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Abstract. Height–diameter (H–D) and stem volume equations are indispensable 
tools for forest management and have a wide use in forestry, however they are lack-
ing for Lebombo-ironwood. Based on a dataset of 1144 Lebombo-ironwood trees 
destructively measured for height and stem volume, H–D and stem volume models 
were fitted using mixed-effects and dummy variables models. Random-effects and 
dummy variables were the different growing sites, as they affect H–D relationships 
and therefore stem volume models. Different model forms were compared to each 
other with regard to the sources of errors. The error due to uncertainty in the model 
parameter estimates was insignificant for mixed-effects models, whilst the error 
due to model misspecification was relatively larger for dummy variables H–D func-
tions when compared to the mixed-effects ones. However, both mixed-effects and 
dummy variables models were similar in terms of error due to residual variability 
around model prediction. Overall, mixed-effects and dummy variables models did 
not differ in terms of predictive ability and accuracy. 
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Introduction

Lebombo-ironwood (Androstachys johnsonii 
Prain) is an evergreen tree species from Picro-
dendraceae family, and can grow up to 20 m in 
height (Molotja et al. 2011). In Mozambique, 
this tree species rarely exceeds 35 cm in di-
ameter at breast height (DBH) (Magalhães & 

Seifert 2015a,b). Lebombo-ironwood forms 
pure stands named Mecrusse and it has been 
reported in 1963 to be almost restricted to Mo-
zambique (Cardoso 1963), where it is main-
ly found in southmost part of the country, in 
Inhambane and Gaza provinces (Magalhães 
2015a,b). 
 In Mozambique this species is classified as 
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first class timber and it is lawful harvested at 
30 cm DBH (Decree 12/2002). It is primarily 
used for flooring, but it is also suitable for ma-
rine uses, turnery, furniture and interiors (Bun-
ster 2006). Lebombo-ironwood has an import-
ant socioeconomic value to local communities, 
which sell and use its stakes and poles in the 
construction of homes, shelters, and furniture. 
It is the main source of income in the Fun-
halouro and Mabote districts (MAE 2005a, 
b). Nonetheless, this species is not managed, 
mainly due to lack of management tools, e.g. 
height-diameter (H–D) and volume equations. 
 H–D and stem volume equations have a 
wide use in forestry. H–D relationships vary 
with growing environment (e.g. soil and 
weather conditions) and management (Shar-
ma & Zhang 2004). The variation in the H–D 
relationship makes the stem volume equations 
to vary in the same conditions as well, and re-
stricts their use to the area from which the ba-
sic data were obtained (Loetsch et al. 1973, de 
Gier 1992).  This indicates that growing sites 
or site effects need to be included in such mod-
els. 
 There are two kinds of subject–specific 
modelling methods (Wang et al. 2008, Fu et 
al. 2012) that can be applied to incorporate 
site-specific effects and account for the inter-
regional variability: mixed-effects and dummy 
variables modelling methods.  
 Mixed-effects models estimate both fixed 
parameters (common to every subject) and 
random parameters (specific to each subject) 
simultaneously for the same model. The in-
troduction of random-effects parameters into 
the model enables modelling the variability 
detected for given phenomena among differ-
ent subjects, after defining a common fixed 
functional structure (Calama & Montero 2004, 
Castedo-Dorado et al. 2006, Schimidt et al. 
2011). 
 Mixed-effects models give an unbiased and 
efficient estimation of the fixed parameters of 
the model; improve the predictive ability if it 
is possible to predict the value of the random 
parameters for an unsampled location (Cala-

ma & Montero 2004, Mehtätalo et al. 2015). 
Thus, mixed-effects models can be calibrated 
for new, previously not sampled sites quick-
ly and effectively (Saunders & Wagner 2008, 
Mehtätalo et al. 2015).
 In regression analysis, dummy variables are 
independent variables which take the value of 
either zero or one (Garavaglia & Sharma 2000, 
Fu et al. 2012) to indicate the absence or the 
presence of some categorical effect (Fu et al. 
2012). Dummy variables are a numeric stand-
in for qualitative facts and have been com-
monly used to deal with categorical variables 
which are involved in quantitative methods (Li 
et al. 2006, Tang et al. 2008). In a regression 
model, a dummy variable with a value of zero 
will cause its coefficient to disappear from the 
equation (Garavaglia & Sharma 2000). Con-
versely, the value of one causes the coefficient 
to function as a supplemental intercept, be-
cause of the identity property of multiplication 
by one (Garavaglia & Sharma 2000).   
 Mixed-effects models treat the subjects (e.g. 
growing sites) as random effects (Wang et al. 
2008). In contrast, dummy variables models 
treat the subjects as fixed-effects, but different 
across individual subjects (Wang et al. 2008) 
thus they are named fixed individual effects 
(Baltagi 2005, Wang et al. 2007).   
 There is an intense debate of which of two 
subject–specific modelling methods should be 
used (Gelman 2005, Wang et al. 2008, Fu et 
al. 2012, Zeng 2014). Different studies have 
shown contradictory conclusions (Wang et al. 
2008, Fu et al. 2012, Zeng 2014). 
 The objectives of this research were to (i) 
develop site-specific H–D and stem volume 
equations for Lebombo-ironwood; (ii) com-
pare mixed-effects and dummy variables H–D 
and stem volume models with regard to fol-
lowing sources of errors in model prediction: 
(1) error due to model misspecification, (2) er-
ror due to uncertainty in the model parameter 
estimates, and (3) error due to residual vari-
ability around model prediction.
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Material and methods

