Patterns of biomass allocation between foliage and woody structure: the effects of tree size and specific functional traits

Authors

  • Sylvanus Mensah Laboratory of Biomathematics and Forest Estimations, University of Abomey-Calavi (Benin) Department of Forest and Wood Sciences, Stellenbosch University (South Africa)
  • Romain Glèlè Kakaï Laboratory of Biomathematics and Forest estimations, University of Abomey-Calavi, Benin
  • Thomas Seifert Department of Forest and Wood Sciences, Stellenbosch University, South Africa

DOI:

https://doi.org/10.15287/afr.2016.458

Keywords:

aboveground biomass, leaf area, leaf to wood mass ratio, Mistbelt forest, South Africa, partitioning, species identity, trunk diameter, wood density

Abstract

Biomass allocation is closely related to species traits, resources availability and competitive abilities, and therefore it is often used to capture resource utilisation within plants. In this study, we searched for patterns in biomass allocation between foliage and wood (stem plus branch), and how they changed with tree size (diameter), species identity and functional traits (leaf area and specific wood density). Using data on the aboveground biomass of 89 trees from six species in a Mistbelt forest (South Africa), we evaluated the leaf to wood mass ratio (LWR). The effects of tree size, species identity and specific traits on LWR were tested using Generalised Linear Models. Tree size (diameter) was the main driver of biomass allocation, with 44.43 % of variance explained. As expected, LWR declined significantly with increasing tree diameter. Leaf area (30.17% explained variance) and wood density (12.61% explained variance) also showed significant effects, after size effect was accounted for. Results also showed clear differences among species and between groups of species. Per unit of wood mass, more biomass is allocated to the foliage in the species with the larger leaf area. Inversely, less biomass is allocated to the foliage in species with higher wood density. Moreover, with increasing diameter, lower wood density species tended to allocate more biomass to foliage and less biomass to stems and branches. Overall, our results emphasise the influence of plant size and functional traits on biomass allocation, but showed that neither tree diameter and species identity nor leaf area and wood density are the only important variables.

