Research article

Site-specific height-diameter and stem volume equations for Lebombo-ironwood

Tarquinio Mateus Magalhães

Tarquinio Mateus Magalhães
Universidade Eduardo Mondlane. Email: tarqmag@yahoo.com.br

Online First: August 31, 2017
Magalhães, T. 2017. Site-specific height-diameter and stem volume equations for Lebombo-ironwood. Annals of Forest Research DOI:10.15287/afr.2017.838


Height–diameter (H–D) and stem volume equations are indispensable tools for forest management and have a wide use in forestry, however they are lacking for Lebombo-ironwood. Based on a dataset of 1144 Lebombo-ironwood trees destructively measured for height and stem volume, H–D and stem volume models were fitted using mixed-effects and dummy variables models. Random-effects and dummy variables were the different growing sites, as they affect H–D relationships and therefore stem volume models. Different model forms were compared to each other with regard to the sources of errors. The error due to uncertainty in the model parameter estimates was insignificant for mixed-effects models, whilst the error due to model misspecification was relatively larger for dummy variables H–D functions when compared to the mixed-effects ones. However, both mixed-effects and dummy variables models were similar in terms of error due to residual variability around model prediction. Overall, mixed-effects and dummy variables models did not differ in terms of predictive ability and accuracy.


Adame P., Del Rio M., Canellas I., 2008. A mixed nonlinear height-diameter model for pyrenean oak (Quercus pyrenaica Willd.). F orest Ecology and Management 256, 88–98. DOI: 10.1016/j.foreco.2008.04.006
Akaike H., 1973. Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (ed.) Second international symposium on information theory. Budapest, Akademiai Kiado, pp 267–281.
Baltagi, B.H., 2005. Econometric analysis of panel data, 3rd ed. John Wiley & Sons, Ltd., 302p.
Baskerville, G.L., 1972. Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research 2: 49–53. DOI: 10.1139/x72-009
Bates D., Maechler M., Bolker B., Walker S., Haubo R., Singmann H., Dai B., Grothendieck G., 2016. Lmer4: Linear mixed-effects models using ‘Eigen’ and S4 (R Package Version 1.1-12). Vienna: R Foundation for Statistical Computing.
Bates D., Mullen K.M., Nash J.C., Varadhan R., 2015. Minqa: Derivative-free optimization algorithms by quadratic approximation (R Package Version 1.2.4). Vienna: R Foundation for Statistical Computing.
Bunster J., 2006. Commercial timbers of Mozambique. Traforest Lda, Maputo, 62 p.
Calama R., Montero G., 2004. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain. Canadian Journal of Forest Research 34: 150–163. DOI: 10.1139/x03-199
Cardoso G.A., 1963. Madeiras de Moçambique: Androstachys johnsonii. Serviços de Agricultura e Serviços de Veterinária, Maputo, 59p.
Castedo Dorado F., Diéguez-Aranda U., Barrio Anta M., Sanchez Rodríguez M., von Gadow, K., 2006. A generalized height–diameter model including random components for radiata pine plantations in northwestern Spain. Forest Ecology and Management 229: 202–213. DOI: 10.1016/j.foreco.2006.04.028
Chave J., Andalo C., Brown S. et al., 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87–99. DOI: 10.1007/s00442-005-0100-x
Coble D.W., Lee Y.J., 2011. A mixed-effects height model for individual loblolly and slash pine trees in east Texas. Southern Journal of Applied Forestry 35(1): 12–17.
Cunia T., 1986a. Use of dummy variables techniques in the estimation of biomass regressions. In: Wharton E.H., Cunia T. (ed.), Estimating tree biomass regressions and their error. NE-GTR-117. PA, USDA, Forest Service, Northeastern Forest Experiment Station, Broomall, pp 37–48.
Cunia T., 1986b. Error of forest inventory estimates: its main components. In: Wharton E.H., Cunia T. (ed.), Estimating tree biomass regressions and their error. NE-GTR-117. PA, USDA, Forest Service, Northeastern Forest Experiment Station, Broomall, pp. 1–13.
de Gier I.A., 1992. Forest mensuration (fundamentals). International Institute for Aerospace Survey and Earth Sciences (ITC), The Netherlands, 67 p.
De-Miguel S., Guzmán G., Pukkala T., 2013. A comparison of fixed- and mixed-effects modeling in tree growth and yield prediction of an indigenous neotropical species (Centrolobium tomentosum) in a plantation system. Forest Ecology and Management 291: 249–258. DOI: 10.1016/j.foreco.2012.11.026
