Cover Image
Research article

Plant species richness or soil fertility: which affects more the productivity of Scots pine in Central Europe?

Piotr Sewerniak

Piotr Sewerniak
Nicolaus Copernicus University. Email: sewern@umk.pl

Online First: December 29, 2020
Sewerniak, P. 2020. Plant species richness or soil fertility: which affects more the productivity of Scots pine in Central Europe?. Annals of Forest Research DOI:10.15287/afr.2020.2003


It has been highlighted that forest productivity is related both to species richness and to soil fertility; however, thus far it has not been investigated which of these agents is more important for the productivity. The goal of this study was to examine this problem with regard to Scots pine (Pinus sylvestris L.) stands in Central Europe. The study was conducted in 129 plots located in SW Poland. The productivity of even-aged pine stands was estimated based on site index. Plant species richness was investigated regarding the total richness as well as the richness referring to particular forest strata (overstorey, understorey, herb layer). Soil fertility was studied regarding the nutrients’ stocks, the contents of fine-textural classes, pH, the TOC content and the values of Soil Trophic Index. The importance of the variables for the site index was examined using Spearman correlations and the stepwise regression. Productivity of the studied stands was predominantly correlated stronger to species richness than to soil properties being related to its fertility. The higher importance for the productivity of soil variables than of species richness was exclusively found for the poorest plots being represented by Podzols. This study highlights the high importance of species richness occurring in particular forest strata for the forest stand productivity, which could involve consequences for forest economy as well as for CO2 sequestration. Thus, the research delivers strong argument for the conversion of pine mono-stands occurring in Central Europe for mixed forests.


Ammer C., 2018. Diversity and forest productivity in a changing climate. New Phytologist 221: 50-66. https:// doi: 10.1111/nph.15263

Augusto L., Bonnaud P., Ranger J., 1998. Impact of tree species on forest soil acidification. Forest Ecology and Management 105: 67-78. https://doi.org/10.1016/ S0378-1127(97)00270-3

Augusto L., Turpault M-P., Ranger P., 2000. Impact of forest tree species on feldspar weathering rates. Geoderma 96: 215-237. https://doi.org/10.1016/S0016- 7061(00)00021-5

Bellassen V., Luyssaert S., 2014. Carbon sequestration: Managing forests in uncertain times. Nature 506: 153- 156. https://doi: 10.1038/506153a

Berg B., McClaugherty C., 2008. Plant litter, decomposition, humus formation, carbon sequestration. Second ed. Springer, Heidelberg.

Biały K., 1999. Optionality in discrimination of forest site types and planning final species compositions in stands on podzolic soils. Sylwan 143: 65-72.

Bielak K., Dudzińska M., Pretzsch H., 2014. Mixed stands of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst] can be more productive than monocultures. Evidence from over 100 years of observation of long-term experiments. Forest Systems 23: 573-589. https://doi:10.5424/fs/2014233-06195

Bielak K., Dudzińska M., Pretzsch H., 2015. Volume growth of mixed−species versus pure stands: results from selected long−term experimental plots in Central Europe. Sylwan 159: 22-35. https://doi.org/10.26202/ sylwan.2014028

Brożek S., Zwydak M., Lasota J., 2008. Numerical index of trophic variants of Podzols and Arenosols subtypes. Rocz. Glebozn. 54: 7-17.

Caspersen J.P., Pacala S.W., 2001. Successional diversity and forest ecosystem function. Ecological Research 16: 895-903. https://doi.org/10.1046/j.1440- 1703.2001.00455.x

Eckhart T., Pötzelsberger E., Koeck R., Thom D., Lair G.J., van Loo M., Hasenauer H., 2019. Forest stand productivity derived from site conditions: an assessment of old Douglas-fir stands (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) in Central Europe. Annals of Forest Science 76: 19. https://doi. org/10.1007/s13595-019-0805-3

Finlay R.D., 1995. Interactions between soil acidification, plant growth and nutrient uptake in ectomycorrhizal associations of forest trees. Ecological Bulletin 44: 197-

214. https://www.jstor.org/stable/20113163

Flinn K.M., Marks P.L., 2007. Agricultural legacies in forest environments: tree communities, soil properties, and light availability. Ecollogical Applications 17: 452- 463. https://doi: 10.1890/05-1963

Forrester D.I., 2014. The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. Forest Ecology and Management 312: 282-292. https://doi.org/10.1016/j.foreco.2013.10.003

Forrester D.I., 2015. Transpiration and water-use efficiency in mixed species forests versus monocultures: effects of tree size, stand density and season. Tree Physiology 35: 289-304. https: //doi: 10.1093/treephys/tpv011

