Monitoring of soil moisture in Long-Term Ecological Research (LTER) sites of Romanian Carpathians
DOI:
https://doi.org/10.15287/afr.2018.1188Keywords:
soil moisture, sensor, forest, precipitation, temperatureAbstract
Understanding soil moisture and its relationship with different climatic and soil characteristics is essential for better analysing the interactions between forest and soil water dynamics, allowing us to more precisely predict climatic changes. The present paper investigates the temporal variability of soil moisture in three different forest ecosystems (LTER – long term ecological research site) with the same soil type (Eutric Cambisol). Soil moisture was measured daily from 2011 to 2016 by using three sensors at three different depths (20, 40, 70 cm). We identified the interactions between soil properties, vegetation type, local climatic conditions and soil moisture. In order to establish the temporal variability of the soil moisture content, we have applied two procedures, namely the Fourier series and the neural network fitting. A high variability in time and depth for soil volumetric water content was identified. The highest soil moisture levels were recorded at higher depths (70 cm) for almost all surfaces, with the exception of the Fundata surface because of the occurrence of limestone. In the mountainous areas, with higher precipitation (Fundata and Predeal sites), volumetric soil water content was mainly influenced by soil physical characteristics. Soil moisture levels below the drought level were only recorded for the Stalpeni site from September to October 2012. There was a delay between the precipitation event and soil humidification of 0.4-0.8 time units (days). We also found a significant correlation between soil moisture and soil texture and a weak correlation with vegetation type. Temperature influenced soil moisture levels at almost all depths, while precipitation only had an impact when there was a delay of 1 or 2 days. Our results can serve as a scientific base in the monitoring and analysing of soil moisture against the background of a changing climate.References
Badea O., Bytnerowicz A., Silaghi D., Neagu S., Barbu I., Iacoban C., Iacob C., Guiman G., Preda E., Seceleanu I., Oneata M., Dumitru I., Huber V., Iuncu H., Dinca L., Leca S., Taut I. 2012. Status of the Southern Carpathian forests in the long-term ecological research network. Environmental monitoring and assessment 184(12): 7491-7515. DOI: 10.1007/s10661-011-2515-7
Baroni G., Ortuani B., Facchi A., Gandolfi C. 2013. The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field. Journal of Hydrology 489: 148-159. DOI: 10.1016/j.jhydrol.2013.03.007
Bréda N., Granier A., Barataud F., Moyne C., 1995. Soil water dynamics in an oak stand. Plant and Soil 172(1): 17-27. DOI: 10.1007/BF00020856
Brocca L., Melone F., Moramarco T., Morbidelli R. 2010. Spatial‐temporal variability of soil moisture and its estimation across scales. Water Resources Research 46(2). DOI: 10.1029/2009WR008016
Burada A., Teodorof L., Despina C., Seceleanu-Odor D., Tudor M., Ibram O., Tudor M. 2017. Trace elements in fish tissue with commercial value of the Danube Delta Biosphere Reserve. Environmental Engineering & Management Journal (EEMJ) 16(3). DOI: 10.30638/eemj.2017.075
Cools N., De Vos B. 2010. 1st FSCC soil physical ringtest 2009. Brusel, Instituut voor Natuur-en Bosonderzoek (INBO).
Daly E., Porporato A. 2005. A review of soil moisture dynamics: from rainfall infiltration to ecosystem response. Environmental engineering science 22(1): 9-24. DOI: 10.1089/ees.2005.22.9
Dincă L., Lucaci D., Iacoban C., Ionescu M., 2012. Metode de analiză a proprietăţilor şi soluţiei solurilor. Editura Tehnică Silvică, 173 p.
Dincă L., Sparchez G., Dincă M. 2014. Romanian's forest soils gis map and database and their ecological implications. Carpathian Journal of Earth and Environmental Sciences 9(2): 133-142.
Dincă L.C., Dincă M., Vasile D., Sparchez G., Holonec L., 2015. Calculating organic carbon stock from forest soils. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 43(2): 568-575. DOI: 10.15835/nbha.43.2.10141
Dirmeyer P. A., Wu J., Norton H. E., Dorigo W. A., Quiring S. M., Ford T. W., Balsamo G. 2016. Confronting weather and climate models with observational data from soil moisture networks over the United States. Journal of hydrometeorology 17(4): 1049-1067. DOI: 10.1175/JHM-D-15-0196.1
Garcia-Estringana P., Latron J., Molina A. J., Llorens P. 2013. Seasonal and spatial variability of rainfall redistribution under Scots pine and Downy oak forests in Mediterranean conditions. In EGU General Assembly Conference Abstracts (Vol. 15).
