timber collected. Anyway, the results showed a favorable balance with regard to the carbon dioxide (CO2) emission – considering the fossil fuel substitution effect – and for the energy enhancement of deadwood stock of the study area.


Acosta M., Corral S., 2017. Multicriteria decision analysis and participatory decision support systems in forest management. Forests 8(4): 116. DOI: 10.3390/f8040116 Anderle A., Ciccarese L., Dal Bon D., Pettenella D., Zanolini E., 2002. Carbon stocking and sequestration in forests and wood products in Italy. Agenzia per la Protezione dell’Ambiente e per i Servizi Tecnici (APAT), Roma, p. 58. ISBN 88-448-0077-2 Berndes G., Abt B., Asikainen A., Cowie A., Dale V., Egnell G., Lindner M., Marelli L., Paré D., Pingoud K., Yeh S., 2016.Forest biomass, carbon neutrality and climate change mitigation. From science to Policy 3, European Forest Institute (EFI), Joensuu, p. 27. Brescancin F., Dobšinská Z., De Meo I., Šálka J., Paletto A., 2018. Analysis of stakeholders’ involvement in the implementation of the Natura 2000 network in Slovakia. Forest Policy and Economics 89: 22-30. DOI: 10.1016/j.forpol.2017.03.013 Bruhn T., Namis H., Olfe-Kräutlein B., 2016. Separating the debate on CO2 utilisation from carbon capture and storage. Environmental Science & Policy 60: 38-43. DOI: 10.1016/j.envsci.2016.03.001 Cameron A.D., 2002. Importance of early selective thinning in the development of long-term stand stability and improved log quality: A review. Forestry 75: 25-35. DOI: 10.1093/forestry/75.1.25 Cantiani P., Marchi M., Plutino M., 2017. SelPiBio life for the balck pine stand. A selvicultural strategy for artificial black pine forest stand with different functions and destinations). Sherwood 225: 21-24. DOI: 10.3832/ifor1300-007 Ciccarese L., Pellegrino P., Pettenella D., 2014. A new principle of the European Union forest policy: the cascading use of wood products. Italian Journal of Forest and Mountain Environments 5(69): 285-290. DOI: 10.4129/ifm.2014.5.01 D’Amato D., Droste N., Allen B., Kettunen M., Lähtinen K., Korhonen J., Leskinen P., Matthies B.D., Toppinen A., 2017. Green, circular, bio economy: A comparative analysis of sustainability avenues. Journal of Cleaner Production 168: 716-734. DOI: 10.1016/j.jclepro.2017.09.053 De Meo I., Agnelli E.A., Graziani A., Kitikidou K., Lagomarsino A., Milios E., Radoglou K., Paletto A., 2017. Deadwood volume assessment in Calabrian pine (Pinus brutia Ten.) peri-urban forests: Comparison between two sampling methods. Journal of Sustainable Forestry 36(7): 1-21. DOI: 10.1080/10549811.2017.1345685 Ellen MacArthur Foundation, 2014. Towards the circular economy: Accelerating the scale-up across global supply chains. Web: Accessed: 31.08.2018 EPA, 2005. Average carbon dioxide emissions resulting from gasoline and diesel fuel. Office of Transportation and Air Quality, United States Environmental Protection Agency (EPA), Washington DC. European Commission, 2008. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. European Commission, Bruxelles. European Commission, 2012. Innovating for sustainable growth: a bioeconomy for Europe. Communication from the Commission to the European Parliament, the Council, the European economic and Social Committee and the Committee of the regions, Luxembourg COM (2012) 60. Geng A., Yang H., Chen J., Hong Y., 2017. Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation. Forest Policy and Economics 85: 192-200. DOI: 10.1016/j.forpol.2017.08.007 Greenstein G., 2017. Paradox of multi criteria decision making processes. Universal Journal of Management 5(8): 395-403. DOI: 10.13189/ujm.2017.050804 Grilli G., Ciolli M., Garegnani G., Geri F., Sacchelli S., Poljanec A., Vettorato D., Paletto A., 2017a. A method to assess the economic impacts of forest biomass use on ecosystem services in a National Park. Biomass & Bioenergy 98: 252-263. DOI: 10.1016/j.biombioe.2017.01.033 Grilli G., De Meo I., Garegnani G., Paletto A., 2017b. A multi-criteria framework to assess the sustainability of renewable energy development in the Alps. Journal of Environmental Planning and Management 7(60): 1276-1295. DOI: 10.1080/09640568.2016.1216398 Hetemäki L. (ed.), 2104. Future of the European Forest-Based Sector: Structural changes towards bioeconomy, What science can tell us 6. European Forest Institute, Joensuu, 2014, p. 108. Hetemäki L., Hanewinkel M., Muys B., Ollikainen M., Palahi M., Trasobares A., 2017. Leading the way to a European circular bioeconomy strategy, From Science to Policy 5, European Forest Institute (EFI), Joensuu, p. 52. Ishizaka A., Nemery P., 2013. Multi-criteria decision analysis, methods and software. Wiley and Sons, Chichester, p. 685. DOI: 10.1002/9781118644898 Kangas A., Kurttila M., Hujala T., Eyvindson K., Kangas J., 2008. Decision support for forest anagement. Springer Nature, Switzerland AG. Klein D., Wolf C., Schulz C., Weber-Blaschke G., 2015. 