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Abstract As a forest structural parameter, leaf area index (LAI) is crucial for 
efficient intensive plantation management. Leaf area is responsible for the energy 
absorption needed for photosynthetic production and transpiration, both affecting 
growth. Currently, LAI can be estimated either by remote-sensing methods or 
ground-based methods. However, unlike ground-based methods, remote estimation 
provides a cost-effective and ecologically significant advance. The aim of our study 
was to evaluate whether machine learning algorithms can be used to quantify LAI, 
using either optical remote sensing or LiDAR metrics in Eucalyptus dunnii and 
Eucalyptus grandis stands. First, empirical relationships between LAI and remote-
sensing data using LiDAR metrics and multispectral high-resolution satellite 
metrics, were assessed. Selected variables for LAI estimation were: forest canopy 
cover, laser penetration index, canopy relief ratio (from among the LiDAR data), the 
green normalized difference vegetation index, and normalized difference vegetation 
index (from among spectral vegetation indices). We compared the accuracy of three 
machine learning algorithms: artificial neural networks (ANN), random forest (RF) 
and support vector regression (SVR). The coefficient of determination ranged from 
0.60, for ANN, to 0.84, for SVR. The SVR regression methods showed the best 
performance in terms of overall model accuracy and RMSE (0.60). The results show 
that the remote sensing data applied through machine learning algorithms provide 
an effective method to estimate LAI in eucalypt plantations. The methodology 
proposed is directly applicable for operational forest planning at the landscape 
level. 
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Introduction

The structure of the forest canopy is generally 
described through variables, such as the leaf 
area index (LAI), crown diameter, and crown 
length (Weiss et al. 2004).  LAI is defined as 
the one-sided leaf area per unit of horizontal 
ground surface area (Watson 1947). LAI plays 
a key role at describing the canopy, which is 
responsible for the energy absorption needed 
for photosynthetic production and transpiration 
affecting growth. Therefore, LAI is one of 
the main variables used to evaluate many 
processes related to the physiological status 
of trees. However, LAI estimation is complex, 
since it involves factors related to plant 
size and architecture, species composition, 
growth, and canopy phenology. Methods of 
LAI estimation can be categorized as direct 
or indirect (Jonckheere et al. 2004). Direct 
methods use destructive sampling to determine 
the total number of leaves per tree and their 
area, taking into account their angles and 
distribution. This approach is time-consuming, 
labor-intensive, and costly (Jonckheere et al. 
2004). In the indirect methods, LAI is inferred 
from observations of another variable. Contact 
and non-contact methods are used, mostly 
to measure some radiative feature related to 
the distribution of light inside the canopy 
(Morsdorf et al. 2006). Indirect approaches 
are faster and amenable to automation, and 
thereby allow a larger spatial sample to be 
obtained (Jonckheere et al. 2004). Methods 
based on differences in spectral reflection 
between vegetation and other coverage, and 
using remote sensing data, have been widely 
applied for LAI determination in forests during 
recent years (Yan et al. 2019).
 Spectral vegetation indices (VIs) obtained 
from remote sensing data are valuable for 
the estimation of LAI, due to their enhanced 
resistance to atmospheric effects. Several 
authors have found positive correlations 
between LAI and VIs derived from satellite 
images (Pavithra et al. 1998, Megown et al. 
1999, le Maire et al. 2012). The VIs most 