Haidu I., 1997. Time series analysis. Applications in Hydrology, HGA Press, Bucharest, Romania, 158 pag.
ISO 11274:1998 (E). Soil Quality – Determination of the water-retention characteristic – Laboratory methods. International Organization for Standardization. Geneva, Switzerland. 20 p.
Iticescu C., Georgescu L. P., Topa C., Murariu G. 2014. Monitoring the Danube Water Quality near the Galati City. Journal of Environmental Protection and Ecology 15(1): 30-38.
James S. E., Pärtel M., Wilson S. D., Peltzer D. A. 2003. Temporal heterogeneity of soil moisture in grassland and forest. Journal of Ecology 91(2): 234-239. DOI: 10.1046/j.1365-2745.2003.00758.x
Legates D. R., Mahmood R., Levia D. F., DeLiberty T. L., Quiring S. M., Houser C., Nelson F.E. 2011. Soil moisture: A central and unifying theme in physical geography. Progress in Physical Geography 35(1): 65-86. DOI: 10.1177/0309133310386514
Liancourt P., Sharkhuu A., Ariuntsetseg L., Boldgiv B., Helliker B.R., Plante A.F., Casper B.B. 2012. Temporal and spatial variation in how vegetation alters the soil moisture response to climate manipulation. Plant and Soil 351(1-2): 249-261. DOI: 10.1007/s11104-011-0956-y
Liu H., Zhao W. Z., He Z. B., Zhang L. J. 2008. Temporal heterogeneity of soil moisture under different vegetation types in Qilian Mountain. China. stxben 28(5): 2389-2394.
Lull H. W., Reinhart K. G. 1955. Soil-moisture measurement. Southern Forest Experiment Station, Forest Service, US Forest Service.
Manrique-Alba À., Ruiz-Yanetti S., Moutahir H., Novak K., De Luis M., Bellot J. 2017. Soil moisture and its role in growth-climate relationships across an aridity gradient in semiarid Pinus halepensis forests. Science of the Total Environment 574: 982-990. DOI: 10.1016/j.scitotenv.2016.09.123
May W., Meier A., Rummukainen M., Berg A., Chéruy F., Hagemann S. 2015. Contributions of soil moisture interactions to climate change in the tropics in the GLACE–CMIP5 experiment. Climate dynamics 45(11-12): 3275-3297. DOI: 10.1007/s00382-015-2538-9
Murariu G., Iticescu C., Georgescu L., Mocanu I., Topa C., Dobre M., 2015. Optimization of urban selective waste collection activity: Galati city case study. Environmental Engineering & Management Journal (EEMJ) 14(10). DOI: 10.30638/eemj.2015.264
Murariu G., Puscasu G., Gogoncea V. 2010. Non—Linear Flood Assessment with Neural Network. In: AIP Conference Proceedings (1203/1:. 812-819). AIP.
