Research article

Short-term changes in plant functional traits and understory functional diversity after logging of different intensities: a temperate fir-beech forest experiment

Klemen Eler, Janez Kermavnar , Aleksander Marinšek, Lado Kutnar

Klemen Eler
Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI1000 Ljubljana, Slovenia | Slovenian Forestry Institute, Department of Forest Ecology, Večna pot 2, SI-1000 Ljubljana, Slovenia
Janez Kermavnar
Slovenian Forestry Institute, Department of Forest Ecology, Večna pot 2, SI-1000 Ljubljana, Slovenia. Email: janez.kermavnar@gozdis.si
Aleksander Marinšek
Slovenian Forestry Institute, Department of Forest Ecology, Večna pot 2, SI-1000 Ljubljana, Slovenia | Higher Vocational College for Forestry and Hunting, Ljubljanska 3, SI-6230 Postojna, Slovenia
Lado Kutnar
Slovenian Forestry Institute, Department of Forest Ecology, Večna pot 2, SI-1000 Ljubljana, Slovenia

Online First: December 31, 2018
Eler, K., Kermavnar, J., Marinšek, A., Kutnar, L. 2018. Short-term changes in plant functional traits and understory functional diversity after logging of different intensities: a temperate fir-beech forest experiment. Annals of Forest Research DOI:10.15287/afr.2018.1192


The concept of plant functional traits has been demonstrated to be very effective in unravelling the ecological mechanisms governing plant community response to disturbance, especially when research is focused on
short-term post-disturbance vegetation dynamics. In this study, we established an experiment to quantify how logging intensity affects the trait composition and functional diversity of understory communities in fir-beech
forests in the Dinaric Mountains in Slovenia. Three different silvicultural treatments were implemented: control (no logging), 50% of the growing stock removed and 100% of the growing stock removed. Vegetation surveys of vascular plants were made before (in 2012) and two years after (in 2014) logging. Changes in species traits, C-S-R plant strategies (sensu Grime) and community-level functional diversity were analysed. The importance of traits such as small and light diaspores, short life span and anemochory increased with logging intensity. Moreover, species with the ability of both sexual and vegetative reproduction, longer flowering duration and overwintering green leaves increased in abundance after logging. C-S-R strategies mainly shifted from stress-tolerators in pre-logging conditions towards a more ruderal component in post-logging stands. Logging in the short term increased functional diversity, mainly due to newly colonized species being functionally dissimilar from persistent residents. Results suggest that logging intensity strongly influences the magnitude of change in both functional composition and diversity, which also has important implications for biodiversity conservation. At the landscape scale, increasing spatial heterogeneity by creating a mosaic of forest stands subjected to different logging intensities will likely contribute to the enhancement of plant functional diversity.