Study area

The research was conducted in Mozambique 
(18o 15´S, 35o 00´E, Fig. 1A), in Mecrusse 
woodlands of Mandlakazi, Chibuto, Mabo-
te, Funhalouro, Mabalane and Chicualacuala 
districts (Fig. 1B). The physical and natural 
conditions for each district of the study area 
are summarized in Table 1.  The districts were 
grouped according to similarity in physical 
and natural conditions, which are expected 
to influence largely the site quality and thus 
H–D relationship and the stem volume 
equations. Therefore, three growing sites 
were defined as shown in Table 1.
  
Data collection

The data consisted of 1144 trees, with DBHs 
ranging from 5 to 50 cm, destructively har-
vested in 2007 (276 trees), 2009 (397 trees), 
2010 (341 trees), 2012 (93 trees) and 2014 (37 
trees). Total height was measured with the tree 
felled as the length from ground to the tip of 
the tree. Stem was defined as the length of the 

trunk from ground to a predefined top diame-
ter. However, as data from different years were 
collected for different researches, the defini-
tion of top diameter varied slightly from year 
to year. For the 2007, 2009 and 2010 trees, the 
top diameter was 2.0 cm; and for the 2012 and 
2014 trees, the top diameter was 2.5 cm. 
 The stump height also varied from year to 
year; however, its volume was calculated and 
included in the computation of stem volume. 
The stump volume was included in the stem 
volume to standardize the definition of the 
stem (from ground level to the height corre-
sponding to 2.0 or 2.5 cm) and avoid discrep-
ancies in stem volume due to different stump 
lengths. Moreover, when estimating stem vol-
ume from volume equations, the tree height is 
measured using hypsometers, thus estimated 
as the vertical distance from ground level to 
the top of the tree, not excluding the stump. 
 The majority of the data from 2007 were 
obtained in the course of forest exploitation, 
thus the stump heights varied from tree to tree 
(from 12 to 31 cm). However, to ensure ade-
quate representation of the population, small 
and unusual large trees were felled and add-
ed to the sample; these trees had a predefined 
stump height of 15 cm, as for trees from 2009 

and 2010. Trees from 
2012 and 2014 had a 
stump height of 20 cm. 
Trees from 2012 were 
measured within sam-
ple plots laid out in the 
forest. Trees from 2009, 
2010, and 2014 were 
measured randomly 
from the forest.
 Prior to felling, 
the height of the stump 
was marked around the 
perimeter of the trunk 
using a marker. The 
chainsaw operator felled 
the trees following the 
marked perimeter. How-Study area showing the different districts and growing sites in-

vestigated
Figure 1



300

Ann. For. Res. 60(2): 297-312, 2017                                                                                                                      Research article 

ever, in some trees, especially those with ir-
regular shape of the outline of the cross-sec-
tion, cutting exactly at marked perimeter was 
difficult. This must have induced errors in the 
volume estimate. Nonetheless, this error is ex-
pected to be negligible as A. johnsonii trees 
have approximately a circular cross-section 
and because whenever it was observed that the 
chainsaw operator missed the marked perime-
ter the stump height was re-measured.  
 The portion of the stem from stump height to 
the top diameter (major segment) was divided 
into 10 minor segments equal in length and the 
diameter of each minor segment was measured 
at the midpoint. The volume of the major seg-
ment was determined using Hohenadl’s formu-
la (Magalhães & Seifert 2015a), and that of the 
stem was computed by summing the volume 
of the major segment and that of the stump, 
computed using either Huber’s or Smalian’s 
formula, depending on the number of diameter 
measurements taken. 
 The data were randomly split into training 
(90.6 %) and testing data (9.4 %), for model 
fitting and validation, respectively.
 
Data analysis

It is clear from Table 1 that the growing sites 
are different and that they are reflected in DBH, 
height, and volume values (Table 2). Thus, it is 
expected the H–D relationships and stem vol-
ume models to vary from site to site (Sharma 
& Zhang 2004, Adame et al. 2008). This jus-
tifies the use of site-specific models (Muga-
sha et al. 2016), as the H–D relationships are 
largely influenced by site index (Adame et al. 
2008) and habitat (Huang et al. 2000). Thus, 
the regression parameters of H–D and stem 
volume equations are expected to vary from 
one growing site to another, as trees from the 
same growing site tend to be more similar to 
each other than to trees from different growing 
sites.  
 In this study, to account for the interregional 
variability, the models were fitted using both 
mixed-effects and dummy variables regres-