frequently used to estimate LAI are the 
normalized difference vegetation index (NDVI) 
and the simple ratio (SR), applied in coniferous 
forests, grasslands, and deciduous forests 
(Staben et al. 2018), however, these indices 
can saturate in dense vegetation such as forest 
stands. Many studies report that VIs saturate at 
high LAI (Zhao & Popescu 2009). VIs are easily 
affected by atmospheric conditions and soil, 
VIs tend to saturate, decreasing the accuracy 
of prediction of forest parameters (Luo et al. 
2019) and leading to underestimation of LAI. 
The spectral reflectance of vegetation can be 
similar to the background reflectance, even 
with the use of hyperspectral remote sensing 
systems that boast high spectral (Tesfamichael 
et al. 2018).
 Moreover, multispectral sensors do not 
have robust means of characterization of the 
vertically distributed forest attributes, since 
they provide information about plants using 
two dimensions (Tesfamichael et al. 2018). 
There are many satellite-derived LAI products, 
but their coarse-moderate spatial resolution 
(Modis 500 m, Landsat 30 m) has made it 
difficult to apply them at a regional scale (Zhou 
et al. 2020). This research is part of the new 
trends in precision forestry that is being used 
in intensive Eucalyptus plantations. This type 
of forestry requires continuous field data, high 
precision, at a reasonable cost, which can only 
be achieved by integrating high-resolution 
data processing from remote sensors. Planet 
Labs launched a constellation of CubeSats 
that cover the entire globe daily with a spatial 
resolution of 3 to 5 m (Planet Labs 2018). The 
use of CubeSat constellations that provide 
frequent and high-resolution images is one 
way to achieve both high review frequency and 
high spatial resolution (Zhou et al. 2020).
 Active sensors employing light detection and 
range (LiDAR) technology can fill the gaps 
of multispectral sensors in LAI estimation by 
providing data on forest structural attributes, 
specifically canopy vertical profiles. Airborne 
Laser Scanner (ALS) is a LiDAR that operates 
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from aerial platforms, while the Terrestrial 
Laser Scanning (TLS) uses ground platforms. 
It can capture more detailed information on 
3-D structure, and produces data points in 
a three-dimensional cloud, which permits 
the variation of the forest canopy features 
distributed vertically (Peduzzi et al. 2012). 
Unlike traditional optical data, ALS provide a 
direct measurement of the vertical structure of 
the forest canopy, ALS metrics has been used 
to predict stand variables such as volume or 
biomass (Jensen et al. 2008). Due to the ability 
to penetrate canopies and its rapid coverage of 
large areas, ALS has been used for LAI mapping 
at landscape or regional scales (Yan et al. 2019). 
ALS metrics (ALm) contain information on 
canopy structure and LAI; thus, the selection 
of ALm for LAI estimation modeling is a key 
procedure. ALS metrics provide information 
on the canopy structure, the correct selection 
of ALm that will integrate the LAI estimation 
model (Zhao & Popescu 2009). Different 
ALm such as ALS height percentiles, laser 
interception index (LII) and laser penetration 
index (LPI) have been used to predict LAI 
in previous research (Morsdorf et al. 2006, 
Peduzzi et al. 2012, Tseng et al. 2016).
 The LPI is an approximation to the canopy 
gap fraction, it is expected to be useful for 
estimating the LAI. Combination ALm with 
hyperspectral and multispectral imagery can 
improve prediction accuracy of forest canopy 
parameters (Luo et al. 2019). Non-parametric 
machine learning (ML) approaches represent 
an alternative to discover unusual non-
linear relationships, as well as operate high-
dimensional and collinearity problems, handle 
non-linearity and non-normality of data (Lary 
et al. 2016).  Since non-parametric statistical 
methods do not make a priori assumptions 
about the data, they are more suitable to 
establish and describing relationships between 
remote sensing images and the forest variables 
of interest (Ingram et al. 2005). A wide range 
of ML algorithms have been used effectively 
in forest applications for both regression and 

classification of non-linear systems (Lary et 
al. 2016). ML including K-nearest neighbors,  
random forest (RF), tree-based models such as 
decision trees (DT), artificial neural networks 
(ANN), genetic algorithm, support vector 
machines (SVM), case-based reasoning (Lary 
et al. 2016, Jain et al. 2020). 
 LAI is a meaningful index for intensive 
plantation management, it provides information 
on current conditions and the possible 
evolution of stand growth and yield. Hence, 
it has been used to identify stand fertilization 
needs, thinning, or other management practices 
seeking to improve tree growth and yield 
(Peduzzi et al. 2012). Thus, several studies 
have applied spectral vegetation indices for the 
easy retrieval of LAI in Eucalyptus plantations 
(le Maire et al. 2012). However, few studies 
have integrated vegetation indices and ALS 
data for the estimation of LAI in Eucalyptus 
stands (but see Tesfamichael et al. 2018).
 In this study, we compared several commonly 
used ML algorithms for integrating ALS 
metrics and vegetation indices derived from 
Planet imagery for predicting LAI across 
stands of Eucalyptus grandis Hill ex Maiden 
and Eucalyptus dunnii Maiden in Uruguay. 
Accordingly, the specific objectives were: i) to 
evaluate the efficiency of ALS and Planet spectral 
data as covariates to estimate LAI; ii) to test the 
performance of machine learning algorithms such 
as SVM, ANN, and RF in LAI prediction; iii) to 
analyze the spatial consistency among products 
and between products and field measurements; 
and iv) to assess whether Planet multispectral 
data can improve LAI estimates in conjunction 
with ALS.

