Mapping forest aboveground biomass with a simulated ICESat-2 vegetation canopy product and Landsat data

Authors

  • Lana Landra Narine Texas A&M University
  • Sorin Popescu Texas A&M University
  • Tan Zhou Texas A&M University
  • Shruthi Srinivasan Texas A&M Forest Service, USA
  • Kaitlin Harbeck NASA, USA

DOI:

https://doi.org/10.15287/afr.2018.1163

Keywords:

Lidar, ICESat-2, AGB mapping, ATL08

Abstract

The assessment of forest aboveground biomass (AGB) can contribute to reducing uncertainties associated with the amount and distribution of terrestrial carbon. The Ice, Cloud and land Elevation Satellite-2 (ICESat-2) was launched on September 15th, 2018 and will provide data which will offer the possibility of assessing AGB and forest carbon at multiple spatial scales. The primary goal of this study was to develop an approach for utilizing data similar to ICESat-2’s land-vegetation along track product (ATL08) to generate wall-to-wall AGB maps. Utilizing simulated daytime and nighttime ICESat-2 data from planned ICESat-2 tracks over vegetation conditions in south-east Texas, we investigated the integration of Landsat data and derived products for AGB model and map production. Linear regression models were first used to relate simulated photon-counting lidar (PCL) metrics for 100 m segments along ICESat-2 tracks to reference airborne lidar-estimated AGB over Sam Houston National Forest (SHNF) in south-east Texas. Random Forest (RF) was then used to create AGB maps from predicted AGB estimates and explanatory data consisting of spectral metrics derived from Landsat TM imagery and land cover and canopy cover data from the National Land Cover Database (NLCD). Using RF, AGB and AGB uncertainty maps produced at 30 m spatial resolution represented three data scenarios; (1) simulated ICESat-2 PCL vegetation product without the impact of noise (no noise scenario), (2) simulated ICESat-2 PCL vegetation product from data with noise levels associated with daytime operation of ICESat-2 (daytime scenario), and (3) simulated ICESat-2 PCL vegetation product from data with noise levels associated with nighttime operation of ICESat-2 (nighttime scenario). The RF models exhibited moderate accuracies (0.42 to 0.51) with RMSE values between 19 Mg/ha to 20 Mg/ha with a separate test set. The adoption of a combinatory approach of simulated ICESat-2 and Landsat data could be implemented at larger spatial scales and in doing so, ancillary data such as climatic and topographic variables may be examined for improving AGB predictions.