sions. In mixed-effects regression, besides the 
fixed-effects parameters (common to every 
site), random-effects parameters (specific to 
each site) were added to the model (i.e. dif-
ferent sites were added as random-effects). In 
dummy variables regression, the site-effects 
were added to the model as dummy variables.  
Site-specific effects as described here were 
preferred over district-specific effects because 
districts are administrative divisions and, as 
such, are not expected to affect the model 
parameters. That is, administrative divisions 
may be composed by distinguished growing 
environments and different administrative di-
visions may be part of the same growing envi-
ronment or ecological region. The latter case is 
what is observed in the study area. Therefore, 
districts with similar growing environment 
were grouped together. On the other hand, 
plot-level random effects were not considered 
because, as mentioned previously, not all trees 
were harvested within sampling plots, then the 
majority of the trees would lack random-ef-
fects.
 The tested H–D model forms were asymp-
totic models (Table 3), as they are more consis-
tent with biological growth curves characteris-
tics (Adame et al. 2008), therefore biologically 
reasonable. Biologically reasonable models 
quite often produce more accurate predictions 
beyond the range of data used in model fitting 
(Fekedulengn et al. 1999).

Mixed-effects modelling approach 

The H-D model forms in Table 3 were fitted 
in their linearized form to allow the use of 
linear least squares. Linear least squares were 
preferred over nonlinear ones because, unlike 
random-effects parameters, dummy variables 
cannot be added to nonlinear models (Cunia 
1986a, Garavaglia & Sharma 2000). For ex-
ample, the Näslund (1937) mixed-effects H–D 
model form given in Eq.1 was linearized as 
given in Eq. 2. Similar linearization was ap-
plied for other H–D model forms (Table 3). 
This type of linearization has been widely used 
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(Siipilehto 2000, Husch et al. 2003, van Laar 
& Akça 2007, Schmidt et al. 2010, Kershaw Jr. 
et al. 2017).                                                                         

                                                                               (1)

( ) ( )D
3.1H

D
jj βα θ+β+θ+α=

−

                                                                                             
                    (2)

Similarly, the Schumacher & Hall (1933) 
mixed-effects volume model is as follows:

( ) ( ) ( )εθ+α= γβ θ+γθ+β
α

jj HDV j
                                                  (3)

 
where: H - tree height; D - diameter at breast 
height (DBH); V - stem volume; α, β and ϒ 

- fixed-effects regression parameters; ϴij - ran-
dom parameter i for site j,  j = 1, 2, 3, e.g. ϴα1 
= random parameter α for site 1. For Eq. 2, ϴαj 
and ϴβj are the random intercept and random 
slope for growing site j.
 Eq. 3 was linearized by log transformation, 
addressing, therefore, the heteroskedasticity 
as, quite often, the error variance is function-
ally related to the independent variables in re-
gression (Parresol 1999). Thus, Eq. 3 became 
as given in Eq. 4.
                                      
                 (4)

where: a = ln(α + θαj), ε´= lnε. Thus, the pre-

Physical and natural conditions of the study areaTable 1
Gro-
wing 
site

District Climate, hydrology and tree characteristics
Relieve, 
topography and 
altitude

1 Mandlakazi

Climate: dry and humid tropical; Mean annual 
precipitation: 400 to 1000 mm; Hydrology: 63 lakes 
and 2 rivers. Characterised by relatively larger and 
taller adult A. johnsonii trees.

Relief and 
topography: flat. 
Altitude: 50 to 
200 m a.s.l.

Chibuto
Climate: dry tropical; Mean annual precipitation: 400 
to 600 mm; Hydrology: 4 rivers. Characterised by 
relatively larger and taller adult A. johnsonii trees.

Relief and 
topography: flat. 
Altitude: 50 to 
200 m a.s.l.

2 Funhalouro

Climate: dry tropical; Mean annual precipitation: 
500 to 800 mm; Hydrology: not crossed by any river, 
occurrence of meteorological droughts. Characterised 
by medium to large (in DBH and height) adult A. 
johnsonii trees.

Relief and 
topography: flat. 
Altitude: 100 to 
200 m a.s.l.

Mabote

Climate: dry tropical; Mean annual precipitation: 600 
mm; Hydrology: not crossed by any river, occurrence 
of meteorological droughts. Characterised by medium 
to large (in DBH and height) adult A. johnsonii trees.

Relief and 
topography: flat. 
Altitude: 100 to 
200 m a.s.l.

3 Chicualacuala

Climate: semi-arid and dry tropical; Mean annual 
precipitation: 500 to 800 mm; Hydrology: 5 rivers, 
occurrence of agricultural droughts. Characterised by 
relatively thinner and shorter adult A. johnsonii trees.

Relief and 
topography: flat. 
Altitude: >200 m 
a.s.l.

Mabalane

Climate: semi-arid and dry tropical; Mean annual 
precipitation: 500 to 800 mm; Hydrology: 7 rives, 
occurrence of agricultural droughts. Characterised by 
relatively thinner and shorter adult A. johnsonii trees.

Relief and 
topography: flat. 
Altitude: >200 m 
a.s.l.

