Research article

Growth and nutrient efficiency of Betula alnoides clones in response to phosphorus supply

Lin Chen , Hong Yan Jia, Jie Zeng, Bernard Dell

Lin Chen
The Experimental Center of Tropical Forestry, CAF, Pingxiang 532600, Guangxi, China. Email: chenlin-ectf@hotmail.com
Hong Yan Jia
The Experimental Center of Tropical Forestry, CAF, Pingxiang 532600, Guangxi, China
Jie Zeng
Research Institute of Tropical Forestry, CAF, Guangzhou 510520, Guangdong, China
Bernard Dell
Division of Research & Development, Murdoch University, Western Australia 6150, Australia

Online First: October 31, 2016
Chen, L., Jia, H., Zeng, J., Dell, B. 2016. Growth and nutrient efficiency of Betula alnoides clones in response to phosphorus supply. Annals of Forest Research DOI:10.15287/afr.2016.561


As phosphorus deficiency limits the productivity of many plantation forests in Asia, there is considerable interest in developing phosphorus-efficient clones for the region through targeted breeding programs. Therefore, we determined growth, nutrient concentrations and nutrient absorption and utility efficiencies of four Betula alnoides clones (C5, C6, 1-202 and BY1) in response to six phosphorus levels of 0, 17, 52, 70, 140 and 209 mg P plant-1 coded as P1 to P6, respectively. Maximum growth occurred in the P4, P5 and P6 plants since they had the largest height, biomass, leaf area and branch number. Phosphorus application increased the phosphorus concentrations of all clones. Nutrient loading was achieved with the P6 treatment because growth and biomass were not significantly higher, but root, stem and leaf phosphorus concentrations were approximately twice those of P4 plants. Clone BY1 had the highest phosphorus-efficiency, and is recommended for field application due to its maximum root collar diameter, biomass, root/shoot ratio, leaf area, nutrient absorption and utility efficiency among the four clones. The findings will help to improve the nutrient efficiency of this species in plantation forestry in Asia.


Baligar V. C., Fageria N. K., He Z. L., 2001. Nutrient use efficiency in plants. Communications in Soil Science and Plant Analysis 32(7-8): 921-950. DOI: 10.1081/CSS-100104098

Bown H. E., Watt M. S., Clinton P. W., Mason E. G., 2012. The influence of N and P supply and genotype on N remobilization in containerized Pinus radiata plants. Cienciae Investigación Agraria 39(3): 505-520. DOI: 10.4067/S0718-16202012000300010

Brown K. R., Van den Driessche R., 2005. Effects of nitrogen and phosphorus fertilization on the growth and nutrition of hybrid poplars on Vancouver Island. New Forests 29(1): 89-104. DOI: 10.1007/s11056-004-5418-4

Chen L. Zeng J., Xu D. P., Zhao Z. G., Guo J. J., Lin K. Q., Sha E., 2010. Effect of exponential nitrogen loading on the growth and foliar nutrient status of Betula alnoides seedlings. Silvae Sinicae 46(5): 35-40. (in Chinese)

Chen L., Zeng J., Jia H. Y., Zeng J., Guo W. F., Cai D. X., 2012. Growth and nutrient uptake dynamics of Mytilaria laosensis seedlings under exponential and conventional fertilizations. Soil Science and Plant Nutrition 58(5): 618-626. DOI: 10.1080/00380768.2012.708879

DesRochers A., Van den Driessche R., Thomas B. R., 2006. NPK fertilization at planting of three hybrid poplar clones in the boreal region of Alberta. Forest Ecology and Management 232(1): 216-225. DOI: 10.1016/j.foreco.2006.06.004

Elser J. J., Bracken M. E., Cleland E. E., Gruner D. S., Harpole W. S., Hillebrand H., Ngai J. T., Seabloom E. W., Shurin J. B., Smith J. E., 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10(12): 1135-1142. DOI: 10.1111/j.1461-0248.2007.01113.x

Folk R. S., Grossnickle S. C., 2000. Stock-type patterns of phosphorus uptake, retranslocation, net photosynthesis and morphological development in interior spruce seedlings. New Forests 19(1): 27-49. DOI: 10.1023/A:1006618312161

