Growth and development of moringa (Moringa oleifera L.) stem cuttings as affected by diameter magnitude, growth media, and indole-3-butyric acid
DOI:
https://doi.org/10.15287/afr.2016.686Keywords:
primary branch, munchong series, dry matter, biochar, plant hormone.Abstract
The acknowledged status of Moringa oleifera L. in sub-Saharan Africa, especially western Africa, has of recent accorded it the significance of being a good source of income to a large segment of many of its populace. Intensification of research into the realization of its full economic potential will be of utmost value to impoverished societies globally. One way to achieve this is the full exploration of all possible means that will facilitate its successful growth, propagation, and domestication. Even though it can be successfully raised through seeds, the high level outcrossing (64.3%) observed is a hindrance to realization of true to type trees. Vegetative propagation can be employed as an option to tackle the noted limitation, ease the cultivation process, and achieve the required realization of its economic potential. Our trial was carried out to study the influence of two growth media and three levels of indole 3-butyric acid (IBA) on root and shoot development in cuttings taken from a coppiced moringa tree existent in Universiti Putra Malaysia. Semi-hardwood cuttings of moringa, of between 20 and 30 mm diameter, cut into 25 cm length, were obtained, rinsed with a fungicide, then dipped, through their basal portion, inside varying levels (0, 1000, 2000, and 3000 ppm) of indole-3-butyric acid (IBA) for between 7 and 10 seconds. The treated cuttings were then transplanted into a polyethylene bags (23 cm × 36 cm), containing two growth media - a munchong series soil (M) and a combination of a munchong series soil thoroughly mixed with biochar (MB) in a 3:1 ratio sequence. The trial was conducted inside a shade house where the humidity of the experimental area was manipulated through a regular daily manual hand sprinkling. Plant height, percentage of primary branch produced, leaf area, and dry matter (DM) were found to be significantly (P<0.05) influenced by variation in stem diameter magnitude, while the diameter of the primary branch and spad chlorophyll content were found to be non-significantly (P>0.05) influenced. The MB growth media was observed to significantly affect the plant height, percentage root number, and root length as compared to the M growth media. For a successful vegetative propagation and subsequent domestication, the MB growth media coupled with a higher stem diameter size are recommended.References
Ahmed A. K., Amanullah, S. K., Basharat H. S., Munir A. K., 2010. Effect of indole butyric acid (IBA) on rooting of olive stem cuttings. Pakistan Journal of Agricultural Research 23: 3-4.
Akinyele, A. O., 2010. Effects of growth hormones, rooting media and leaf size on juvenile stem cuttings of Buchholzia coriacea Engler. Annals of Forest Research 53(2): 127-133.
Baul T. K., Mezbahuddin M., Mohiuddin M., 2008. Vegetative propagation and initial growth performance of Stereospermum suaveolens DC; A wild tropical tree species of medicinal value. New Forests 37(3): 275-283. DOI: 10.1007/s11056-008-9123-6
Doruska P. F., Burkhart H. E., 1994. Modeling the diameter and locational distribution of branches within the crowns of loblolly pine trees in unthinned plantations. Canadian Journal of Forest Research 24: 2362-2376. DOI: 10.1139/x94-305
Fries, C., Johansson, O., Pettersson, B., Simonsson, P., 1997. Silvicultural models to maintain and restore natural stand structures in Swedish boreal forests. Forest Ecology and Management 94: 89-103. DOI: 10.1016/S0378-1127(97)00003-0
Janick J, Paull R.E., 2008. The encyclopedia of fruit and nuts. 1st Edition, Cabi Publishing. Oxfordshire, UK, 800 p.
John, R.H., 2004. The Basics of Plant Growth; (Part 3) Root Formation in Cuttings. Article Source. Web: Web: http://ezinearticles.com/?expert=John_R._Haughton. Accessed 02.2016.
Kobayashi, K. D., McConnel, J., Griffis, J., 2007. Bougainvillea. Cooperative Extension Service. College of tropical Agriculture and Human Resources. University of Hawai’i at Monoa, OF-38.
Majeed M., Khan M.A., Mughal A.H., 2009. Vegetative propagation of Aesulus indica through stem cuttings treated with plant growth regulators. Journal of Forestry Research 20(2): 171-173. DOI: 10.1007/s11676-009-0031-1
Marzieh B., Somayeh S., Vida V., 2012. Effects of indole-3-butyric acid on the rooting ability of semi-hardwood Bougainvillea sp. cuttings. Canadian Center of Science and Education. Web: www.ccsenet.org/mas Accessed: 01.2016.