Note. Source: DINAGECA (1997), FAO (2003), MAE (2005a–f), Magalhães & Seifert (2005d).
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dicted volume ( V̂ ) has to be obtained by 
back-transforming Eq. 4 into original values. 
However, as logarithmic transformation induc-
es a systematic bias in the final dependent vari-
able (Chave et al. 2005), the back-transformed 
equation must be corrected for that bias using 

the correction factor ( )2Sexp 2
r  suggested by 

Baskerville (1972). This results in following 
estimated volume from the Schumacher & 
Hall (1933) model form:

                                                                      (5)

Growing 
site

Training data Testing data 
DBH [cm] H [m] V [m3] ff1.3 DBH [cm] H [m] V [m3] ff1.3

n 271 271 271 271 33 33 33 33
Mean 16.74 11.33 0.1893 0.5255 18.70 11.20 0.1929 0.5211

1 Min 5.00 3.60 0.0038 0.3893 5.00 5.30 0.0062 0.3893
Max 50.00 22.50 1.8845 0.6967 35.00 17.70 0.7957 0.6967
SD 8.47 3.72 0.2152 0.0222 8.11 3.78 0.1910 0.0500
CV [%] 50.61 32.84 113.65 4.22 43.35 31.00 85.68 9.60
n 457 457 457 457 40 40 40 40
Mean 13.53 10.91 0.1248 0.5904 17.45 11.38 0.1810 0.5143

2 Min 5.00 1.80 0.0026 0.3869 6.00 7.92 0.0130 0.3914
Max 47.00 16.80 1.2969 0.7187 30.50 15.16 0.5417 0.6631
SD 6.71 2.46 0.1494 0.0413 7.11 1.70 0.1437 0.0656
CV [%] 49.59 22.55 119.73 6.99 40.72 13.73 79.37 12.75
n 309 309 309 309 34 34 34 34
Mean 12.07 8.84 0.1001 0.6047 14.88 7.36 0.1209 0.5650

3 Min 5.00 1.50 0.0015 0.5409 5.00 1.50 0.0029 0.5309
Max 33.00 14.80 0.3900 0.7658 29.00 11.88 0.3431 0.7001
SD 4.67 2.86 0.0639 0.0391 4.67 1.91 0.0395 0.0408
CV [%] 38.70 38.70 101.31 6.47 37.76 30.41 81.23 7.23

Whole 
popu-
lation

n 1037 1037 1037 1037 107 107 107 107
Mean 13.93 10.40 0.1343 0.5777 17.02 10.73 0.1748 0.5325
Min 5.00 1.50 0.0015 0.3869 5.00 1.50 0.0029 0.3893
Max 50.00 22.50 1.8845 0.7658 35.00 17.70 0.7957 0.7658
SD 6.94 3.40 0.1591 0.0483 7.24 3.79 0.1562 0.0580
CV [%] 49.80 27.41 129.12 8.36 44.65 36.53 102.84 10.89

Summary statistics of the training and testing samplesTable 2

Summary statistics of the training and testing samplesTable 3

H-D model form Author (s) Volume model form Author(s)
H = 1.3 + D2/(α + βD)2 + ε Näslund (1937) V = αDβε Stoffels (1953)

H = 1.3 + D2/(αD2 + βD + ϒ) + ε Strand (1959) V = αDβHϒε Schumacher & Hall 
(1933) 

H = 1.3 + αD/(β + D) + ε Menten & Michalis 
(1913) V = α(D2H)βε Spurr (1952) 

Note. Abbreviations: H - tree height, D - diameter at breast height (DBH), V - stem volume, α, β and ϒ - fixed-ef-
fects regression parameters.
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where 2
rS  is the variance of the logarithmic 

residuals. Analogously, log transformation, 
back-transformation and bias correction was 
applied to Stoffels (1953) mixed-effects vol-
ume model, resulting in Eq. 6.
                                                                      

(6) 
 
 Mixed-effects models were fitted 
using the lmer function of lme4 pack-
age (Bates et al. 2016) of R software 
(R Core Team 2016). The lmer function was 
run using the default algorithm BOBYQA 
from the minqa package (Bates et al. 2015) as 
optimization algorithm.

Dummy variables  modelling approach

As mentioned previously, three levels of site 
effects were defined and coded as 1, 2, and 
3 for Mandlakaze & 
Chibuto, Mabote & 
Funhalouro, and Chic-
ualacuala & Mabalane 
districts, respectively. Site 1 (Mandlakaze & 
Chibuto districts) was defined as a reference 
or baseline site. Therefore, only two dummy 
variables (for Mabote & Funhalouro and Chic-
ualacuala & Mabalane) were defined as fol-
lows, since Z1 is automatically included in the 
intercept:

  (7)

(8)

where Zj - dummy variable for site j (e.g. Z2  - 
dummy variable for site 2).
 In this study, only the intercept dummy vari-
ables were considered as previously performed 
by Wang et al. (2007), Zeng et al. (2011), and 
Fu et al. (2012). Slope dummy variables were 
not considered. It was assumed that the dum-
my variables did not interact with the quantita-
tive variables of the model (e.g. DBH). There-

fore, only the intercept was assumed to change 
between sites, as it was found to represent the 
variation between subjects (Zeng et al. 2011, 
Fu et al. 2012).
 The linearized Näslund (1937) H–D dum-
my variables model is given in Eq. 9 and the 
height is predicted using the back-transformed 
function in Eq. 10.