Puscasu G., Codres B., Stancu A., Murariu G. 2009. Nonlinear system identification based on internal recurrent neural networks. International Journal of Neural Systems 19(02): 115-125. DOI: 10.1142/S0129065709001884
Reichle R. H., Walker J. P., Randal D. K., 2002. Extended versus ensemble Kalman filtering for land data assimilation, Journal of Hydrometeorology 3: 728–740. DOI: 10.1175/1525-7541(2002)003<0728:EVEKFF>2.0.CO;2
Schwinning S., Davis K., Richardson L. Ehleringer J. 2002. Deuterium enriched irrigation indicates different forms of rain use in shrub/grass species of the Colorado Plateau. Oecologia 130: 345–355. DOI: 10.1007/s00442-001-0817-0
Seneviratne S.I., Corti T., Davin E.L., Hirschi M., Jaeger E.B., Lehner I., Orlowsky B., Teuling A.J. 2010. Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci Rev 99:125–161. DOI: 10.1016/j.earscirev.2010.02.004
Shang K.Z., Wang S.G., Ma Y.X., Zhou Z.J., Wang J.Y., Liu H.L., Wang Y.Q., 2007. A scheme for calculating soil moisture content by using routine weather data. Atmospheric Chemistry and Physics 7: 5197–5206. DOI: 10.5194/acp-7-5197-2007
Shapiro S. S.; Wilk M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika 52 (3–4): 591–611. DOI: 10.1093/biomet/52.3-4.591
Shuwen Z., Haorui L., Weidong Z., Chongjian Q., Xin L.I. 2005. Estimating the soil moisture profile by assimilating near-surface observations with the ensemble Kaiman filter (EnKF). Advances in Atmospheric Sciences 22(6): 936-945. DOI: 10.1007/BF02918692
Spârchez G., Dincă L., Marin G., Dincă M., Enescu R.E., 2017. Variation of eutric cambisols' chemical properties based on altitudinal and geomorphologic zoning. Environmental Engineering & Management Journal 16(12): 2911-2918. DOI: 10.30638/eemj.2017.300
Sun F., Lü Y., Wang J., Hu J., Fu B. 2015. Soil moisture dynamics of typical ecosystems in response to precipitation: A monitoring-based analysis of hydrological service in the Qilian Mountains. Catena 129: 63-75. DOI: 10.1016/j.catena.2015.03.001
Timofti M., Popa P., Murariu G., Georgescu L., Iticescu C., Barbu M., 2016. Complementary approach for numerical modelling of physicochemical parameters of the Prut river aquatic system. Journal of Environmental protection and Ecology 17(1): 53-63.
Trime Pico 32/64. Soil Moisture sensors with internal TDR electronics. Technical data. IMFO MicroModultehnika. GMBH
UNEP 2010. Busan Outcome.UNEP/IPBES/3/L.2/Rev.1. www.ipbes.net/meetings/ Documents/ipbes3/K1030396-IPBES-3-L.2Rev1.pdf. Accessed 25.07.2018.
Vaisala Automatic Weather Station AWS310. Technical Data.
Vereecken H., Kamai T., Harter T., Kasteel R., Hopmans J., Vanderborght J. 2007. Explaining soil moisture variability as a function of mean soil moisture: A stochastic unsaturated flow perspective. Geophysical Research Letters 34(22). DOI: 10.1029/2007GL031813
Vivoni E.R., Moreno H. A., Mascaro G., Rodriguez J.C., Watts C.J., Garatuza-Payan J., Scott R.L. 2008. Observed relation between evapotranspiration and soil moisture in the North American monsoon region. Geophysical Research Letters 35(22). DOI: 10.1029/2008GL036001
Wang X.Y., Zhang W.J., Wang Z.Q., Liu X.P., Wang S.F. 2014. Soil moisture status under deep-rooted and shallow-rooted vegetation in the semiarid area of loess plateau in China. Pollution Journal Environmental Studies 23(2): 511-520.
Western A.W., Grayson R.B., Blöschl G., 2002. Scaling of soil moisture: A hydrologic perspective. Annual Review of Earth and Planetary Sciences 30(1): 149-180. DOI: 10.1146/annurev.earth.30.091201.140434
Zhang S.W., Qiu C. J., Xu Q. 2004. Estimating soil water contents from soil temperature measurements by using adaptive Kalman filter. Journal of Applied Meteorology 43: 379–389.
DOI: 10.1175/1520-0450(2004)043<0379:ESWCFS>2.0.CO;2
Zheng H., Gao J., Teng Y., Feng C., Tian M., 2015. Temporal variations in soil moisture for three typical vegetation types in inner mongolia, northern China. PloS one 10(3). DOI: 10.1371/journal.pone.0118964
Downloads
Published
Issue
Section
License
All the papers published in Annals of Forest Research are available under an open access policy (Gratis Gold Open Access Licence), which guaranty the free (of taxes) and unlimited access, for anyone, to entire content of the all published articles. The users are free to “read, copy, distribute, print, search or refers to the full text of these articles”, as long they mention the source.
The other materials (texts, images, graphical elements presented on the Website) are protected by copyright.
The journal exerts a permanent quality check, based on an established protocol for publishing the manuscripts. The potential article to be published are evaluated (peer-review) by members of the Editorial Board or other collaborators with competences on the paper topics. The publishing of manuscript is free of charge, all the costs being supported by Forest Research and Management Institute.
More details about Open Access:
Wikipedia: http://en.wikipedia.org/wiki/Open_access