Garrish V., Cernusak L. A., Winter K., Turner B. L., 2010. Nitrogen to phosphorus ratio of plant biomass versus soil solution in a tropical pioneer tree, Ficus insipida. Journal of Experimental Botany 61(13): 3735-3748. DOI: 10.1093/jxb/erq183

Hidaka A., Kitayama K., 2011. Allocation of foliar phosphorus fractions and leaf traits of tropical tree species in response to decreased soil phosphorus availability on Mount Kinabalu, Borneo. Journal of Ecology 99(3): 849-857. DOI: 10.1111/j.1365-2745.2011.01805.x

Isaac M. E., Harmand J. M., Drevon J. J., 2011. Growth and nitrogen acquisition strategies of Acacia senegal seedlings under exponential phosphorus additions. Journal of Plant Physiology 168(8): 776-781. DOI: 10.1016/j.jplph.2010.10.011

Kelly J. M., Ericsson T., 2003. Assessing the nutrition of juvenile hybrid poplar using a steady state technique and a mechanistic model. Forest Ecology and Management 180(1): 249-260. DOI: 10.1016/S0378-1127(02)00564-9

Lamhamedi M. S., Chamberland H., Bernier P. Y., Tremblay F. M., 2000. Clonal variation in morphology, growth, physiology, anatomy and ultrastructure of container-grown white spruce somatic plants. Tree Physio- logy 20(13): 869-880. DOI: 10.1093/treephys/20.13.869

Liang H., Chang S. X., 2004. Response of trembling and hybrid aspens to phosphorus and sulfur fertilization in a Gray Luvisol: growth and nutrient uptake. Canadian Journal of Forest Research 34(7): 1391-1399. DOI: 10.1139/x04-022

Mari S., Jansson G., Jonsson A., 2003. Genetic variation in nutrient utilization and growth traits in Picea abies seedlings. Scandinavian Journal of Forest Research 18(1): 19-28. DOI: 10.1080/02827581.2003.10383134

Niu Y. F., Chai R. S., Jin G. L., Wang H., Tang C. X., Zhang Y. S., 2013. Responses of root architecture development to low phosphorus availability: a review. Annals of Botany 112: 391-408.
DOI: 10.1093/aob/mcs285

Pang J., Tibbett M., Denton M. D., Lambers H., Siddique K. H. M., Bolland M. D. A., Revell C. K., Ryan M. H., 2010. Variation in seedling growth of 11 perennial legumes in response to phosphorus supply. Plant and Soil 328(1-2): 133-143. DOI: 10.1007/s11104-009-0088-9

Plassard C., Dell B., 2010. Phosphorus nutrition of mycorrhizal trees. Tree Physiology 30(9): 1129-1139. DOI: 10.1093/treephys/tpq063

Richardson A. E., Lynch J. P., Ryan P. R., Delhaize E., Smith F. A., Smith S. E., Harvey P. R., Ryan M. H., Veneklaas E. J., Lambers H., Oberson A., Culvenor R. A., Simpson R. J., 2011. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil 349(1-2): 121-156. DOI: 10.1007/s11104-011-0950-4

Rytter L., Stener L. G., 2003. Clonal variation in nutrient content in woody biomass of hybrid aspen. Silva Fennica 37(3): 313-324. DOI: 10.14214/sf.491

Safou-Matondo R., Deleporte P., Laclau J. P., Bouillet J. P., 2005. Hybrid and clonal variability of nutrient content and nutrient use efficiency in Eucalyptus stands in Congo. Forest Ecology and Management 210(1): 193-204. DOI: 10.1016/j.foreco.2005.02.049

Salifu K. F., Jacobs D. F., Birge Z. K., 2009. Nursery nitrogen loading improves field performance of bareroot oak seedlings planted on abandoned mine lands. Restoration Ecology 17(3): 339-349. DOI: 10.1111/j.1526-100X.2008.00373.x

Salifu K. F., Timmer V. R., 2003. Optimizing nitrogen loading of Picea mariana seedlings during nursery culture. Canadian Journal of Forest Research 33(7): 1287-1294. DOI: 10.1139/x03-057

Schachtman D. P., Reid R. J., Ayling S. M., 1998. Phosphorus uptake by plants: from soil to cell. Plant Physiology 116(2): 447-453. DOI: 10.1104/pp.116.2.447

Silber A., Ganmore-Neumann R., Ben-Jaacov J., 2000. The response of three Leucadendron cultivars (Proteaceae) to phosphorus levels. Scientia Horticulturae 84(1): 141-149. DOI: 10.1016/S0304-4238(99)00116-8