                                                                               
(9)

              (10)

where δj - dummy parameter for site j (e.g. δ2 - 
dummy parameter for site 2). 
 Accordingly, the log-transformed Schum-
acher & Hall (1933) dummy variables volume 
model is as follow in Eq. 11:

(11)

where a = lnα; ε´= lnε. Therefore, the individ-
ual stem volume based in Eqs.11 is estimated 
using Eq. 12.                                                                                    
               
               (12)

 Analogously, back-transformation and bias 
correction was applied to Stoffels (1953) dum-
my variables volume model, resulting in Eq. 
13. 

(13)

 Dummy variables models were fitted using 
the lm function of R software (R Core Team, 
2016). The lm function was run using QR al-
gorithm.
 Note that the linearization of the Näslund 
(1937) function which resulted in Eqs. 2 and 
9 induces bias in the final volume estimate. 
However, this bias is considered acceptable 
as the linearized functions are aligned with 
the existing publications (e.g. Siipilehto 2000, 
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Husch et al. 2003, van Laar & Akça 2007, 
Schmidt et al. 2010, Kershaw Jr. et al. 2017).

Evaluation and comparison

The models were evaluated based on the fol-
lowing goodness-of-fit statistics: adjusted co-
efficient of determination (Adj. R2), Akaike in-
formation criterion (AIC - Akaike 1973), mean 
residual (MR), standard deviation of residuals 
(Sr), and Furnival’s index of fit (FI; Furnival 
1961). The mean residual and the standard de-
viation of residuals were expressed as relative 
values, hereafter referred to as percent mean 
residual (MR [%]) and coefficient of variation 
of residuals (CVr [%]), respectively, which are 
more revealing. 
 MR measures the bias of the model, describ-
ing the directional magnitude, the size of ex-
pected under or overestimates. The ideal MR 
value is zero. CVr measures the dispersion be-
tween the observed and the estimated values of 
the model; it indicates the error that the model 
is subject to when is used for predicting the de-
pendent variable. The ideal CVr value is zero. 
AIC gives a relative estimate of the informa-
tion lost when a model is used for predicting 
the dependent variable. FI expresses both the 
size of the residuals and possible deviations 
from normality and homoscedasticity; i.e. FI 
value is increased by larger residuals, and de-
viation from normality and homoscedasticity. 
 Models resulting in largest Adj. R2, least and 
not significant MR, smallest AIC, CVr and FI 
were selected as the best. The selected models 
were then validated by comparing observed 
and predicted values from an independent 
sample using aggregate difference in percent-
age (AD) (de Gier 1992, Husch et al. 2003) 
which was tested with the Wilcoxon signed 
rank test.
 For all mixed-effects models, all regression 
parameters were first considered as mixed. 
Then, the random parameters were tested for 
significance using the likelihood ratio test and 
eliminated if not significant. 
 Additionally, predicted mean values from 

mixed-effects and dummy variables models 
were compared to each other and to the ob-
served mean values using column charts. The 
testing data were used for that purpose. All sta-
tistical analyses were performed at α = 0.05.
 Mixed-effects and dummy variables H–D 
and stem volume models were also compared 
with regard to following sources of errors in 
model prediction: (1) error due to model mis-
specification, (2) error due to uncertainty in the 
model parameter estimates, and (3) error due 
to residual variability around model predic-
tion.
 Error due to model misspecification (also 
known as error due to model selection or sta-
tistical model error) arises from the fact that 
changing the model will generally change the 
estimates (Cunia 1986b). When the model 
used fits reasonably well the sample data, the 
statistical model error is generally small (Cu-
nia 1986b, McRoberts & Westfall 2015). This 
error is negligible when the predictors explain 
a large portion of the variation of the depen-
dent variable (Magalhães 2015a), therefore 
this source of error can be judged by the co-
efficient of determination (R2).  McRoberts & 
Westfall (2015) stated that this source of error 
is typically not a problem when R2 > 85%. 
 The error due to uncertainty in the model pa-
rameter estimates is expressed by the param-
eter variance-covariance matrix (Magalhães 
2015a).  Here, this error is expressed by the 
standard errors of the regression parameters, as 
they are the square roots of the respective vari-
ances obtained from the variance-covariance 
matrix. 
 The error due to residual variability around 
model prediction expresses the dispersion be-
tween the observed and the estimated values 
by the model; therefore, it is here expressed 
as the coefficient of variation of the residuals 
(CVr) as it is a relative measure of residual 
variance. The error due to residual variability 
around model prediction is also measured by 
Furnival’s index of fit (FI) as it increases with 
increasing residuals and heteroskedasticity.
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Results

Näslund (1937) function was the best-fitting 
H–D model form. Schumacher and Hall (1933) 
function was the best-fitting volume model. 
However, as tree height is difficult to measure, 
especially in natural forests, 1-variable mod-
el form using DBH exclusively as a predictor 
(Stoffels 1953) was also considered. Stoffels 
(1953) model form performed satisfactorily. 
 Overall, mixed-effects models described 
similarly the data as the dummy variables 
models. All random-effects parameters of all 
mixed-effects models were found to be signif-
icant (P < 0.0001); so for the dummy variables 

parameters (Tables 4 and 6). 
 Although the fixed-effects parameters of 
mixed-effects and dummy variables models 
were significant, it can be seen from Tables 
4–6 that the SE of the fixed-effects parameters 
of mixed-effects were consistently larger than 
those of the dummy variables parameters. This 
denotes that the error due to uncertainty in 
the model parameter estimates was larger for 
mixed-effects models, as expected. 
 The error due to model misspecification 
was relatively larger for dummy variables 
H–D functions (Adj. R2 = 69.98%) than for 
mixed-effects ones (Conditional R2 = 73.76%), 
however similar for volume models. The mean 