Materials and Methods

Site description

The present research was established in five 
forest areas in Uruguay owned by Forestal 
Oriental SA, representing a total area of 2448 
ha. We selected five zones (Figure 1): zones 
b1 and b2 (midpoint coordinates: 43°13´97”S 
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– 64°24´78”W) with 861 ha; zones b3 and 
b4 (midpoint coordinates: 63°07´44”S – 
52°22´64”W) with 870.1 ha; and zone b5 
(midpoint coordinates: 63°44´33.05”S – 
63°95´58”W) with 716.9 ha. The study zones 
have mean annual rainfall between 1300 and 
1400 mm (Castaño et al. 2011). Climate in the 
region is temperate subtropical, with a mean 
annual temperature of 18 °C (12 °C in the 
coldest month, 24 °C in the warmest month). 
Soils were classified as siliceous, fine-loamy, 
active, thermic Mollic Hapludalfs (Bentancor 
2017).  All zones are planted with E. dunnii and 
E. grandis (Table 1).

Field measurement of LAI

The LAI was measured in May-June 2018 in 
39 plots of E. dunnii and 45 plots of E. grandis, 
each with a fixed radius of 10 m (314.16 m2), 
using a ceptometer (AccuPAR Model 80; 
Decagon Devices, Germany) (Table 1). The 
ceptometer was calibrated according to the 
instruction manual (Decagon Devices 2016). 
The measurements inside the plots were made by 
holding the instrument at a height of 1.3 m. For 
all plots, 6 sampling points were systematically 
located within the measurement area, 3 in the 

tree rows and 3 between rows. LAI measurement 
points were systematically assigned along a 
transect perpendicular to the two central rows 
of trees in each plot. In each sampling point, 4 
measurements were taken (north, south, east, 
west), 24 values of radiation in total. Between 
plots, radiation was measured on top of the 
canopy, in an area outside the plantation where 
the radiation reached the Ceptometer. 

Table 1 Silvicultural characteristics of Eucalyptus 
grandis and Eucalyptus dunnii in Uruguay. 

Stand 
attributes

min mean max stdev

E. grandis

Dbh (cm) 10.65 15.49 19.33 1.81
TH (m) 12.57 21.69 33.3 4.46
LAI (m2 m-2) 1.2 2.95 4.78 1.05
Age (year) 4 6 9 1.4
N (tree ha-1) 634 1041 1336 144

E. dunnii
AB

Dbh (cm) 10.83 15.27 19.38 1.53
TH (m) 9.52 19.55 29.22 4.23
LAI (m2 m-2) 1.17 3.26 5.07 1.07
Age (year) 4 6 8 1.1
N (tree ha-1) 669 1070 1432 159

Note:Standard deviation (stdev); minimum (min) and 
maximum (max) values for: stems density (N, trees 
ha-1); diameter at breast height (Dbh, cm); total 
height (TH, m); leaf area index (LAI, m2 m-2), and 
Age (years).

Figure 1 Location of the study sites (b1-b5) and Soils prioritized 
for forestry in Uruguay. 

Planet data and spectral 
vegetation indices

Planet is a company that operates 
a constellation of more than 175 
small standardized CubeSat 3U 
nanosatellites. Planet provides 
daily nadir-pointing high-resolution 
land surface imaging of the entire 
Globe (Planet Labs 2018). Planet’s 
satellites provide multispectral high-
resolution satellite images (MS 
HR) at a spatial resolution of 3-4 
m (nadir ground sampling distance) 
with red, green, and blue (RGB) 
and near-infrared (NIR) data. We 
used a total of 11 Planetscope Ortho 
Tile products (Planet Labs 2018). 
An orthomosaic of multiple scenes 
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orthorectified in a single strip was merged and 
divided into a defined grid (25 x 25 km). The 
images were acquired from February to April 
2018 and underwent radiometric, geometric, 
and sensor correction (Planet Labs 2018). The 
Ortho Scene–Analytic (level 3B) have a rigorous 
geometric correction (Frazier & Hemingway 
2021) . The analytical format involved a 4-band, 

16-bit multispectral image (RGB-NIR), having 
an orthorectified spatial resolution of 3.125, 
with daily review. Five spectral indices were 
calculated (Table 2). Image pre-processing and 
processing were performed with ENVI (Exelis 
2015), and post-processing with QGIS (QGIS 
Development Team 2009) and R software (R 
Core Development Team 2013).

Table 2 Vegetation indices used to model leaf area index (LAI) for Eucalyptus plantations in Uruguay.