Singh B., Singh G., 2011. Phosphorus enhanced establishment, growth, nutrient uptake, and productivity of dalbergia sissoo seedlings maintained at varying soil water stress levels in an indian arid zone. Journal of Sustainable Forestry 30(6): 480-495. DOI: 10.1080/10549811.2010.550256

Syers J. K., Johnston A. E., Curtin D., 2008. Efficiency of soil and fertilizer phosphorus use: Reconciling changing concepts of soil phosphorus behaviour with agronomic information. FAO Fertilizer and Plant Nutrition Bulletin 18.

Tan L., He Y. J., Qin L., Chen S. Z., 2015. Characteristics of nutrient contents and storages in Castanopsis hystrix and Betula alnoides. Guihaia 35(1): 69-74. (in Chinese)

Timmer V. R., 1997. Exponential nutrient loading: a new fertilization technique to improve seedling performance on competitive sites. New Forests 13(1-3): 279-299. DOI: 10.1023/A:1006502830067

Urich R., Coronel I., Silva D., Cuberos M., Wulff R. D., 2003. Intraspecific variability in Commelina erecta: response to phosphorus addition. Canadian Journal of Botany 81(9): 945-955. DOI: 10.1139/b03-089

van de Wiel C. C., van der Linden C. G., Scholten O. E., 2016. Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica 207(1): 1-22. DOI: 10.1007/s10681-015-1572-3

Vitousek P. M., Porder S., Houlton B. Z., Chadwick O. A., 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications 20(1): 5-15. DOI: 10.1890/08-0127.1

Warren C. R., Adams, M. A., 2002. Phosphorus affects growth and partitioning of nitrogen to Rubisco in Pinus pinaster. Tree Physiology 22(1): 11-19. DOI: 10.1093/treephys/22.1.11

Wu P., Ma X., Tigabu M., Wang C., Liu A., Oden P. C., 2011. Root morphological plasticity and biomass production of two Chinese fir clones with high phosphorus efficiency under low phosphorus stress. Canadian Journal of Forest Research 41(2): 228-234. DOI: 10.1139/X10-198

Xie X., Weng B., Cai B., Dong Y., Yan C., 2014. Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong) seedlings in autoclaved soil. Applied Soil Ecology 75: 162-171. DOI: 10.1016/j.apsoil.2013.11.009

Xu D., Dell B., Malajczuk N., Gong M., 2002. Effects of P fertilisation on productivity and nutrient accumulation in a Eucalyptus grandis × E. urophylla plantation in southern China. Forest Ecology and Management 161(1): 89-100. DOI: 10.1016/S0378-1127(01)00485-6

Zeng J., Guo W. F., Zhao Z. G., Weng Q. J., Yin G. T., Zheng H. S., 2006. Domestication of Betula alnoides in China: current status and perspectives. Forestry Research 19(3): 379-384. (in Chinese)

Zhang H. C., Wang G. P., Xu T. Z., Xu C. K., Hu Z. Y., 2003a. Effects of rhizosphere acidification on phosphorus efficiency in clones of poplar. Chinese Journal of Applied Ecology 14(10): 1607-1611. (in Chinese)

Zhang H. C., Wang G. P., Xu T. Z., Xu C. K., Hu Z. Y., 2003b. Phosphate uptake characteristics of kinetics and phosphorus efficiency in clones of poplar. Scientia Silvae Sinicae 39(6): 40-46. (in Chinese)

Zhang Y., Zhou Z., Yang Q., 2013. Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions. Plant and Soil 364(1-2): 93-104. DOI: 10.1007/s11104-012-1352-y

Zhao T. T., Zhao N. X., Gao Y. B., 2013. Ecophysiological response in leaves of Caragana microphylla to different soil phosphorus levels. Photosynthetica 51(2): 245-251. DOI: 10.1007/s11099-013-0016-3


No Supplimentary Material available for this article.
No metrics available for this article.

Related Articles

Related Authors

 



In Google Scholar

In Annals of Forest Research

In Google Scholar

 
  • Lin Chen
  • Hong Yan Jia
  • Jie Zeng
  • Bernard Dell
  • Lin Chen
  • Hong Yan Jia
  • Jie Zeng
  • Bernard Dell