Mixed-effects model Dummy variables model
Eq. 1 Eq. 10

Fixed-effects
parameters

α (± SE) 1.4707 
(± 0.3885) Fixed-

effects
parameters

α (± SE) 1.1182 
(± 0.1086)

β (± SE) 0.2436 
(± 0.0083) β (± SE) 0.2414 

(± 0.0051)
ϒ (± SE) – ϒ (± SE) –

Random
effects 
parameters

ϴα1 – 0.2338

Dummy
parameters

δ2 (± SE) – 0.1080 
(± 0.0861)

ϴα2 – 0.5000 δ3 (± SE) 1.2166 
(± 0.0948)

ϴα3 0.7338 – –
ϴβ1 – 0.0092 – –
ϴβ2 0.0011 – –
ϴβ3 0.0082 – –

Standard deviations
(SD) of the random
effects and residuals 
(e)

S(ϴαj) 0.6577 – –

S(ϴβj) 0.0109 – –

S(e) 1.1015 – –

Fit statistics

Marginal R2 [%] 61.81

Fit 
statistics

R2 [%] 70.03
Conditional R2 [%] 73.76 Adj.R2 [%] 69.98
AIC 3178.24 AIC 3151.87
Sr

2 1.2099 Sr
2 1.2166

FI 4.8684 FI 4.8764
CVr [%] 22.93 CVr [%] 22.97
Mr [%] 0.0000ns Mr [%] 0.0000ns

Regression parameters and goodness-of-fit statistics for Näslund (1937) H–D mixed-effects and 
dummy variables models

Table 4

Note. Abbreviations: e - residuals of the random-effects; S(ϴαj) - standard deviation of the intercepts across growing sites; 
S(ϴβj) - standard deviation of the slopes across growing sites; S(e) - standard deviation of the residuals of the random-ef-
fects.
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residuals (MR) were found not to be statisti-
cally significant for any modelling approach. 
FI and CVr were similar for both modelling 
approaches, suggesting similarities in terms of 
error due to residual variability around model 
prediction. 
 Comparing the marginal and conditional 
R2, it is observed that the portion of variance 
explained by random effects (conditional R2 – 
marginal R2) was 20% for H–D models, and 
0.34% and 2.87% for Schumacher & Hall 
(1933) and Stoffels (1953) volume models, re-
spectively. 
 The separated models for each growing site 
obtained based on the full mixed-effects and 
full dummy variables models (Table 7) were 
validated for the respective growing sites 
(Table 8). Overall, the aggregate differences 

were smaller than one percent for all models 
and growing sites (indicating good predictive 
ability), except for 1-variable volume model 
(either as mixed-effects or as dummy variables 
models) in site 3. Wilcoxon signed rank test 
revealed that the predicted values did not differ 
from the observed ones (P > 0.05).
 The predicted heights from mixed-effects 
and dummy variables models are aligned to 
the observed ones (Figure 2A).  It is also not-
ed that for the same DBH, sites 1 and 2 are 
associated with large tree heights and site 3 is 
associated with small tree heights. 
 For the same DBH (Figure 2B), predicted 
mean tree volumes from mixed-effects and 
dummy variables Stoffels (1953) volume 
models were in line with each other for site 1, 
however, were 11% smaller than the observed 

Regression parameters and goodness-of-fit statistics for mixed-effects stem volume models Table 5

     Eq. 5     Eq. 6

Fixed-effects
parameters

a (± SE) –10.1077 (± 0.0532) –9.1431 (± 0.2868)
β (± SE) 1.9610 (± 0.0202) 2.5086 (± 0.0685)
ϒ (± SE) 1.0619 (± 0.0303) –

Random-effects
parameters

ϴa1 –0.0964 –0.0050
ϴa2 0.0748 0.4911
ϴa3 0.0215 –0.4861
ϴβ1 0.0260  0.0012
ϴβ2 0.0110 –0.1146
ϴβ3 –0.0371 0.1134
ϴϒ1 –0.0236 –
ϴϒ2 –0.0322 –
ϴϒ3 0.0558 –

Standard deviations
(SD) of the random-
effects and residuals (e)

SD(ϴaj) 0.0889 0.4901
SD(ϴβj) 0.0337 0.1143
SD(ϴϒj) 0.0504 –
SD(e) 0.0606 0.2870

Fit statistics

Marginal R2 [%] 99.44 92.41
Conditional R2 [%] 99.78 95.06
AIC –2811.01 388.20
Sr

2 0.0037 0.0822
FI 0.0036 0.0173
CVr [%] 10.75 33.29
Mr [%] 0.0363ns –0.0220ns
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mean volume, resulting in underestimation. 
Both modelling approaches overestimate the 
mean volume in sites 2 and 3. However, in site 
3, the mixed-effects model overestimate it in 
larger extent compared with the dummy vari-

ables model (i.e., 25% vs. 8%, respectively).
 For the same DBH and height, mixed-effects 
and dummy variables Schumacher & Hall 
(1933) volume models provided biased predic-
tions (Figure 2, C and D), underestimating the 

Regression parameters and goodness-of-fit statistics for dummy variables stem volume modelsTable 6

Note. Abbreviation: ns - not statistically significant.