Index Formulation Reference

Enhanced vegetation index EVI = 2.5
ρNIR - ρRed

1+ρNIR+6ρRed-7.5ρBlue

(Huete & Van Leeuwen 1999)

Green normalized difference 
vegetation index GNDI =

ρNIR - ρGreen

ρNIR+ρGreen

(Gitelson & Merzlyak 1998)

Normalized Difference 
Vegetation Index NDVI =

ρNIR - ρRed

ρNIR+ρRed

(Rouse Jr et al. 1973)

Simple Ratio SRI =
ρNIR 

ρRed

(Jordan 1969)

Greenness Index GI = 
ρGreen

ρRed

(Xue & Su 2017)

Acquisition and processing of ALS data

Airborne LiDAR acquisition was carried out 
during March 2018, using a Riegl VUX-1 
laser scanner (Riegl, Germany) installed on a 
helicopter, with a pulse repetition rate of 550 
kHz, an angular step width of 0.0687º, and a 
FOV of 55º, at a flight altitude of 110 m.a.s.l. 
The resulting point density was 20 pulses 
m-2, geo-referenced in the WGS84 UTM S21 
coordinate system.  For all echoes x and y 
(planimetric coordinates), plus ellipsoidal 
height values are calculated.  The FUSION 
software (McGaughey 2013) was used to 
check and process ALS point clouds.
 After the ALS data was verified and validated, 
a digital terrain model (DTM), a canopy height 
model, a digital surface model, and ALS metrics 
were generated. We used the GroundFilter 
function to identify and filter the returns that 
reached the ground. To create a DTM with a pixel 

size of 1 m2, the GridSurfaceCreate function 
was used (González-Jaramillo et al. 2018). To 
normalize the heights, the Clipdata algorithm 
was applied to ensure that the z coordinate of 
each point corresponds to the height above the 
ground. Cover was used to calculate the canopy 
cover fraction (CCF), which represents the 
proportion of soil that is covered by the crown 
vertical projection and allows the density and 
horizontal distribution of the vegetation to be 
determined. Point data stored in las format were 
converted to ASCII text format by LDA2ASCII. 
The folders obtained from these procedures 
included the variables x, y, and z, and intensity 
values for each laser pulse return (Mesas-
Carrascosa et al. 2012).  
The ALS normalized point-cloud data pre-
plots were filtered according to (Peduzzi et 
al. 2012) and the points were categorized into 
three groups, depending on the height above 
the ground (hag): vegetation returns (Nv), 
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ground returns (Ng) and all returns (Na). 
The ceptometer was held at approximately 
1.3 m above the ground, so the vegetation 

returns were classified using a 1.3-m threshold 
(Sumnall et al. 2016b). Table 3 shows the 
LiDAR metrics (ALm). 

Table 3 Height and intensity distribution metrics of ALS point cloud returns for each plot level area.  

ALS metrics Symbols

All returns (return hag > 0.2 m)
Elev.total, Elev.max, Elev.mean, Elev.median, Elev.sd, Elev.cv, 
Elev.sk, Elev.kt, Elev.P05 … Elev.P99

Total number and first of ground returns Gr.total, Gr.firs

Vegetation returns (return hag > 1.3 m)
Veg.total, Veg.max, Veg.mean, Veg.median, Veg.sd, Veg.cv, 
Veg.sk, Veg.kt,. Veg.P5, ..., Veg.P95

Intensity value summary from vegetation 
returns (returns hag > 1.3 m)

Sd, Cv, Sk, Kt 

Note: Hag= height above the ground.  Subscripts were as follows: frequency (total), mean, median, minimum (min), 
maximum (max), standard deviation (sd), coefficient of variation (cv), skewness (sk) kurtosis (kt), and height 
percentiles (Elev.P10,  Elev.P20,... Elev.P99). 

To record the energy of the returns reflected back 
to the sensor, the intensity values are stored in 
ALS data. This recording is a function of several 
variables (such as angle of incidence, reflectivity 
and target area, laser power, atmospheric 
absorption, and distance between the sensor 
and the target). The intensity values need to be 
calibrated before their comparison; this process 
allows to compare different flights and scans 
(Mesas-Carrascosa et al. 2012). A simple method 
to correct the intensity proposed by Mesas-
Carrascosa et al. (2012), consists of normalizing 
the range to a standard range established by the 
user, and the effect of the angle of incidence is 
corrected by applying the cosine.

I normalized = I
R2

         (1)
(Rs

2  cosα)
where Inormalized is the normalized intensity, I is 
the raw intensity value, R is the range (sensor-
target distance), RS is the standard range, and α 
is the angle of incidence. As information about 
the flight lines was not available, we used an 
approximation to determine the R values, using 
the difference between the height of each point 
and the mean flight altitude (Mesas-Carrascosa 
et al. 2012). Due to the smooth relief of the 
study area, we assumed that the scan angle was 
equivalent to the angle of incidence (Mesas-
Carrascosa et al. 2012).