DINAGECA, 1997. Mapa digital de uso e cobertura de terra [Digital map of land use and land cover]. Cenacarta, Maputo.
FAO, 2003. FAO map of world soil resources, Rome.
Fekedulengn D., Siurtain M.P.M., Colbert J.J., 1999. Parameter estimation of nonlinear growth models in forestry. Silva Fennica 33: 327–336.
Freese F., 1962. Elementary forest sampling. US Department of Agriculture, Washington DC, 91 p.
Freese F., 1984. Statistics for land managers. Paeony Press, Edinburgh, 178 p.
Fu L.Y., Zeng W.S., Tang S.Z. et al. 2012. Using linear mixed model and dummy variable model approaches to construct compatible single-tree biomass equations at different scales - a case study for Masson pine in southern China. Journal of Forest Science 58(3): 101–115.
Furnival G.M. 1961. An index for comparing equations used in constructing volume tables. Forest Science 7: 337–341.
Garavaglia S., Sharma A., 2000. A smart guide to dummy variables: four applications and a macro. Murray Hill, New Jersey, 10 p.
Gelman A., 2005. Analysis of variance-why it is more important than ever. Annals of Statistics 33(1): 1-53. DOI: 10.1214/009053604000001048
Huang S., Price D., Titus S.J., 2000. Development of ecoregion-based height–diameter models for white spruce in boreal forests. Forest Ecology and Management 129: 125-141. DOI: 10.1016/S0378-1127(99)00151-6
Husch B., Beers T.W., Kershaw J.A. Jr., 2003. Forest mensuration (4th ed.). John Willey and Sons, New Jersey, 433 p.
Kangas A., Maltamo M., 2002. Anticipating the variance of predicted stand volume and timber assortments with respect to stand characteristics and field measurements. Silva Fennica 36(4): 799–811. DOI: 10.14214/sf.522
Kershaw Jr. J.A., Ducey M.J., Beers T.W., Husch B., 2017. Forest mensuration (5th edition). John Willey and Sons, Oxford, 613 p.
Kinnunen J., Maltamo M., Päivinen R., 2007. Standing volume estimates of forests in Russia: how accurate is the published data? Forestry 80(1): 53–64. DOI: 10.1093/forestry/cpl042
Li L.X., Hao Y.H., Zhang Y., 2006. The application of dummy variable in statistical analysis. The Journal of Mathematical Medicine 19: 51–52. (in Chinese)
Loetsch F., Zohrer F., Haller K.E., 1973. Forest inventory. Volume II. BLV Verlagsgesellschaft, Munchen, 469 p.
MAE. 2005a. Perfil do distrito de Funhalouro, província de Inhambane [Profile of Funhalouro district, Inhambane province]. Ministério da Administração Estatal, Maputo, 44 p.
MAE. 2005b. Perfil do distrito de Mabote, província de Inhambane [Profile of Mabote district, Inhambane province]. Ministério da Administração Estatal, Maputo, 43 p.
MAE. 2005c. Perfil do distrito de Chibuto, província de Gaza [Profile of Chibuto district, Gaza province]. Ministério da Administração Estatal, Maputo, 44 p.
MAE. 2005d. Perfil do distrito de Mandlakazi, província de Gaza [Profile of Mandlakazi district, Gaza province]. Ministério da Administração Estatal, Maputo, 45 p.
MAE. 2005e. Perfil do distrito de Mabalane [Profile of Mabalane district, Gaza province], província de Gaza. Ministério da Administração Estatal, Maputo, 45 p.
MAE. 2005f. Perfil do distrito de Chicualacuala, província de Gaza [Profile of Chicualacuala district, Inhambane province]. Ministério da Administração Estatal, Maputo, 42 p.
Magalhães T.M., 2015a. Live above- and belowground biomass of a Mozambican evergreen forest: a comparison of estimates based on regression equations and biomass expansion factors. Forest Ecosystems 2: 28. DOI: 10.1186/s40663-015-0053-4
Magalhães T.M., 2015b. Allometric equation for estimating belowground biomass of Androstachys johnsonii Prain. Carbon Balance and Management 10: 16. DOI: 10.1186/s13021-015-0027-4
Magalhães T.M., Seifert T., 2015a. Tree component biomass expansion factors and root-to-shoot ratio of Lebombo ironwood: measurement uncertainty. Carbon Balance and Management 10: 9. DOI: 10.1186/s13021-015-0019-4
Magalhães T.M., Seifert T., 2015b. Biomass modelling of Androstachys johnsonii Prain – a comparison of three methods to enforce additivity. International Journal of Forestry Research 2015: 1–17. DOI: 10.1155/2015/878402
McRoberts R.E., Westfall J.A., 2015. Propagating uncertainty through individual tree volume model predictions to large-area volume estimates. Annals of Forest Science 73: 625–633. DOI: 10.1007/s13595-015-0473-x
Mehtätalo L., de-Miguel S., Gregoire T.G., 2015. Modeling height-diameter curves for prediction. Canadian Journal of Forest Research 45: 826–837. DOI: 10.1139/cjfr-2015-0054