Separated mixed-effects and dummy variables models for each growing site Table 7

Note that, for example, for 2-variables volume model for growing site 1 derived from the full mixed-effects model, the 
regression parameter 0.000037 = exp (α + ϴα1 + Sr2/2) = exp (– 10.1077 – 0.0964 + 0.0037) and 1.9870 = β + ϴβ1 = 
1.9610 + 0.0260, and so on (see Table 5). On the other hand, for 2-variables volume model for growing site 1 derived 
from the dummy variables model, the regression parameter 0.000036 = exp (α + Sr2/2) = exp (– 10.2265 + 0.0038/2); 
note that since site 1 was defined as the reference site, δ1 (dummy parameter for site 1) does not exist (i.e. there is only 
δ2, δ3); however, for site 2 the parameter 0.000040 = exp (α + δ2×Z2 + δ3×Z3 + Sr2/2) = exp (– 10.2265 + 0.1078×1 + 
0.1307×0 + 0.0038/2), and so on for site 3 (see Table 6 and Eq. 12); recall that Z2 = 1 if the tree belongs to site 2 and Z2 
= 0, otherwise (see Eqs. 7 and 8).

Eq. 12 Eq. 13

Fixed-effects
parameters

a (± SE) –10.2265 (± 0.0137) –9.0650 (± 0.0527)
β (± SE) 1.9524 (± 0.0053) 2.4803 (± 0.0186)
ϒ (± SE) 1.0869 (± 0.0074) –

Dummy
parameters

δ2 (± SE) 0.1078 (± 0.0048) 0.1979 (± 0.0225)
δ3 (± SE) 0.1307 (± 0.0058) –0.2253 (± 0.0246)

Fit statistics

R2 [%] 99.77 94.90
Adj.R2 [%] 99.77 94.90
AIC –2830.05 382.21
Sr

2 0.0038 0.0842
FI 0.0037 0.0175
CVr [%] 10.93 33.46
Mr [%] 0.1558ns –0.9161ns

Charc-
teristics Model Growing site 1 Growing site 2 Growing site 3

Mixed-
effects 
models

H–D model H = 1.3 + (D2/(1.2369 
+ 0.2344 × D)2)

H = 1.3 + (D2/(0.9707 
+ 0.2447 × D)2)

H = 1.3 + (D2/(2.2045 
+ 0.2518 × D)2)

2-variable 
volume model

V = 0.000037 × D1.9870 

× H1.0383
V = 0.000044 × D1.9720 

× H1.0297
V = 0.000042 × D1.9239 

× H1.1177

1-variable 
volume model V = 0.000111 × D2.5098 V = 0.000182 × D2.3940 V = 0.000069 × D2.6220

Dummy 
variables 
models

H–D model H = 1.3 + (D2/(1.1182 
+ 0.2414 × D)2)

H = 1.3 + (D2/(1.0102 
+ 0.2414 × D)2)

H = 1.3 + (D2/(2.3348 
+ 0.2414 × D)2)

2-variable 
volume model

V =  0.000036 × D1.9524 

× H1.0869
V =  0.000040 × 
D1.9524 × H1.0869

V =  0.000041 × 
D1.9524 × H1.0869

1-variable 
volume model V = 0.000120 × D2.4803 V = 0.000147 × D2.4803 V = 0.000096 × D2.4803
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Model Site 1 Site 2 Site 3
AD [%] p AD [%] p AD [%] p

Mixed-effects H–D model –0.4340 0.1768 –0.4370 0.0600 0.2833 0.9865
Dummy H–D model –0.4624 0.1768 –0.3870 0.2685 0.2939 0.8793
Mixed-effects 1-variable volume  model 0.3827 0.6088 0.6716 0.1162 1.5026 0.2700
Dummy 1-variable volume model 0.2836 0.5250 0.7097 0.0670 1.1278 0.4500
Mixed-effects 2-variables volume  model 0.2108 0.6806 0.3134 0.8765 0.6339 0.9876
Dummy 2-variables volume model 0.1747 0.7154 0.3147 0.0579 0.6965 0.5643

mean tree volume for sites 1 and 2 and over-
estimating it for site 3. However, it should be 
noted that for the same DBH, trees from site 3 
are much shorter than trees from sites 1 and 2 
(Table 2, Figure 2A). Therefore, it is unrealis-
tic to keep DBH and height constant, thus the 
conclusion above is misleading. By allowing 
the height to vary between sites (e.g. by using 
predicted height from the selected H–D func-
tion) that ambiguity is solved.  By including 
the site effect on height, it is noted from Figure 
2 (C and D) that the predicted mean tree vol-
ume from mixed-effects and dummy variables 
Schumacher & Hall (1933) models are in ac-
cordance with observed ones in all sites.