ALS pseudo-waveforms construction

The waveform vertical distribution curve 
contains more information than the waveform-
derived metrics and the returns (Zhou & 
Qiu 2015). We used discrete-return data to 
create pseudo-waveforms (ALS-PWF) as 
the vertical frequency distribution of the 
sum of the intensity, as a function of height 
bins (Zhou & Qiu 2015). Waveforms can 
be uniform Gaussian-shaped functions, 
asymmetric, peaked, or flattened depending 
on the backscattering surface material (trees, 
grass, ground, roofs) (Zaletnyik et al. 2010). 
ALS-PWF data were constructed by modifying  
the method proposed by Luo et al. (2019). In 
each plot, ALS point clouds were separated by 
elevation values and assigned to height bins 
(from hag = 0.2 m at canopy height maximum) 
with intervals of 0.5 m. The relative returns 
intensity in each height bin were calculated by 
dividing the sum of the intensity in each height 
bin by the total intensity (Peduzzi et al. 2012). 
ALS-PWF data were obtained by connecting 
the intensity corresponding to the elevation of 
each height bin, through a smooth curve. Each 
ALS-PWF series was analyzed to identify the 
number of peaks and its shape as a density 
function. To distinguish between different ALS-
PWF from backscattering surface material 
as trees, shapes statistical measures such as 
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skewness, kurtosis, 
and standard 
deviations can 
be calculated and 
compared (Zhou 
& Qiu 2015). If the 
shape of a ALS-
PWF is different 
from a normal 
distribution, the 
waveforms have 
to be separated 
according to the 
number of peaks, 
because skewness 
and kurtosis have 
meaning only for a 
normal (unimodal) 
d i s t r i b u t i o n 
(Zaletnyik et al. 
2010). The number of peaks in the ALS-PWF 
was determined with the local maximum point 
in a simple peak detection method by findpeaks 
function of the pracma package of R software. 
A process of Gaussian decomposition was not 
applied because we expected that after ALS-
PWF creation, as described above, only a major 
peak corresponding to the tree crowns zone 
would be identified. The plots area did not have 
undergrowth vegetation, so peaks under the 
crown were not expected.
 Figure 2 presents a visual analysis of the 
relationship between the shapes of the ALS-PWF 
and the plots from which they were obtained.

Laser penetration index

In LPI calculation, DTM and non- ground points 
are taken into account. The canopy penetration 
and corresponding LAI can be derived from 
the fraction of echoes located on and below 
the canopy (Solberg et al. 2006). LPI is based 
on the same principles as the instruments that 
measure LAI indirectly, measuring the solar light 
transmission or reflectance through vegetation 
(Peduzzi et al. 2012). The LPI can be related to the 
principles used by the IAF indirect measurement 
instruments; these apply a vertical stratification to 

determine the amount of returns above or below a 
height threshold  (Sumnall et al. 2016b).
 We calculated five LPI (Table 4) based 
on points data and three based on intensity 
information, as previously proposed (Peduzzi 
et al. 2012, Sumnall et al. 2016a, Tseng et 
al. 2016). In these works, LPI showed good 
correlation with the measured LAI. 

Variable selection

To reduce data redundancy and improve overall 
interpretability, a multicollinearity analysis was 
performed.  Spearman’s correlation was used 
to identify highly correlated ALm variables. A 
collinearity analysis was then performed using 
the Variance Inflation Factor (VIF). Independent 
variables were selected and collinear variables 
were deleted, using a VIF >10 as the critical 
threshold (Ariza Salamanca et al. 2019). To 
select the best explanatory variables from 
among the ALm, LPI, and VI, several authors 
have employed RF techniques (Luo et al. 
2019). The RF selection procedure uses a 
percentage increase in model mean square 
error (%MSE for regression) to select variables 
that explain the highest amount of variation. 

Figure 2 Eucalyptus grandis plots with maximum LAI (top) and minimum LAI 
(bottom); ALS pseudo-waveform (left), sample cross section of a point cloud 
of a plot (middle) and sample of top view of canopy return of a plot (right). 
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This variable importance score is computed as 
the difference in predictions on the out-of-bag 
observations before and after permutation in 
the data withheld from each tree (Pearse et al. 
2017). However, importance scores computed 
in this way have been shown to overestimate 
the importance of highly correlated predictors  
(Pearse et al. 2017).
 In our study, we used permutation importance 
(PIMP) proposed by Altmann et al. (2010) for 
reducing bias, based on a permutation test, 
returning significant p-values for each feature.
 PIMP is available in the vita package of R 
software (R Core Development Team 2013).