Miller A.G., Morris M, 1988. Plants of Dhofar – the southern region of Oman, traditional, economic, and medicinal uses. Office for conservation of the environment, Oman. 360pp.
Mooza A. O., Nora A. H., Shah A. K., 2014. GC-MS analysis, determination of total phenolics, flavonoid content and free radical scavenging activities of various crude extracts of Moringa peregrina (Forssk.) Fiori leaves. Asian Pacific Journal of Tropical Biomedicine 4: 964-970. DOI: 10.12980/APJTB.4.201414B295
National Research Council, 2006. Lost Crops of Africa, Vol. 1, National Academy Press, Washington DC.
Ofori D.A., Newton A.C., Leakey R.B., Grace J., 1996. Vegetative propagation of Miliacea excelsa by leaf stem cuttings: effects of auxin concentration, leaf size and medium. Forest Ecology and Management 84: 39-48. DOI: 10.1016/0378-1127(96)03737-1
Oni O., Ojo L.O., 2002. Germination, growth and cloning of the popular West African chewing stick (Massularia acuminatea (G. Don). Bullock Ex Hoyle. Nigerian Journal of Ecology 4(1): 8-12.
Paramananthan S., 2000. Soils of Malaysia – their characteristics and identification. Academy of Sciences Malaysia, pp. 369-372.
Prendergast-Miller, M.T., Duvall M., Sohi S. P., 2014. Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. European Journal of Soil Science 65(1): 173-185. DOI: 10.1111/ejss.12079
Sika M.P, Hardie A.G., 2014. Effect of pine wood biochar on ammonium nitrate leaching and availability in a South African sandy soil. European Journal of Soil Science 65:113-119. DOI: 10.1111/ejss.12082
Suzuki D., Grady W., 2004. Tree - a biography. Greystone Books, 200 p.
Thomas P.A., 2014. Trees: Their natural history. Cambridge University Press, 409 p. DOI: 10.1017/CBO9781139026567
Ulyett J., Sakrabani R., Kibblewhite M., Hann M., 2014. Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils. European Journal of Soil Science 65 (1): 96-104. DOI: 10.1111/ejss.12081
Ventura M., Alberti G, Viger M, Jenkins J.R, Girardin C, Baronti S, Zaldei A, Taylor G, Rumpel C, Miglietta F, Tonon G., (2014. Biochar mineralization and priming effect on SOM decomposition in two European short rotation coppices. Global Change Biology Bioenergy 7: 1150-1160. DOI: 10.1111/gcbb.12219
Verheijen F. G. A., Graber E. R., Ameloot N., Bastos A. C., Sohi S., Knicker H., 2014. Biochars in soils: new insights and emerging research needs. European Journal of Soil Science 65: 22–27. DOI: 10.1111/ejss.12127
von Maydell, H.J., 1990. Trees and shrubs of the Sahel: their characteristics and uses. Verlag Josef Margraf, 525 p.
Wiesman Z., Lavee S., 1994. Vegetative growth-retardation, improved rooting and viability of olive cuttings in response to application of growth-retardants. Plant Growth Regulation 14: 83-90. DOI: 10.1007/BF00024145
Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J., Joseph S., 2010. Sustainable biochar to mitigate global climate change. Nature Communications 1: 1–9. DOI: 10.1038/ncomms1053
Downloads
Published
Issue
Section
License
All the papers published in Annals of Forest Research are available under an open access policy (Gratis Gold Open Access Licence), which guaranty the free (of taxes) and unlimited access, for anyone, to entire content of the all published articles. The users are free to “read, copy, distribute, print, search or refers to the full text of these articles”, as long they mention the source.
The other materials (texts, images, graphical elements presented on the Website) are protected by copyright.
The journal exerts a permanent quality check, based on an established protocol for publishing the manuscripts. The potential article to be published are evaluated (peer-review) by members of the Editorial Board or other collaborators with competences on the paper topics. The publishing of manuscript is free of charge, all the costs being supported by Forest Research and Management Institute.
More details about Open Access:
Wikipedia: http://en.wikipedia.org/wiki/Open_access