Discussion

The present study provides the first H–D and 
stem volume models for Lebombo-ironwood 
and the first models incorporating site-effects 
for Mozambique. These newly developed 
models represent a valuable tool for manage-
ment of Lebombo-ironwood stands in Mozam-
bique. 
 Many authors fitted H–D models using tree 
heights obtained with the trees standing (Shar-
ma & Parton 2007, Adame et al. 2008, Coble 
& Lee 2011, Schimidt et al. 2011, de-Miguel et 
al. 2013, Missanjo & Mwale 2014, Petráš et al. 
2014) and therefore more prone to measuring 
errors. In this study, tree heights were obtained 
on felled trees, thus more accurate. Moreover, 

the top part of the Lebombo-ironwood trees re-
mained unaffected after felling (did not break) 
thus, underestimations due to broken top part 
are unlikely. 
 The Näslund function (Näslund 1937) was 
the best H–D model. This function was tested 
successfully by many authors either as fixed-, 
mixed-effects or dummy variables model 
(Kangas & Maltamo 2002, Kinnunen et al. 
2007, Schimidt et al. 2011, Missanjo & Mwale 
2014, Mehtätalo et al. 2015).
 Overall, negligible differences were ob-
served between mixed-effects and dummy 
variables models; which was expected, since 
in case of large sample size the mixed-effects 
and dummy variables modelling approaches 
are not significantly different from each oth-
er (Fu et al. 2012, Zeng 2014). In this study 
the training sample size is considered large (n 
= 1037), as defined by Freese (1962, 1984), 
Stauffer (1983), Stellingwerf (1994) and Hus-
ch et al. (2003) (n > 30). Zeng (2014) stated 
that mixed-effects models are recommended 
over dummy variable models when the sample 
size is small (n < 30).
 The lack of significant differences in per-
formance, predictive ability and accuracy   
between mixed-effects and dummy variables 
models suggests that those two modelling ap-
proaches can be used indiscriminately. How-
ever, in general, mixed-effects models have 
the following advantages over dummy vari-
ables models that must be kept in mind: 
 (1) under the assumption that the sampled 

Validation of the selected modelsTable 8

Note. Abbreviation: AD - aggregate difference; p - p-value for Wilcoxon signed rank test.
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sites are representative of all sites where Leb-
ombo-ironwood occurs, mixed-effects models 
can be calibrated for new, previously not sam-
pled sites quickly and effectively (Saunders 
& Wagner 2008, Mehtätalo et al. 2015). This 
assumption is met, as this species occurs in a 
narrow climatic, altitudinal (Table 1) and soil 
conditions (Magalhães & Seifert 2015a,b, 
Magalhães 2015a, b). 
 (2) mixed-effects models reduce interdepen-
dence among measurements from the same 

growing site by defining a covariance matrix 
among random parameters within and among 
sites (Calama & Montero 2004). 
 On the other hand, dummy variables models 
have the advantage of directly including vari-
ables defining the between-site variability, and 
in practice are more easily applicable. 
 The fact that the portion of variance ex-
plained by random effects (conditional R2 – 
marginal R2) in mixed-effects 2-variable vol-
ume model was only 0.34% suggested that the 

Effect of growing sites (either as random-effects or dummy parameters) on: (A) tree height esti-
mates, (B) predicted mean tree volume from 1-variable stem volume model, (C) predicted mean 
tree volume from 2-variables volume model, and (D) on predicted mean tree volume from 2-vari-
ables volume model. Error bars indicate 95% confidence interval (CI) computed as CI = ± t × SE; 
where t is the critical value of t distribution at 95% of probability and n – 1 degrees of freedom; n 
is the sample size; and SE is the standard error.

Figure 2
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fixed-effects 2-variable model could be used as 
a standard volume model (as opposed to local 
volume). However, the tests of significance of 
random-effects parameters proved otherwise. 
The variance explained by random effects in 
2-variable volume model was negligible be-
cause the height (as second variable) indirectly 
includes site effects, as the H–D relationship 
is modified by site quality (Sharma & Zhang 
2004). 
 Schumacher & Hall (1933) volume model 
(either as mixed-effects or as dummy variables 
models) fitted the data better than the Stof-
fels (1953) volume model (1-variable one); 
thus, in that sense, it is the best for predicting 
Lebombo-ironwood stem volume. However, 
the 1-variable volume model also performed 
satisfactorily and has the advantage of being 
cheap, easy to use and less susceptible to mea-
suring errors, as it uses only DBH as a pre-
dictor.  When validating the models, mixed-ef-
fects and dummy variables 1-variable models 
showed a relative weakness in site 3, as they 
had relatively larger AD values (1.50 and 
1.13%, respectively). De Gier (1994) argued 
that AD should not exceed 1%; 2-variables 
volume models (as mixed-effects and dummy 
variables models) however, had AD < 1% for 
all sites.

Conclusions

The newly developed H–D and stem volume 
models are a valuable tool for management of 
Lebombo-ironwood stands in Mozambique. 
Mixed-effects and dummy variables models 
did not differ in terms of predictive ability and 
accuracy, thus as long as the advantages and 
disadvantages of each modelling approach are 
kept in mind they can be used for estimating 
tree height and stem volume.
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