Machine learning algorithms

Once the variables were selected, ML was used 

as an empirical approach for determination of 
the regression between the LAI and predictors. 
ML methods require a training dataset and a 
random subset of the data for a completely 
independent validation. ML methods require 
for independent validation a random subset of 
the data, and a random training data set for fit. 
(Lary et al. 2016). We randomly divided the 
dataset into two sets for training and validation, 
with 70% and 30% of the data, respectively. 
We carried out a comparison of the most used 
regressions in ML approaches (SVM, ANN, and 
RF) in a common framework to estimate LAI.

Support vector regression (SVR) 

SVM can be used for classification tasks and to 
solve regression problems, where a continuous 
prediction output is expected (Mountrakis et al. 
2011, Jain et al. 2020). SVR is based on the 
principle of structural risk minimization, and 
looks for a hyperplane with the greatest margin 
to divide samples into two classes with the 
largest interval (Jain et al. 2020). SVM operate 
by assuming that each set of input parameters 
will have a unique relationship to its response 
variable (Gleason & Im 2012). The grouping 
of these predictors and their relationships are 
sufficient to define rules that can be applied 
for predicting variables (Gleason & Im 2012).  
This method has proven its robustness to 
determine dimensionality and outliers in the 
training data, its generalization ability, and its 
ability to reduce overfitting  (Mountrakis et al. 
2011, Gleason & Im 2012). For SVR, a linear 
function was used as the kernel function because 
it showed better behavior than polynomial and 
sigmoidal kernel functions. To select cost and 
gamma parameters, we used the svm and tune.
svm functions in R to find the optimal values 
(implemented with package e1071).

Artificial neural networks 

ANN are an alternative approach for modeling 
non-linear and complex phenomena in forest 
science. ANN are typically composed of an input 
layer, an output layer, and one or more hidden 
layers (Ingram et al. 2005). Our ANN structure 

Table 4 Computation of ALS penetration indices 
(LPI). 

LPI 
calculation  

Proposed by

LPI1 =
Ng

Ng+Nv

(Solberg et al. 2006)

LPI2 =
Ng

Ng+Na

(Peduzzi et al. 2012)

LPI3 =
Ng+Nsg

Ng+Na

(Tseng et al. 2016)

LPI4 =
Nv

Ng+Na

(Luo et al. 2019)

LPI5 =
Iv

Iall

(Hopkinson & Chasmer 2009)

LPI6 =
Ig

Iall

(Sumnall et al. 2016a)

LPI7 = 
Iv

Ig

(Sumnall et al. 2016a)

Note:  (Ng) total numbers of ground points, (Nsg) single-
return ground points, (Nv) numbers of vegetation 
points (Ng), numbers of ground points, the sum 
of intensity of all returns (Iall), sum of intensity for 
returns below and above the ground threshold (Ig,Iv)
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included an input layer, an output layer, and five 
hidden layers (a ranging from 1 to 15 neurons in 
the hidden layers were evaluated).

Random Forest

RF has been widely used to estimate 
dendrometric variables. This bagging-based 
method, creates and calculate the average of a 
large group of correlated trees. To determine 
how an input is related to a predicting variable, 
RF operated with a series of binary rule-based 
decisions  based on classification and regression 
trees (Pearse et al. 2017). The samples for 
training each component tree were selected using 
bagging. RF regression output is determined by 
averaging the individual tree output (Jain et al. 
2020). The RF algorithm has some parameters 
that must be configured before training the 
model; the number of predictors taken into 
account at each bifurcation of the tree (mtry) and 
the number of random trees assembled during 
the construction of the model (ntree).

Model assessment and validation

The set of observations for each group was 
randomly separated into training (70%) and 
testing (30%) sets. In order to determine the 
goodness of fit, the determination coefficient 
(R2) of the linear regression between the 
observed and predicted values was used during 
the model development stages (Fassnacht et 
al. 2014). Model performance was assessed 
by the root-mean-square error (RMSE) and 
the RMSE normalized by the mean observed 
values of the dependent variables (nRMSE, 
%). RMSE indicates the absolute value of the 
error, whereas nRMSE represents the relative 
value of the error with respect to the average 
plot-level. We compare the models through 
the R2, RMSE, and nRMSE. According to 
Fassnacht et al. (2014), when describing the 
model performance it is necessary to report at 
least the RMSE and the correlation between 
the predictions and observations.  