Aitchinson J., 1986. The statistical analysis of compositional data. Monographs on Statistics and Applied Probability. Chapman and Hall Ltd, London, 416 p. Bachand M., Pellerin S., Tremblay J.P., Côté S.D., Poulin M., 2015. Compositional and functional trajectories of herbaceous communities after deer density control in clear-cut boreal forests. Canadian Journal of Forest Research 45: 758-763. DOI: 10.1139/cjfr-2014-0533. Barkman J.J., Doing H.S., Segal S., 1964. Kritische Bemerkungen und Vorschläge zur quantitativen Vegetationsanalyse. Acta Botanica Neerlandica 13: 394-419. DOI: 10.1111/j.1438-8677.1964.tb00164.x. Bengtsson J., Nilsson S.G., Franc A., Menozzi P., 2000. Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecology and Management 132(1): 39-50. DOI: 10.1016/S0378-1127(00)00378-9. Biswas S.R., Mallik A.U., 2010. Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology 91(1): 28-35. DOI: 10.1890/08-0887.1. Biswas S.R., Mallik A.U., 2011. Species diversity and functional diversity relationship varies with disturbance intensity. Ecosphere 2: art52. DOI: 10.1890/ES10-00206.1. Burton J.I., Mladenoff D.J., Forrester J.A., Clayton M.K., 2014. Experimentally linking distubance, resources and productivity to diversity in forest ground-layer plant communities. Journal of Ecology 102: 1634-1648. DOI: 10.1111/1365-2745.12319. Canullo R., Starlinger F., Granke O., Fischer R., Aamlid D., Neville P., 2011. Assessment of Ground Vegetation, Manual Part VII.1. In ICP Forests. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE ICP Forests Programme Co-ordinating Centre, Hamburg, Germany, pp. 19. [online] URL: http://www.icp-forests.org/Manual.htm Canullo R., Simonetti E., Cervellini M., Chelli S., Bartha S., Wellstein C., Campetella G., 2017. Unravelling mechanisms of short-term vegetation dynamics in complex coppice forest systems. Folia Geobotanica 52(1): 71-81. DOI: 10.1007/s12224-016-9264-x. Catford J.A., Daehler C.C., Murphy H.T., Sheppard A.W., Hardesty B.D., Westcott D.A., Rejmánek M., Bellingham P.J., Pergl J., Horvitz C.C., Hulme P.E., 2012. The intermediate disturbance hypothesis and plant invasions: Implications for species richness and management. Perspectives in Plant Ecology, Evolution and Systematics 14: 231-241. DOI: 10.1016/j.ppees.2011.12.002. Curzon M.T., D’Amato A.W., Fraver S., Palik B.J., Bottero A., Foster J.R., Gleason K.E., 2017. Harvesting influences functional identity and diverstiy over time in forests of the northeastern U.S.A. Forest Ecology and Management 400: 93-99. DOI: 10.1016/j.foreco.2017.05.056. Decocq G., Aubert M., Dupont F., Alard D., Saguez R., Wattez-Franger A., de Foucault B., Delelis-Dusollier A., Bardat J., 2004. Plant diversity in a managed temperate deciduous forest: understorey response to two silvicultural systems. Journal of Applied Ecology 41: 1065-1079. DOI: 10.1111/j.0021-8901.2004.00960.x. Degen T., Devillez F., Jacquemart A.L., 2005. Gaps promote plant diversity in beech forests (Luzulo-Fagetum), North Vosges, France. Annals of Forest Science 62(5): 429-440. DOI: 10.1051/forest:2005039. de Graaf M., Roberts M.R., 2009. Short-term response of the herbaceous layer within leave patches after harvest. Forest Ecology and Management 257: 1014-1025. DOI: 10.1016/j.foreco.2008.11.007. de Groot M., Eler K., Flajšman K., Grebenc T., Marinšek A., Kutnar L. 2016. Differential short-term response of functional groups to a change in forest management in a temperate forest. Forest Ecology and Management 376: 256-264. DOI: 10.1016/j.foreco.2016.06.025. Díaz S., Cabido M., 2001. Viva la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16(11): 646-655. DOI: 10.1016/S0169-5347(01)02283-2. Di Salvatore U., Tonti D., Chiavetta U., Cantiani P., Fabbio G., Becagli C., Bertini G., Sansone D., Skudnik M., Kobal M., Kutnar L., Ferreira A., Kobler A., Kovač M., Ferretti F., 2016. ManFor C.BD sites and the drivers of forest functions. Italian Journal of Agronomy 11: 64-95. Egozcue J.J., Pawlowsky-Glahn V., Mateu-Figueras G., Barcelo-Vidal C., 2003. Isometric logratio transformations for compositional data analysis. Mathematical Geology 35(3): 279-300. DOI: 10.1023/A:1023818214614. Fornwalt P.J., Rhoades C.C., Hubbard R.M., Harris R.L., Faist A.M., Bowman W.D., 2018. Short-term understory plant community responses to salvage logging in beetle-affected lodgepole pine forests. Forest Ecology and Management 409: 84-93. DOI: 10.1016/j.foreco.2017.10.056. Gilliam F.S., 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience 57(10): 