Forrester D.I., Bauhus J., 2016. A review of processes behind diversity-productivity relationships in forests. Current Forestry Reports 2: 45-61. https://doi: 10.1007/ s40725-016-0031-2

Fujii K., 2014. Soil acidification and adaptations of plants and microorganisms in Bornean tropical forests. Ecological Research 29: 371-381. https://doi: 10.1007/ s11284-014-1144-3

Goelz J.C.G., Burk T.E., 1996. Measurement error causes bias in site index equations. Canadian Journal of Forest Research 26: 1585-1593. https://doi.org/10.1139/x26-178 Gregow H., Laaksonen A., Alper M.E., 2017. Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010. Scientific Reports 7,46397. https://doi: 10.1038/srep46397

Gruba P., 2004. Aluminium toxicity in forest soils. Sylwan, 148: 50-56. htps://doi.org/10.26202/sylwan.2003907 Hägglund B., Lundmark J.E., 1977. Site index estimation by means of site properties Scots pine and Norway spruce in Sweden. Studia forestalia Suecica 138: 5-38.

Hanewinkel M., Cullmann D.A., Schelhaas M-J., Nabuurs G-J., Zimmermann N.E., 2013. Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change 3: 203-207. https:// DOI: 10.1038/nclimate1687

IUSS Working Group WRB, 2015. World reference base for soil resources 2014 (Update 2015). International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

Jankowski M., 2014. Bielicowanie jako wtórny process w glebach rdzawych Brodnickiego Parku Krajobrazowego [Podzolization as a secondary process in the rusty soils of the Brodnica Landscape Park]. In Świtoniak M, Jankowski M, Bednarek R (eds), Antropogeniczne przekształcenia pokrywy glebowej Brodnickiego Parku Krajobrazowego [Anthropogenic transformations of the soil cover of the Brodnica Landscape Park]. Wydawnictwo Naukowe UMK, Toruń, pp. 9-24.

Jasińska J., Sewerniak P., Markiewicz M., 2019. Links between slope aspect and rate of litter decomposition on inland dunes. Catena 172: 501-508. https://doi. org/10.1016/j.catena.2018.09.025

Jönsson U., Rosengren U., Thelin G., Nihlgård B., 2003. Acidification-induced chemical changes in coniferous forest soils in southern Sweden 1988- 1999. Environmental Pollution 123: 75-83. https://doi. org/10.1016/S0269-7491(02)00335-4

Kabała C., Charzyński P., Chodorowski J., Drewnik M., Glina B., Greinert A. et al., 2019. Polish soil classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70: 71- 97. https://doi: 10.2478/ssa-2019-0009 http://karnet.up.wroc.pl/~kabala/SGP6_Soils.html

Kelly D.L., Conolly A., 2000. A review of the plant communities associated with Scots pine (Pinus sylvestris L.) in Europe, and an evaluation of putative indicator/specialist species. Investigación Agraria, Sistemas y Recursos Forestales, Serie 1:15-39. https:// doi:10.5424/674

Kenk G., Guehne S., 2001. Management of transformation in central Europe. Forest Ecology and Management 151: 107-119. https://doi.org/10.1016/S0378-1127(00)00701-5

Kidd P.S., Proctor J., 2001. Why plants grow poorly on very acid soils: are ecologists missing the obvious? Journal of Experimental Botany 52: 791-799. https:// doi.org/10.1093/jexbot/52.357.791

Kint V., Geudens G., Mohren G.M.J., Lust N., 2006. Silvicultural interpretation of natural vegetation dynamics in ageing Scots pine stands for their conversion into mixed broadleaved stands. Forest Ecology and Management 223: 363-370. https://doi. org/10.1016/j. foreco.2005.11.018

Klasyfikacja gleb leśnych Polski [Classification of forest soils in Poland]. Centrum Informacyjne Lasów Państwowych, Warszawa, 119 p.

Lasota J., Błońska E., Zwydak M., 2016. Relations between site characteristics and spruce stand productivity. Baltic Forestry 22: 81-89.

Leuschner C., Ellenberg H., 2017. Ecology of Central European forests. Vegetation ecology of Central Europe. Volume I. Springer International Publishing, Switzerland.