Figure 3 Flowchart describing the methodological steps used to prepare and process data and model 
variables and to evaluate the results. Where: root Mean Squared Error (RMSE). normalized 
root mean squared error (nRMSE), determination coefficient (R2), root-mean-squared error of 
the k-cross-validation (RMSEkv), determination coefficient of the k-cross-validation (R2kv), 
Artificial neuronal networks (ANN), Support vector machine (SVM), Random forest (RF) 
approaches, Variance Inflation Factor (VIF) and permutation importance (PIMP).
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To achieve accurate and reasonable 
comparisons of different LAI estimates, all LAI 
values were modeled using the same variables. 
Statistical analyses were carried out separately 
for ALS metrics with ALS-PWF, and for ALS 
metrics with ALS-PWF and vegetation indices 
together; first for each species 
individually (Group E. dunnii 
and Group E. grandis), then for 
both species together (Group 
Eucalyptus).
 Due to the limited field 
data available, we used k-fold 
cross-validation (k-cv) with a 
20-fold approach to validate 
the models. A model was fitted 
using 19 of the 20 subsets 
(training dataset)  and then 
it was used to predict the 
remaining subset (validation 
dataset). This process was 
repeated until all subsets 
had been used once. For 
k-fold cross-validation root-
mean-squared (RMSEkv), 
determination coefficient 
(R2kv) was calculated. The 
comparison of the results 
was expressed in terms of 
RMSE (m2 m-2), nRMSE (%), 
and R2, plus the coefficients 
obtained in a process of k-cv 
RMSEkv (m2 m-2), R2kv for 
each method. Higher R2 values 
and lower RMSE and nRMSE 
values indicate higher model 
precision and accuracy. 
 The present study employed 
several data sets and required 
the development of remote 
sensing metrics and indices, as 
well as various data analysis 
procedures. A flowchart 
describing these steps and the 
relationships between each 
stage is provided in Figure 3.

 We performed all analyses using R software 
(R Core Development Team 2013). The 
R packages used for SVM were: e1071 
and kernlab; for ANN: nnet; and for RF: 
randomForest and caret. 

Figure 4 Conditional inference trees-derived importance ranking of the 
ALSm of: (a) Eucalyptus grandis (b) Eucalyptus dunnii and 
(c) both species. Variables are arranged in descending order of 
mean importance. 
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Results

Prediction of LAI using ALS and ALS-PWF 
data

After performing multicollinearity analysis and 
Spearman’s correlation test, the remaining ALS 
metrics were used as input in the PIMP function. 
Variable importance was calculated using the 
corrected RF model, based on the PIMP scores 
of the features. In most cases, it was superior 
in accuracy to the conditional inference trees 
implemented in previous approaches. To select 
suitable tuning parameters for RF before it was 
employed in the PIMP function, the number of 
predictors trialed in each split (parameter mtry) 
varied from 3 up to the maximum number of 
predictor variables. With mtry = 5, minimum 
MSE and stability of importance scores were 
achieved. Then, we varied the number of trees 
(ntree) to assess the stability of the results. A 
ntree value of 120 produced the lowest out-
of-bag-error for the models and RF results. 
ALSm with a higher increase in the permutation 
variance import was the best variable for LAI 
estimation.
 The four best ranked variables for estimation 
of the LAI of E. grandis were Laser penetration 
4 (LPI) 4, Canopy relief ratio (CCF), Percentile 
40 (Elev.P40) , and coefficient of 
variation of ALS-PWF (Cv) (Figure 4 
a); for E.  dunnii, best ranked variables 
were CCF, Percentile 99 (Elev.P99), 
skewness of ALS-PWF (Sk), and laser 
penetration 7 (LPI 7) (Figure 4 b). When 
considering both species together, the 
four best ranked variables were CCF, Cv, 
laser penetration 4 (LPI 4), and the CCF 
(Figure 4 c).
 SVR was the model with the highest 
R2 (78%) and lowest nRMSE values 
for estimation of LAI in E. dunnii, 
followed by RF and ANN (Table 5). 
For E. grandis, SVM achieved the 
highest median overall accuracy (79%) 
and smaller RMSE and nRMSE values, 
followed by RF and ANN. Due to the 