845-858. DOI: 10.1641/B571007. Gondard H., Deconchat M., 2003. Effects of soil surface disturbance after logging on plant functional types. Annals of Forest Science 60: 725-732. DOI: 10.1051/forest:2003066. Graae B.J., Sunde P.B., 2000 The impact of forest continuity and management on forest floor vegetation evaluated by species traits. Ecography 23(6): 720-731. DOI: 10.1111/j.1600-0587.2000.tb00315.x. Grime J.P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111(982): 1169-1194. DOI: 10.1086/283244. Grime J.P., 2001. Plant strategies, vegetation processes, and ecosystem properties. Wiley, New York, 417 p. Halpern C.B., Spies T.A., 1995. Plant species diversity in natural and managed forests of the Pacific Northwest. Ecological Applications 5(4): 913-934. DOI: 10.2307/2269343. Heinrichs S., Schmidt W., 2009. Short-term effects of selection and clear cutting on the shrub and herb layer vegetation during the conversion of even-aged Norway spruce stands into mixed stands. Forest Ecology and Management 258: 667-678. DOI: 10.1016/j.foreco.2009.04.037. Hintze C., Heydel F., Hoppe C., Cunze S., König A., 2013. D3: Dispersal and Diaspore Database – Baseline data and statistics on seed dispersal. Perspectives in Plant Ecology, Evolution and Systematics 15(3): 180-192. DOI: 10.1016/j.ppees.2013.02.001. Jafari S.M., Zarre S., Alavipanah S.K., Ghahremaninejad F., 2015. Functional turnover from lowland to montane forests: evidence from the Hyrcanian forest in northern Iran. iForest – Biogeosciences and Forestry 8: 359-367. DOI: 10.3832/ifor1002-008. Kern C.C., Montgomery R.A., Reich P.B., Strong T.F., 2014. Harvest-Created Canopy Gaps Increase Species and Functional Trait Diversity of the Forest Ground-Layer Community. Forest Science 60(2): 335-344. DOI: 10.5849/forsci.13-015. Klotz S., Kühn I., Durka W., 2002. BIOLFLOR – Eine Datenbank mit Biologisch-Ökologischen Merkmalen zur Flora von Deutschland. Bundesamt fur Naturschutz Bonn, Bonn, Germany. Available from http://www.vifabio.de/iqfBio/detail/5415. Kobal M., Bertoncelj I., Pirotti F., Dakskobler I., Kutnar L., 2015. Using Lidar Data to Analyse Sinkhole Characteristics Relevant for Understory Vegetation under Forest Cover – Case Study of a High Karst Area in the Dinaric Mountains. PLoS ONE 10(3): e0122070. DOI: 10.1371/journal.pone.0122070. Kuuluvainen T., 1994. Gap disturbance, ground microtopography, and the regeneration dynamics of boreal coniferous forests in Finland: a review. Annales Zoologici Fennici 31: 35-51. Kusumoto B., Shiono T., Miyoshi M., Maeshiro R., Fujii S., Kuuluvainen T., Kubota Y., 2015. Functional response of plant communities to clearcutting: management impacts differ between forest vegetation zones. Journal of Applied Ecology 52: 171-180. DOI: https://doi.org/10.1111/1365-2664.12367. Kutnar L., Eler K., Marinšek A., 2015. Effects of different silvicultural measures on plant diversity - the case of the Illyrian Fagus sylvatica habitat type (Natura 2000). iForest – Biogeosciences and Forestry 9: 318-324. DOI: 10.3832/ifor1587-008. Lavorel S., Garnier E., 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16(5): 545-556. DOI: 10.1046/j.1365-2435.2002.00664.x. Lin N., Bartsch N., Vor T., 2014. Long-term effects of gap creation and liming on understory vegetation with a focus on tree regeneration in a European beech (Fagus sylvatica L.) forest. Annals of Forest Research 57(2): 233-246. DOI: 10.15287/afr.2014.274. Lohbeck M., Poorter L., Paz H., Pla L., van Breugel M., Martínez-Ramos M., Bongers F., 2012. Functional diversity changes during tropical forest succession. Perspectives in Plant Ecology, Evolution and Systematics 14: 89-96. DOI: 10.1016/j.ppees.2011.10.002. Martinčič A., Wraber T., Jogan N., Podobnik A., Turk B., Vreš B., Ravnik V., Frajman B., Strgulc Krajšek S., Trčak B., Bačič T., Fischer M.A., Eler K., Surina B., 2007. Mala Flora Slovenije: Ključ za določanje praprotnic in semenk. Tehniška založba Slovenije, Ljubljana, Slovenia, 967 p. Mayfield M.M., Bonser S.P., Morgan J.W., Aubin I., McNamara S., Vesk P.A., 2010. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Global Ecology and Biogeography 19: 423-431. DOI: 10.1111/j.1466-8238.2010.00532.x. McGill B.J., Enquist B.J., Weiher E., Westoby M., 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21(4): 178-185. DOI: 10.1016/j.tree.2006.02.002. Muscolo A., Bagnato S., Sidari M., Mercurio R., 2014. A review of the roles of forest canopy gaps. Journal of Forestry Research 25(4): 725-736. DOI: https://doi.org/10.1007/s11676-014-0521-7. Nagel T.A., Mikac S., Dolinar M., Klopčič M., Keren S., Svoboda M., Diaci J., Bončina A., Paulić V., 2017. The natural disturbance regime in forests of the Dinaric Mountains: A synthesis of evidence. Forest Ecology and Management 388: 29-42. DOI: 10.1016/j.foreco.2016.07.047. Nelson C.R., Halpern C.B., 2005. Short-term effects of timber harvest and forest edges on ground-layer mosses and liverworts. Canadian Journal of Botany 83(6): 610-620. DOI: 10.1139/b05-036. Noble I.R., Slatyer R.O., 1980. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43(1-2): 5-21. DOI: 10.1007/BF00121013. Patry C., Kneeshaw D., Aubin I., Messier C., 2017. Intensive forestry filters understory plant traits over time and space in boreal forests. Forestry 90(3): 436-444. DOI: 10.1093/forestry/cpx002. Paušič A., Čarni A., 2012. Functional response traits and plant community strategy indicate the stage of secondary succession. Hacquetia 11(2): 209-225. DOI: 10.2478/v10028-012-0010-5. Petchey O.L., Gaston K.J., 2002. Functional diversity (FD), species richness and community composition. Ecology Letters 5: 402-411. DOI: 10.1046/j.1461-0248.2002.00339.x. Pinheiro J., Bates D., DebRoy S., Sarkar D., R Core Team. 2017. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-131, Available at https://CRAN.R-project.org/package=nlme. Ramovs B.V., Roberts M.R., 2005. Response of plant functional groups within plantations and naturally regenerated forests in southern New Brunswick, Canada. Canadian Journal of Forest Research 35(6): 1261-1276. DOI: 10.1139/x05-049. Raunkiaer C., 1934. The life forms of plants and statistical plant geography; being the collected papers of C. Raunkiaer. Clarendon Press, Oxford, 632 p. R Core Team, 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, Available at https://www.R-project.org/. Roberts M.R., Gilliam F.S., 1995. Patterns and mechanisms of plant diversity in forested ecosystems: implications for forest management. Ecological Applications 5(4): 969-977. DOI: 10.2307/2269348. Rozman A., Diaci J., Batič F., 2013. Functional analysis of vegetation on alpine treeline ecotone in the Julian and Kamnik-Savinja Alps in Slovenia. European Journal of Forest Research 132(4): 579-591. DOI: 10.1007/s10342-013-0691-4. Scolastri A., Bricca A., Cancellieri L., Cutini M., 2017. Understory functional response to different management strategies in Mediterranean beech forests (central Apennines, Italy). Forest Ecology and Management 400: 665-676. DOI: 10.1016/j.foreco.2017.06.049. Shea K., Roxburgh S.H., Rauschert E.S.J., 2004. Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes. Ecology Letters 7:491-508. DOI: 10.1111/j.1461-0248.2004.00600.x. Tilman D., Knops J., Wedin D., Reich P., Ritchie M., Siemann E., 1997. The Influence of Functional Diversity and Composition on Ecosystem Processes. Science 277: 1300-1302. DOI: 10.1126/science.277.5330.1300. Tutin T.G., Burges N.A., Chater A.O., Edmondson J.R., Heywood V.H., Moore D.M., Valentine D.H., Walters S.M., Webb D.A., 1993. Flora Europaea. Cambridge University Press, Cambridge, 581 p. Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M., Webb D.A. (eds), 1964–1980. Flora Europaea, Volumes 1–5. Cambridge University Press, Cambridge, UK. van den Boogaart K.G., Tolosana R., Bren M., 2014 compositions: Compositional Data Analysis. R package version 1.40-1, Available at https://CRAN.R-project.org/package=compositions. Violle C., Navas M.L., Vile D., Kazakou E., Fortunel C., Hummel I., Garnier E., 2007. Let the concept of trait be functional! Oikos 116(5): 882-892. DOI: 10.1111/j.0030-1299.2007.15559.x. Weiher E., van der Werf A., Thompson K., Roderick M., Garnier E., Eriksson O., 1999. Challenging Theophrastus: A common core list of plant traits for functional ecology. Journal of Vegetation Science 10(5): 609-620. DOI: 10.2307/3237076. Willner W., Di Pietro R., Bergmeier E., 2009. Phytogeographical evidence for pos-glacial dispersal limitation of European beech forest species. Ecography 32(6): 1011-1018. DOI: 10.1111/j.1600-0587.2009.05957.x. WRB, 2015. World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. IUSS, ISRIC, FAO. World Soil Resources Reports No. 106, Rome, 192 p.


No Supplimentary Material available for this article.
No metrics available for this article.

Related Articles

Related Authors

 



In Google Scholar

In Annals of Forest Research

In Google Scholar

 
  • Klemen Eler
  • Janez Kermavnar
  • Aleksander Marinšek
  • Lado Kutnar
  • Klemen Eler
  • Janez Kermavnar
  • Aleksander Marinšek
  • Lado Kutnar