References

Avitabile V., Baccini A., Friedl M.A., Schmullius C., 2012. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sensing of Environment 117: 366-380. DOI:10.1016/j.rse.2011.10.012 Baccini A., Friedl M.A., Woodcock C.E., Warbington R., 2004. Forest biomass estimation over regional scales using multisource data. Geophysical Research Letters 31: 1-4. DOI: 10.1029/2004gl019782 Baghdadi N., le Maire G., Fayad I., Bailly J.S., Nouvellon Y., Lemos C.; Hakamada, R., 2014. Estimation of forest height and aboveground biomass from ICESat-2/GLAS data in eucaluptus plantations in Brazil. In 2014 IEEE International Geoscience and Remote Sensing Symposium, 13-18th July 2014, Quebec City, QC, Canada. IEEE, pp. 725-728. DOI: 10.1109/igarss.2014.6946526 Blair J.B., Hofton M.A., 1999. Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data. Geophysical Research Letters 26: 2509-2512. DOI: 10.1029/1999gl010484 Breiman L., 2001. Random forests. Machine Learning 45: 5-32. DOI: 10.1023/a:1010933404324 Brown S., 2002. Measuring carbon in forests: current status and future challenges. Environmental Pollution 116: 363-372. DOI: 10.1016/s0269-7491(01)00212-3 Chi H., Sun G.Q., Huang J.L., Guo Z.F., Ni W.J., Fu A.M., 2015. National forest aboveground biomass mapping from ICESat/GLAS data and MODIS imagery in China. Remote Sensing 7: 5534-5564. DOI: 10.3390/rs70505534 Degnan J.J., 2002. Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements. Journal of Geodynamics 34: 503-549. DOI: 10.1016/S0264-3707(02)00045-5 Deo R.K., Domke G.M., Russell M.B., Woodall C.W., Andersen H.E., 2018. Evaluating the influence of spatial resolution of Landsat predictors on the accuracy of biomass models for large-area estimation across the eastern USA. Environmental Research Letters 13(5): 1-9. DOI: 10.1088/1748-9326/aabcd5 Duncanson L.I., Niemann K.O., Wulder M.A., 2010. Estimating forest canopy height and terrain relief from GLAS waveform metrics. Remote Sensing of Environment 114: 138-154 DOI:10.1016/j.rse.2009.08.018 Freeman E.A., Frescino T.S., Moisen G.G., 2018. ModelMap: an R Package for Model Creation and Map Production. Available online: https://cran.r-project.org/web/packages/ModelMap/vignettes/VModelMap.pdf (accessed: 10.05.18). Freeman E.A., Moisen G.G., Coulston J.W., Wilson B.T., 2016. Random forests and stochastic gradient boosting for predicting tree canopy cover: comparing tuning processes and model performance. Canadian Journal of Forest Research 46: 323-339. DOI: 10.1139/cjfr-2014-0562 Glenn N.F., Neuenschwander A., Vierling L.A., Spaete L., Li A.H., Shinneman D.J., Pilliod D.S., Arkle R.S., McIlroy S.K., 2016. Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass. Remote Sensing of Environment 185: 233-242. DOI: 10.1016/j.rse.2016.02.039 Goetz S., Dubayah R., 2011. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Management 2: 231-244. DOI: 10.4155/cmt.11.18 Gwenzi D., Lefsky, M.A., 2014. Prospects of photon counting lidar for savanna ecosystem structural studies. In ISPRS Technical Commission I Symposium, 17-20th November, Denver, Colorado, USA. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1, pp. 141-147. DOI: 10.5194/isprsarchives-XL-1-141-2014 Gwenzi D., Lefsky M.A., Suchdeo V.P., Harding D.J., 2016. Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data. ISPRS Journal of Photogrammetry and Remote Sensing 118: 68-82. DOI:10.1016/j.isprsjprs.2016.04.009 Harding D.J., Carabajal C.C., 2005. ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophysical Research Letters 32: 1-4. DOI: 10.1029/2005gl023471 Homer C., Dewitz J., Yang L.M., Jin S., Danielson P., Xian G., Coulston J., Herold N., Wickham J., Megown K., 2015. Completion of the 2011 National Land Cover Database for the conterminous United States - Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing 81: 345-354. DOI: 10.14358/pers.81.5.345 Houghton R.A., 2007. Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences 35(1): 313-347. DOI: 10.1146/annurev.earth.35.031306.140057 Houghton R.A., Butman D., Bunn A.G., Krankina O.N., Schlesinger P., Stone T.A., 2007. Mapping Russian forest biomass with data from satellites and forest inventories. Environmental Research Letters 2: 7pp. DOI: 10.1088/1748-9326/2/4/045032 Hu T., Su Y., Xue B., Liu J., Zhao X., Fang J., Guo Q., 2016. Mapping global forest aboveground biomass with spaceborne LiDAR, optical imagery, and forest inventory data. Remote Sensing 8(7): 565. DOI: 10.3390/rs8070565 Hudak A.T., Lefsky M.A., Cohen W.B., Berterretche M., 2002. Integration of lidar and Landsat ETM plus data for estimating and mapping forest canopy height. Remote Sensing of Environment 82: 397-416, DOI: 10.1016/s0034-4257(02)00056-1 Jenkins J.C., Chojnacky D.C., Heath L.S., Birdsey R.A., 2003. National-scale biomass estimators for United States tree species. Forest Science 49: 12-35. Le Toan T., Quegan S., Davidson M.W.J., Balzter H., Paillou P., Papathanassiou K., Plummer S., Rocca F., Saatchi S., Shugart H., Ulander L. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sensing of Environment 115: 2850-2860. DOI: 10.1016/j.rse.2011.03.020 Lefsky M.A., Harding D.J., Keller M., Cohen W.B., Carabajal C.C., Del Bom Espirito-Santo F., Hunter M.O., de Oliveira R., 2005. Estimates of forest canopy height and aboveground biomass using ICESat. Geophysical Research Letters 32: 1-4. DOI: 10.1029/2005gl023971 Lefsky M.A., Keller M., Pang Y., de Camargo P.B., Hunter M.O. 2007. Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms. Journal of Applied Remote Sensing 1: 1-18. DOI: 10.1117/1.2795724 Leigh H.W., Magruder L.A., Carabajal C.C., Saba J.L., McGarry J.F., 2015. Development of onboard digital elevation and relief databases for ICESat-2. IEEE Transactions on Geoscience and Remote Sensing 53(4): 2011-2020. DOI: 10.1109/tgrs.2014.2352277 Liaw A., Wiener M., 2002. Classification and Regression by randomForest. R News 2/3: 18-22. Markus, T., Neumann T., Martino A., Abdalati W., Brunt K., Csatho B., Farrell S., Fricker H., Gardner A., Harding D., Jasinski M., Kwok R., Magruder L., Lubin D., Luthcke S., Morison J., Nelson R., Neuenschwander A., Palm S., Popescu S., Shum C.K., Schutz B.E., Smith B., Yang Y., Zwally J., 2017. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sensing of Environment 190: 260-273. DOI: 10.1016/j.rse.2016.12.029 Marselis S., Armston J., Dubayah R., 2016. Summary of the second GEDI science team meeting. The Earth Observer 28(6): 31-36. Martino A., 2010. ATLAS Performance Spreadsheet. Web: http://icesat.gsfc.nasa.gov/icesat2/data/sigma/sigma_data.php. Accessed: 14.02.17. Montesano P.M., Rosette J., Sun G., North P., Nelson R.F., Dubayah R.O., Ranson K.J., Kharuk V. 2015. The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient. Remote Sensing of Environment 158: 95-109. DOI: 10.1016/j.rse.2014.10.029 MRLC, 2018. Multi-resolution land characteristics consortium (MRLC): national land cover database. Web: http://www.mrlc.gov/ (accessed: 14.02.19). Narine, L.L., Popescu S., Neuenschwander A., Zhou T., Srinivasan S., Harbeck K., 2019. Estimating Aboveground Biomass and Forest Canopy Cover with Simulated ICESat-2 Data. Remote Sensing of Environment 224: 1-11. DOI: 10.1016/j.rse.2019.01.037 National Aeronautics and Space Administration, 2019. GEDI - Global Ecosystem Dynamics Investigation Lidar. Web: http://science.nasa.gov/missions/gedi/ Accessed: 11.10.18. National Aeronautics and Space Administration, 2017. ICESat & ICESat-2. Web: https://science.nasa.gov/ Accessed: 10.05.18. Nelson R., Margolis H., Montesano P., Sun G., Cook B., Corp L., Andersen H.-E., deJong B., Pellat F.P., Fickel T., Kauffman J., Prisley S., 2017. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations. Remote Sensing of Environment 188: 127-140. DOI: 10.1016/j.rse.2016.10.038 Neuenschwander A.L., Magruder L.A., 2016. The potential impact of vertical sampling uncertainty on ICESat-2/ATLAS terrain and canopy height retrievals for multiple ecosystems. Remote Sensing 8(12): 1-16. DOI: 10.3390/rs8121039 Neuenschwander A., Popescu S., Nelson R., Harding D., Pitts K., Pederson D., Sheridan R., 2017. Ice, Cloud, and Land Elevation Satellite (ICESat-2) Algorithm Theoretical Basis Document (ATBD) for Land - Vegetation Along-track products (ATL08), 78 p. Popescu S.C., 2007. Estimating biomass of individual pine trees using airborne lidar. Biomass and Bioenergy 31: 646-655. DOI: 10.1016/j.biombioe.2007.06.022 Popescu S.C., Wynne R.H., 2004. Seeing the trees in the forest: Using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogrammetric Engineering and Remote Sensing 70: 589-604. DOI: 10.14358/PERS.70.5.589 Popescu S.C., Wynne R.H., Nelson R.F., 2003. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Canadian Journal of Remote Sensing 29: 564-577. DOI: 10.5589/m03-027 Popescu S.C., Zhou T., Nelson R., Neuenschwander A., Sheridan R., Narine L., Walsh K.M., 2018. Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data. Remote Sensing of Environment 208: 154-170. DOI:10.1016/j.rse.2018.02.019 Schutz B.E., Zwally H.J., Shuman C.A., Hancock D., DiMarzio J.P., 2005. Overview of the ICESat mission. Geophysical Research Letters 32(4). DOI: 10.1029/2005gl024009 Simard M., Pinto N., Fisher J.B., Baccini A., 2011. Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research-Biogeosciences, 116: 1- 12. DOI: 10.1029/2011JG001708 Texas A&M Forest Service, 2019. East Texas Forestlands, 2012. Web: http://texasforestservice.tamu.edu/fia/publications/ Accessed: 11.10.18. USDA Forest Service, 2018. Sam Houston National Forest. Web: https://www.fs.usda.gov/detail/texas/about-forest/districts/?cid=fswdev3_008443 Accessed: 06.09.18. Zald H.S.J., Wulder M.A., White J.C., Hilker T., Hermosilla T., Hobart G.W., Coops N.C., 2016. Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. Remote Sensing of Environment 176: 188-201. DOI: 10.1016/j.rse.2016.01.015 Zwally H.J., Schutz B., Abdalati W., Abshire J., Bentley C., Brenner A., Bufton J., Dezio J., Hancock D., Harding D., Herring T., Minster B., Quinn K., Palm S., Spinhirne J., Thomas R., 2002. ICESat's laser measurements of polar ice, atmosphere, ocean, and land. Journal of Geodynamics 34(3-4): 405-445. DOI: 10.1016/S0264-3707(02)00042-X

Downloads

Published

2019-03-06

Issue

Section

Research article