Li S., Su J., Lang X., Liu W., Ou G., 2018. Positive relationship between species richness and aboveground biomass across forest strata in a primary Pinus kesiya forest. Scientific Reports 8: 2227. https://doi:10.1038/ s41598-018-20165-y

Liang J., Crowther T.W., Picard N., 2016. Positive biodiversity-productivity relationship predominant in global forests. Science 354(6309). https://doi. org/10.1126/science.aaf8957

MLUV, Natur Schutz Fonds, 2005. Braunerde [Brown soil]. Steckbriefe Brandenburger Böden. Ministerium für Ländliche Entwicklung, Umwelt und Verbraucherschutz. Potsdam, 4 p.

Marques C.P., 1991. Evaluating site quality of even-aged maritime pine stands in northern Portugal using direct and indirect methods. Forest Ecology and Management 41: 193-204. https://doi.org/10.1016/0378- 1127(91)90103-3

Namikawa K., Okamoto S., Sano J., 2000. Edaphic controls on mosaic structure of the mixed deciduous broadleaf/conifer forest in northern Japan. Forest Ecology and Management 127: 169-179. https://doi. org/10.1016/S0378-1127(99)00128-0

Nilsson U., Elfving B., Karlsson K., 2012. Productivity of Norway spruce compared to Scots pine in the interior of Northern Sweden. Silva Fennica 46: 197-209. http:// www.metla.fi/silvafennica/full/sf46/sf462197.pdf

von Oheimb G., Härdtle W., Eckstein D., Engelke H-H., Hehnke T., Wagner B., Fichtner A., 2014. Does forest continuity enhance the resilience of trees to environmental change? Plos One 9(12): e113507. https://doi.org/10.1371/journal.pone.0113507

Olaczek R., 1976. Changes in the vegetation cover of Poland since the middle of XIX century. Zeszyty Problemowe Postępów Nauk Rolniczych 177: 369-408. Operat glebowo siedliskowy. Nadleśnictwo Bolesławiec, Głogów, Oława [Soil and habitat survey. Bolesławiec, Głogów, and Oława forest inspectorates]. 2003, 2004, 2005. Operat s.c., Toruń.

Paquette A., Messier C., 2011. The effect of biodiversity on tree productivity: from temperate to boreal forests. Global Ecology and Biogeography 20: 170-180. https:// doi.org/10.1111/j.1466-8238.2010.00592.x

Pretzsch H., Block J., Dieler J., Dong P.H., Kohnle U., Nagel J., Spellmann H., Zingg A., 2010. Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Annal of Forest Science 67: 712. https://doi: 10.1051/forest/2010037

Pretzsch H., del Rio M., Ammer C., Avdagic A., Barbeito I., Bielak K., ..., Bravo Oviedo A., 2015. Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. European Journal of Forest Research 134: 927-947. https://doi: 10.1007/s10342-015-0900-4

Pritchett W.L., 1979. Properties and management of forest soils. John Wiley & Sons, New York. 500 p.

Schelhaas M-J., Nabuurs G-J., Schuck A., 2003. Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biology 9: 1620-1633. https://doi: 10.1046/j.1365-2486.2003.00684.x

Sewerniak P., 2011. The influence of soil texture on site index of Scots pine stands in south-west Poland. Forest Research Papers 72: 311-319. https://doi:10.2478/ v10111-011-0031-8

Sewerniak P., 2012a. Impact of soil properties on site index class of Scots pine (Pinus sylvestris L.) stands in south-western Poland. I. pH, content of CaCO and properties concerning soil depth. Sylwan 156: 427-436. https://doi.org/10.26202/sylwan.2012025

Sewerniak P., 2013. Site index of Scots pine stands in south-western Poland in relations to forest site types and soil units. Sylwan 157: 516-525. https://doi. org/10.26202/sylwan.2013028Sewerniak P., 2012b. Impact of soil properties on site index class of Scots pine (Pinus sylvestris L.) stands in south-western Poland. II. Some chemical properties. Sylwan 156: 518-525. https://doi.org/10.26202/ sylwan.2012026

Sewerniak P., 2016. Impact of land relief on site index and growth parameters of Scots pine stands on inland dunes in the Toruń Basin. Sylwan 160: 647-655. https://doi. org/10.26202/sylwan.2016056

Sewerniak P., Piernik A., 2012. Regression models for impact of soil properties on site index class of Scots pine (Pinus sylvestris L.) stands in south-western Poland. Sylwan 156: 563-571. https://doi.org/10.26202/ sylwan.2012043

Sharma M., Amateis R.L., Burkhart H.E., 2002. Top height definition and its effect on site index determination in thinned and unthinned loblolly pine plantations. Forest Ecology and Management 168: 163-175. https://doi. org/10.1016/S0378-1127(01)00737-X