20 years of life cycle assessment (LCA) in the forestry sector: state of the art and a methodical proposal for the LCA of forest production. The International Journal of Life Cycle Assessment 20(4): 556-575. DOI: 10.1007/s11367-015-0847-1 Laganière J., Paré D., Thiffault E., Bernier P.Y., 2017. Range and uncertainties in estimating delays in greenhouse gases mitigation potential of forest bioenergy sourced from Canadian forests. GCB Bioenergy 9(2): 358-369. DOI: 10.1111/gcbb.12327 Liu G., Han S., 2009. Long-term forest management and timely transfer of carbon into wood products help reduce atmospheric carbon. Ecological Modelling 13-14(220): 1719-1723. DOI: 10.1016/j.ecolmodel.2009.04.005 Marchi M., Paletto A., Cantiani P., Bianchetto E., De Meo I., 2018. Comparing thinning system effects on ecosystem services provision in artificial black pine (Pinus nigra J. F. Arnold) Forests. Forests 9: 188. DOI: 10.3390/f9040188 Mathieu F., François N., Nicolas R., Frédéric M., 2012. Quantifying the impact of forest management on the carbon balance of the forest-wood product chain: A case study applied to even-aged oak stands in France. Forest Ecology and Management 279: 176-188. DOI: 10.1016/j.foreco.2012.05.031 Mazza G., Agnelli A. E., Cantiani P., Chiavetta U., Doukalianou F., Kitikidou K., Milios E., Oefanoudakis M., Radoglou K., Lagomarsino A. (2019). Short-term effects of thinning on soil CO2, N2O and CH4 fluxes in Mediterranean forest ecosystems. Science of The Total Environment: 651, 713-724. DOI: 10.1016/j.scitotenv.2018.09.241 Mendoza G.A., Dalton W.J., 2005. Multi-stakeholder assessment of forest sustainability: multi-criteria analysis and the case of the Ontario forest assessment system. The Forestry Chronicle 81: 222-228. DOI: 10.5558/tfc81222-2 Mohan S.V., Modestra J.A., Amulya K., Butti S.K., Velvizhi G., 2016. A Circular Bioeconomy with Biobased Products from CO2 Sequestration. Trends in Biotechnology 34(6): 506-519. DOI: 10.1016/j.tibtech.2016.02.012 Munda G., 2016. Multiple criteria decision analysis and sustainable development. In: Figueira J., Greco S., Ehrogott M. (eds), Multiple criteria decision analysis: state of the art surveys, Springer Nature, pp. 953-986. DOI: 10.1007/0-387-23081-5_23 Murray A., Skene K., Haynes K., 2015. The circular economy: an interdisciplinary exploration of the concept and application in a global context. Journal of Business Ethics 3(140): 369-380. DOI: 10.1007/s10551-015-2693-2 Nilsson H., Nordström E.M., Öhman K., 2016. Decision support for participatory forest planning using AHP and TOPSIS. Forests 7(5): 100. DOI: 10.3390/f7050100 Nordén B., Ryberg M., Götmark F., Olausson B., 2004. Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests. Biological Conservation 117: 1-10. DOI: 10.1016/S0006-3207(03)00235-0 Pastorelli R., Agnelli A.E., De Meo I., Graziani A., Paletto A., Lagomarsino A., 2017. Analysis of microbial diversity and greenhouse gas production of decaying pine logs. Forests 8: 224. DOI: 10.3390/f8070224 Pehnt M., 2006. Dynamic life cycle assessment (LCA) of renewable energy technologies. Renewable Energy 31: 55-71. DOI: 10.1016/j.renene.2005.03.002 Pra A., Pettenella D., 2016. Consumption of wood biomass for energy in Italy: a strategic role based on weak knowledge. Italian Journal Forestry and Mountain Environment 71(1): 49-62. DOI: 10.4129/ifm.2016.1.03 Proskurina S., Sikkema R., Heinimö J., Vakkilainen E., 2016. Five years left e How are the EU member states contributing to the 20% target for EU’s renewable energy consumption; the role of woody biomass. Biomass & Bioenergy 95: 64-77. DOI: 10.1016/j.biombioe.2016.09.016 Sathre R., Gonzalez-Garcia S., 2014. Life cycle assessment (LCA) of wood-based building, materials, Woodhead Publishing Limited, pp. 311-337. DOI: 10.1533/9780857097729.2.311 Scheepens A.E., Vogtländer J.G., Brezet J.C., 2016. Two life cycle assessment (LCA) based methods to analyse and design complex (regional) circular economy systems. Case: making water tourism more sustainable. Journal of Cleaner Production 114: 257-268. DOI: 10.1016/j.jclepro.2015.05.075 Uhde B., Hahn W.A., Griess V.C., Knoke T., 2015. Hybrid MCDA methods to integrate multiple ecosystem services in forest management planning: a critical review. Environmental Management 56(2): 373-388. DOI: 10.1007/s00267-015-0503-3 Van Buren N., Demmers M., van der Heijden R., Witlox F., 2016. Towards a circular economy: the role of dutch logistics industries and government. Sustainability 8: 647. DOI: 10.3390/su8070647 Wolfslehner B., Vacik H., Lexer M.J., 2005. Application of the analytic network process in multi-criteria analysis of sustainable forest management. Forest Ecology and Management 207: 157-170. DOI: 10.1016/j.foreco.2004.10.025 Wolfslehner B., Seidl R., 2010. Harnessing ecosystem models and multi-criteria decision analysis for the support of forest management. Environmental Management 46(6): 850-861. DOI: 10.1007/s00267-009-9414-5






Research article