References

Bloom A.J., Chapin F.S., Mooney H.A., 1985. Resource limitation in plants—an economic analogy. Annual Review of Ecology and Systematics 16(1): 363-392. DOI: 10.1146/annurev.es.16. 110185.002051Bonser S.P., Aarssen L.W., 2009. Interpreting reproductive allometry individual strategies of allocation explain size-dependent reproduction in plant populations. Perspectives in Plant Ecology, Evolution and Systematics 11(1): 31-40. DOI: 10.1016/j.ppees. 2008.10.003Chave J., Réjou-Méchain M., Búrquez A., Chidumayo E., Colgan M.S., Delitti W.B.C., Duque A., Eid T., Fearnside P.M., Goodman R.C., Henry M., Martínez-Yrízar A., Mugasha W.A., Muller-Landau H.C., Mencuccini M., Nelson B.W., Ngomanda A., Nogueira E.M., Ortiz-Malavassi E., Pélissier R., Ploton P., Ryan C.M., Saldarriaga J.G., Vieilledent G., 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20 (10): 3177-3190. DOI: 10.1111/gcb.12629Coates-Palgrave M., 2002. Keith Coates-Palgrave Trees of Southern Africa, edn 3, imp. 4 Random House Struik, Cape Town, 1212 p.Deng J.M., Wang G.X., Morris E.C., Wei X.P., Li D.X., Chen B.M., Zhao C.M., Liu J.,Wang Y., 2006. Plant mass–density relationship along a moisture gradient in north-west China. Journal of Ecology 94: 953-958. DOI: 10.1111/j.1365-2745.2006.01141.xDybzinski R., Farrior C., Wolf A., Reich P.B., Pacala S.W., 2011. Evolutionarily stable strategy of carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual-based model and quantitative comparisons to data. American Naturalist 177: 153-166. DOI: 10.1086/657992Finegan B., Peña-Claros M., de Oliveira A., Ascarrunz N., Bret-Harte M.S., Carreño-Rocabado G., Casanoves F., Díaz S., Eguiguren Velepucha P., Fernandez F., Licona J.C., Lorenzo L., Salgado Negret B., Vaz M., Poorter L., 2015. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology 103: 191-201. DOI: 10.1111/1365-2745.12346Fourcaud T., Zhang X., Stokes A., Lambers H., Körner C., 2008. Plant growth modelling and applications: the increasing importance of plant architecture in growth models. Annals of Botany 101: 1053-1063. DOI: 10.1093/aob/mcn050Freschet G.T., Kichenin E., Wardle A.D., 2015. Explaining within-community variation in plant biomass allocation: a balance between organ biomass and morphology above vs below ground? Journal of Vegetation Science 26: 431-440. DOI: 10.1111/jvs.12259Geldenhuys C.J., 2002. Tropical secondary forest management in Africa: Reality and perspectives. South Africa Country Paper.Helmisaari H.S., Makkonen K., Kellomaki S., Valtonen E., Malkonen E., 2002. Below- and above-ground biomass, production and nitrogen use in Scots pine stands in eastern Finland. Forest Ecology and Management 165: 317-326. DOI: /10.1016/S0378-1127(01) 00648-XIvetić V., Stjepanović St., Devetaković J., Stanković D., Škorić M., 2014. Relationships between leaf traits and morphological attributes in one-year bareroot Fraxinus angustifolia Vahl. seedlings. Annals of Forest Research 57(2): 197-203. DOI: 10.15287/afr.2014.214Jarčuška B., Barna M., 2011. Plasticity in above-ground biomass allocation in Fagus sylvatica L. saplings in response to light availability. Annals of Forest Research 54(2): 151-160.Kattge J., Diaz S., Lavorel S., Prentice C., Leadley P., Bonisch G. et al., 2011. TRY - a global database of plant traits. Global Change Biology 17: 2905-2935. DOI: 10.1111/j.1365-2486.2011.02451.xKing D.A., 1997. Branch growth and biomass allocation in Abies amabilis saplings in contrasting light environments. Tree Physiology 17: 251-258. DOI: 10.1093/treephys/17.4.251King D.A., Davies S.J., Tan S., Noor N.S., 2006. The role of wood density and stem support costs in the growth and mortality of tropical trees. Journal of Ecology 94: 670-680. DOI: 10.1111/j.1365-2745.2006.01112.xKörner C., 1994. Biomass fractionation in plants: a reconsideration of definitions based on plant functions. In: Roy J., Garnier E., (eds.), A whole plant perspective on carbon–nitrogen interactions. Academic Publishing, The Hague, the Netherlands, pp. 173-185.Lambers H., Shane M.W., Cramer M.D., Pearse S.J., Veneklaas E.J., 2006. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Annals of Botany 98: 693-713. DOI: 10.1093/aob/mcl114Leuchner M., Hertel C., Rötzer T., Seifert T., Weigt R., Werner H., Menzel A., 2012. Solar radiation as a driver for growth and competition in forest stands. In: Matyssek R., Schnyder H., Ernst D., Munch J-C., Oßwald W., Pretzsch H., (eds.), Growth and defence in plants: resource allocation at multiple scales. Ecological Studies 220, Springer, pp. 175-191. DOI: 10.1007/978-3-642-30645-7_8Luo Y., Zhang X., Wang X., Ren Y., 2014. Dissecting Variation in Biomass Conversion Factors across China’s Forests: Implications for Biomass and Carbon Accounting. PLoS ONE 9(4): e94777. DOI: 10.1371/journal.pone.0094777Marchand P.J., 1984. Sapwood area as an estimator of foliage biomass and projected leaf area for Abies balsamea and Picea rubens. Canadian Journal of Forest Research 14(1): 85-87. DOI: 10.1139/x84-016Margolis H., Oren R., Whitehead D., Kaufmann M.R., 1995. Leaf area dynamics of conifer forests. In: Smith W.K., Hinckley T.M., (eds.), Ecophysiology of coniferous forests. Academic Press, San Diego, pp. 255-308. DOI: 10.1016/B978-0-08-092593-6.50012-8McCarthy M.C., Enquist B.J., 2007. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology 21: 713-720. DOI: 10.1111/j.1365-2435.2007.01276.xMcCarthy M.C., Enquist B.J., Kerkhoff A.J., 2007. Organ partitioning and distribution across the seed plants: assessing the relative importance of phylogeny and function. International Journal of Plant Sciences 168: 751-761. DOI: 10.1086/513491Mokany K., Raison R.J., Prokushkin A.S., 2006. Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology 12: 84-96. DOI: /10.1111/j.1365-2486.2005.001043.xMorataya R., Galloway G., Berninger F., Kanninen M., 1999. Foliage biomass - sapwood (area and volume) relationships of Tectona grandis L.F. and Gmelina arborea Roxb.: silvicultural implications. Forest Ecology and Management 113 (2-3): 231-239. DOI: 10.1016/S0378-1127(98)00429-0Mucina L., Rutherford M.C., 2006. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19, South African National Biodiversity Institute, Pretoria, 807 p.Müller I., Schmid B., Weiner J., 2000. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspectives in Plant Ecology, Evolution and Systematics 3(2): 115-127. DOI: 10.1078/1433-8319-00007Ninkovic V., 2003. Volatile communication between barley plants affects biomass allocation. Journal of Experimental Botany 54: 1931-1939. DOI: 10.1093/jxb/erg192Pajtik J., Konopka B., Lukac M., 2011. Individual biomass factors for beech, oak and pine in Slovakia: a comparative study in young naturally regenerated stands. Trees 25: 277-288. DOI: 10.1007/ s00468-010-0504-zPearcy R.W., Muraoka H., Valladares F., 2005. Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model. New Phytologist 166: 791-800. DOI: 10.1111/j.1469-8137.2005.01328.xPino J., Sans F.X., Masalles R.M., 2002. Size-dependent reproductive pattern and short-term reproductive cost in Rumex obtusifolius L. Acta Oecologica 23(5): 321-328. DOI: 10.1016/S1146-609X(02)01161-XPoorter H., Jagodzinski A. M., Ruiz-Peinado R., Kuyah S., Luo Y., Oleksyn J., Usoltsev V. A., Buckley T. N., Reich P. B., Sack L., 2015. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist 208: 736-749. doi:10.1111/nph.13571. DOI: 10.1111/ nph.13571Poorter H., Sack L., 2012. Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Frontiers in plant science 3:259. doi:10.3389/fpls.2012.00259. DOI: 10.3389/ fpls.2012.00259Poorter H., Niklas K.J., Reich P.B., Oleksyn J., Poot P., Mommer L., 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193: 30-50. DOI: 10.1111/j.1469-8137.2011.03952.xPoorter L., Bongers F., 2006. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87: 1733-1743.DOI: 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2Poorter L., Bongers L., Bongers F., 2006. Architecture of 54 moist forest tree species: traits, trade-offs, and functional groups. Ecology 87: 1289-1301. DOI: 10.1890/0012-9658(2006)87[1289:AOMTST] 2.0.CO;2Pretzsch H., Dieler J., Seifert T., Rötzer T., 2012. Climate effects on productivity and resource use efficiency of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in stands with different spatial mixing patterns. Trees 26:1343-1360.DOI: 10.1007/s00468-012-0710-yPriesack E., Gayler S., Rötzer T., Seifert T., 2012. Mechanistic modelling of soil-plant-atmosphere systems. In: Matyssek R., Schnyder H., Ernst D., Munch J-C., Oßwald W., Pretzsch H., (eds.), Growth and defence in plants: resource allocation at multiple scales. Ecological Studies 220, Springer, pp. 335-353. DOI: 10.1007/978-3-642-30645-7_15Reich P.B., 2002. Root–shoot relations: optimality in acclimation and adaptation or the ‘’Emperor’s New Clothes’’? In: Waisel Y., Eshel A., Kafkafi U., (eds.), Plant roots: the hidden half. Marcel Dekker, Basel, Switzerland, pp. 205-220. DOI: 10.1201/9780203909423.ch12Reich P.B., Luo Y., Bradford J.B., Poorter H., Perry C.H., Oleksyn J., 2014. Temperature drives global patterns in forest biomass allocation in leaves, stems and roots. Proceedings of the National Academy of Sciences, USA 111: 13721-13726. DOI: 10.1073/ pnas.1216053111Rötzer T., Seifert T., Gayler S., Priesack E., Pretzsch H., 2012. Effects of stress and defence allocation defence on tree growth: simulation results at the tree and stand level. In: Matyssek R, Schnyder H, Ernst D, Munch J-C, Oßwald W, Pretzsch H (eds) Growth and Defence in Plants: Resource Allocation at Multiple Scales. Ecological Studies 220, Springer. 401-432.Seifert T., Seifert S., 2014. Modelling and simulation of tree biomass. In Seifert T., (ed.), Bioenergy from Wood. Springer Netherlands, Dordrecht, pp. 43-65. DOI: 10.1007/978-94-007-7448-3_3Seifert T., Seifert S., Seydack A., Durheim G., von Gadow K., 2014. Competition effects in an afrotemperate forest. Forest Ecosystems 1:13. DOI: 10.1186/s40663-014-0013-4Seifert T., Müller-Starck G., 2009. Impacts of fructification on biomass production and correlated genetic effects in Norway spruce (Picea abies L. [Karst.]). European Journal of Forest Research 128(2): 155-169. DOI: 10.1007/s10342-008-0219-5Shinozaki K., Yoda K., Hozumi K., Kira T., 1964a. A quantitative analysis of plant form-the pipe model theory: I. Basic analyses. Japanese Journal of Ecology 14: 97-105.Shinozaki K., Yoda K., Hozumi K, Kira T., 1964b. A quantitative analysis of plant form-the pipe model theory: II. Further evidence of the theory and its application in forest ecology. Japanese Journal of Ecology 14: 133-139.Shipley B., Meziane D., 2002. The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology 16: 326-331. DOI: 10.1046/j.1365-2435.2002.00626.xStegen J.C., Swenson N.G., Valencia R., Enquist B.J., Thompson J., 2009. Above-ground forest biomass is not consistently related to wood density in tropical forests. Global Ecology and Biogeography 18: 617-625. DOI: 10.1111/j.1466-8238.2009.00471.xSuzuki E., 1999. Diversity in specific gravity and water content of wood among Bornean tropical rainforest trees. Ecological Research 14: 211-224. DOI: 10.1046/j.1440-1703.1999.143301.xTomlinson K.W., Poorter L., Bongers F., Borghetti F., Jacobs L., van Langevelde F., 2014. Relative growth rate variation of evergreen and deciduous savanna tree species is driven by different traits. Annals of botany 114 (2): 315-324. DOI: 10.1093/aob/mcu107van Laar A., Akça A., 2007. Forest mensuration. Springer Netherlands, Dordrecht, 383 p. DOI: 10.1007/978-1-4020-5991-9Weiner J., 2004. Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics 6: 207-215. DOI: 10.1078/1433-8319-00083Weraduwage S.M., Chen J., Anozie F.C., Morales A., Weise S.E., Sharkey T.D., 2015. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Frontiers in Plant Science 6:167. DOI: 10.3389/fpls.2015.00167Wilson J.B., 1988. A review of evidence on the control of shoot: root ratio, in relation to models. Annals of Botany 61: 433-449.Wright S.J., Kitajima K., Kraft N.J.B., Reich P.B., Wright I.J., Bunker D.E., Condit R., Dalling J.W., Davies S.J., Díaz S., Engelbrecht B.M.J., Harms K.E., Hubbell S.P., Marks C.O., Ruiz-Jaen M.C., Salvador C.M., Zanne A.E., 2010., Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91: 3664-3674. DOI: 10.1890/09-2335.1Xie J., Tang L., Wang Z., Xu G., Li Y., 2012. Distinguishing the biomass allocation variance resulting from ontogenetic drift or acclimation to soil texture. PLoS ONE 7(7): e41502. DOI: 10.1371/ journal.pone.0041502

Downloads

Published

2016-03-21

Issue

Section

Research article