Sharma R.P., Brunner A., Eid T., Oyen B.H., 2011. Modelling dominant height growth from national forest inventory individual tree data with short time series and large age errors. Forest Ecology and Management 262: 2162-2175. https://doi:10.1016/j.foreco.2011.07.037

Sheil D., Bongers F., 2020. Interpreting forest diversity- productivity relationships: volume values, disturbance histories and alternative inferences. Forest Ecosystems 7: 6. https://doi.org/10.1186/s40663-020-0215-x

Siedliskowe podstawy hodowli lasu, załącznik do Zasad hodowli lasu [Habitat basics of silviculture, appendix to the Principles of Silviculture]. Ośrodek Rozwojowo- Wdrożeniowy Lasow Państwowych w Bedoniu, Warszawa.

Sierota Z., Grodzki W., Szczepkowski A., 2019. Abiotic and biotic disturbances aff forest health in Poland over the past 30 years: impacts of climate and forest management. Forests 10(1): 75. https://doi.org/10.3390/f10010075

Skovsgaard J.P., Vanclay J.K., 2008. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81: 13-31. https://doi:10.1093/forestry/cpm041

Socha J., 2008. Effect of topography and geology on the site index of Picea abies in the West Carpathian, Poland. Scandinavian Journal of Forest Research 23: 203-213. https://doi: 10.1080/02827580802037901

Socha J., 2012. Long-term effect of wetland drainage on the productivity of Scots pine stands in Poland. Forest Ecology and Management 274: 172-180. https://doi. org/10.1016/j.foreco.2012.02.032

Socha J., Orzeł S., 2013. Dynamic site index curves for Scots pine (Pinus sylvestris L.) in southern Poland. Sylwan 157: 26-38. https://doi.org/10.26202/ sylwan.2012094

Socha J., Coops N.C., Ochal W., 2016. Assessment of age bias in site index equations. iForest Biogeosciences and Forestry 9: 402-408. https://doi:10.3832/ifor1548-008

Soil Survey Staff, 2014. Keys to soil taxonomy, 12th ed. USDA Natural Resources Conservation Service, Washington, DC.

Spiecker H., 2003. Silvicultural management in maintaining biodiversity and resistance of forests in Europe-temperate zone. Journal of Environmental Management 67: 55-65. https://doi.org/10.1016/S0301- 4797(02)00188-3

Systematyka gleb Polski, wyd. 6, 2019. Wyd. UP we Wrocławiu, INoGiOŚ UP we Wrocławiu, PTG. Kom. Genezy, Klasyfikacji I Kartografii Gleb, Wrocław- Warszawa.

Wang J., You Y., Tang Z., Liu S., Sun O.J., 2014. Variations in leaf litter decomposition across contrasting forest stands and controlling factors at local scale. Journal of Plant Ecology 8: 261-272. https://doi.org/10.1093/jpe/rtu019

Zerbe S., 2002. Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plantations. Forest Ecology and Management 167: 27-42. https://doi.org/10.1016/S0378-1127(01)00686-7

Zhang J., Lyu Z., Shao S., Li F., Yang S., Song W., Li W., Li S., 2016. Effects of aluminium toxicity induced by acid deposition on pine for-est Ecosystem in Longli of Guizhou Province, Southwestern China. Chinese Geographical Science 26: 495-507. https://doi: 10.1007/ s11769-015-0763-0

Zhang Y., Chen H.Y.H., Reich P.B., 2012. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. Journal of Ecology 100: 742-749. https://doi:10.1111/j.1365- 2745.2011.01944.x

Zhang Y., Chen H.Y.H., Taylor A.R., 2017. Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees. Functional Ecology 31: 419-426. https://doi: 10.1111/1365-2435.12699

Zhou G., Guan L., Wei X., Tang X., Liu S., Liu J., Zhang D., Yan J., 2008. Factors influencing leaf litter decomposition: an intersite decomposition experiment across China. Plant and Soil 311: 61-72. https://doi: 10.1007/s11104-008-9658-5

Zhu J.J., Fan Z.P., Zeng D.H., Jiang F.Q., Matsuzaki T., 2003. Comparison of stand structure and growth between artificial and natural forests of Pinus sylvestris var. mongolica on sandy land. Journal of Forestry Research 14: 103-111. https://doi.org/10.1007/ BF02856774


Supplementary Information 1
| DOWNLOAD 35KB
Supplementary Information 2
| DOWNLOAD 2MB
No metrics available for this article.

Related Articles

Related Authors

 



In Google Scholar

In Annals of Forest Research

In Google Scholar

 
  • Piotr Sewerniak
  • Piotr Sewerniak