Menten L., Michaelis M.I., 1913. Die kinetik der invertinwirkung [The kinetics of invertin action]. Biochem. Z.49, 333–369.
Missanjo E., Mwale G., 2014. A mixed-effects height-diameter model for Pinus kesiya in Malawi. Journal of Biodiversity Management & Forestry 3: 2.
Molotja G.M.; Ligavha-Mbelengwa M.H., Bhat R.B., 2011. Antifungal activity of root, bark, leaf and soil extracts of Androstachys johnsonii Prain. AJB 10(30): 5725–5727.
Mugasha W.A., Mwakalukwa E.E., Luoga E. et al. 2016. Allometric models for estimating tree volume and aboveground biomass in lowland forests of Tanzania. International Journal of Forestry Research 2016: 1–13. DOI: 10.1155/2016/8076271
Näslund M., 1937. Skogsförsöksanstaltens gallringsförsök i tallskog [Forest research intitute’s thinning experiments in Scots pine forests]. Meddelanden frstatens skogsförsöksanstalt Häfte 29 (In Swedish).
Parresol B.R., 1999. Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science 45(4): 573–593.
Petráš R., Bašela M., Mecko J., Ozslányi J., Popa I., 2014. Height-diameter models for mixed-species forests consisting of spruce, fir, and beech. Folia Forestalia Polonica 56(2): 93–104. DOI: 10.2478/ffp-2014-0009
Philip S.M., 1994. Measuring trees and forests (2nd ed.). CAB International, Wallingford, 310 p.
R Core Team, 2016. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Saunders M.R., Wagner R.G., 2008. Height-diameter models with random coefficients and site variables for tree species of Central Maine. Annals of Forest Science 65: 203-212. DOI: 10.1051/forest:2007086
Schimidt M., Kiviste A., von Gadow K., 2011. A spatially explicit height-diameter model for Scots pine in Estonia. European Journal of Forest Research 130: 303–315.
DOI: 10.1007/s10342-010-0434-8
Schumacher F.X., Hall F., 1933 Logarithmic expression of timber-tree volume. Journal of Agriculture Research 47: 719-734.
Sharma K., Parton J., 2007. Height–diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. Forest Ecology and Management 249: 187-198. DOI: 10.1016/j.foreco.2007.05.006
Sharma M., Zhang S.Y., 2004. Height–diameter models using stand characteristics for Pinus banksiana and Picea mariana. Scandinavian Journal of Forest Research 19: 442–451. DOI: 10.1080/02827580410030163
Siipilehto, J. 2000. A comparison of two parameter prediction methods for stand structure in Finland. Silva Fennica 34(4): 331–349. DOI: 10.14214/sf.617
Spurr H.,1952. Forest inventory. Ronald Press, New York.
Stauffer H.B., 1983. Some sample size tables for forest sampling. Ministry of Forests, British Columbia, 50 p.
Stellingwerf, D.A., 1994. Forest inventory and remote sensing. International Training Centre for Aerial Survey (ITC), Enschede.
Stoffels A., 1953. De inhoudsbepaling van grovedennen opstanden met behulp van standardkrommen. Ned. Bosbouw Tijdschr.: 29–42
Strand L., 1959. The accuracy of some methods for estimating volume and increment on sample plots. Medd. Norske Skogfors. 15(4): 284–392.
Tang S.Z., Lang K.J., Li H.K., 2008. Statistics and computation of biomathematical models. Beijing, Science Press: 115–261 (In Chinese).
van Laar A., Akça A., 2007. Forest mensuration. Springer, Dordrecht, 383p. DOI: 10.1007/978-1-4020-5991-9
Wang M., Borders B.E., Zhao D., 2007. Parameter estimation of base-age invariant site index models: which data structure to use? Forest Science 53 (5): 541–551.
Wang M., Borders B.E., Zhao D., 2008. An empirical comparison of two subject-specific approaches to dominant heights modeling: the dummy variable method and the mixed model method. Forest Ecology and Management 255: 2659–2669. DOI: 10.1016/j.foreco.2008.01.030
Zeng W.S, Zhang H.R, Tang, S.Z, 2001. Using the dummy variable model approach to construct compatible single-tree biomass equations at different scales - a case study for Masson pine (Pinus massoniana) in southern China. Canadian Journal of Forest Research 41: 1547–1554. DOI: 10.1139/x11-068
Zeng W.S., 2014. Using nonlinear mixed model and dummy variable model approaches to develop origin-based individual tree biomass equations. Trees 29(1): 275–283. DOI: 10.1007/s00468-014-1112-0


No Supplimentary Material available for this article.
No metrics available for this article.

Related Articles

Related Authors

 



In Google Scholar

In Annals of Forest Research

In Google Scholar

 
  • Tarquinio Mateus Magalhães
  • Tarquinio Mateus Magalhães