low precision values of the Eucalyptus group 
(R2 < 40%), each predictor variable was 
evaluated individually. The canopy relief ratio 
was eliminated because it did not improve 
the results. So, SVR achieved the highest 
overall accuracy (84%) and smaller RMSE 
and nRMSE values for LAI estimation in the 
Eucalyptus group, followed by RF and ANN 
(Table 5). The SVM and RF models explained 
more than 72% of the variability in LAI and 
ANN more than 60%.
 By changing the training dataset, we were 
able to evaluate the accuracy for each ML 
algorithm for a mean of 20 k-fold and for each 
k-fold. The k-cv values in the same k-executions 
were recorded for the three methods, to obtain a 
comparable trend (Figure 5). 
 ANN had the highest variability by species. 
ANN gave acceptable results (R2 > 60%) in a 
few estimations and exhibited higher variation 
in R2kv and RMSEcv terms between k-fold. 
These fluctuations of prediction accuracy and 
absolute value of error in ANN were more 
pronounced than for SVR and RF (these 
models were more stable). Also, within the 
stability of the SVM and RF methods, the 
k-fold variations were more stable in E. dunnii 
than in the other groups.

Table 5 Statistical criteria for the estimation of LAI in 
Eucalyptus dunnii, Eucalyptus grandis and 
Eucalyptus (sp.) in Uruguay. 

Model RMSE nRMSE R2 RMSEkv R2kv

E. dunnii SVR 0.60 0.19 0.78 0.49 0.88
ANN 1.07 0.33 0.69 1.26 0.51
RF 0.65 0.20 0.76 0.56 0.86

E. grandis SVR 0.79 0.27 0.79 0.71 0.75
ANN 1.83 0.62 0.60 0.99 0.55
RF 0.96 0.33 0.72 0.79 0.70

Eucalyptus SVR 0.66 0.21 0.84 0.58 0.83
ANN 0.91 0.29 0.70 1.11 0.62
RF 0.71 0.23 0.77 0.76 0.70

Note: Root Mean Squared Error (RMSE), normalized Root 
Mean Squared Error (nRMSE), determination coefficient 
(R2), root-mean-squared error of the k- cross-validation 
(RMSEkv), determination coefficient of the k-cross-
validation (R2kv). 
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 For a single k-folder, variability of 
RMSEkv was observed (e.g. E. dunnii in k=6 
had ANN=1.89, RF=0.55, and SVR=0.44; 
E. grandis in k=10 had ANN=1.55, 
SVR=0.65, and RF=0.58; Eucalyptus in k=3 
had ANN=1.7, SVR=0.77, and RF=0.67). 
Also, E. dunnii in k=19 had ANN=0.24, 
SVR=0.84, and RF=0.86; E. grandis in k=4 
had ANN=0.11, SVR=0.50, and R=0.69; 
and Eucalyptus in k=12 had ANN=0.51, 
SVR=0.65, and RF=0.74. 
 The standard deviation of the R2 and the 
RMSE of validation were calculated to 
represent the model stability averaged over 
k-iterations. Values close to 0 indicate higher 
model stability. The SVR method exhibited 
the lowest standard deviation of both the 
RMSE (0.056, 0.140, and 0.055 for E. dunnii, 
E. grandis, and Eucalyptus, respectively) and 
the validation coefficient of determination 
(0.031, 0.105, and 0.055 for E. dunnii, E. 
grandis, and Eucalyptus, respectively). In all 

cases, the R2kv and RMSEkv indicators during 
validation confirmed the testing results. The 
SVR methods showed high precision in LAI 
estimation, in terms of model median overall 
accuracy and nRMSE, for the three groups, 
while ANN was the approach with the lowest 
precision, accuracy, and stability.

Prediction of LAI using combined MS HR 
vegetation indices and ALS metrics

With the models selected in the previous 
section, the accuracy gain obtained by adding 
vegetation indices was evaluated. Due to 
multicollinearity between indices, each 
vegetation index was evaluated independently 
as a predictor variable. Table 6 shows the 
RMSE, nRMSE, R2, RMSEkv, and R2kv for 
the models and VI. The best models for LAI 
were chosen based on their highest coefficient 
of determination (R2) and lowest RMSE, and 
were corroborated using k-cross validation.   

Figure 5 Trend of root-mean-square error (RMSEkv - bottom) and determination coefficient (R2kv - top) of 
k-cross validation for Eucalyptus dunnii, Eucalyptus grandis, and both species (Eucalyptus).  ANN 
Artificial neuronal networks (black line), SVM Support vector machine (soft grey line), RF Random 
forest (grey line) approaches.
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The inclusion of SRI gave smaller 
R2 and R2kv values in the estimation 
of LAI than the other VIs, whereas 
NDVI achieved the highest overall 
accuracy (89% in the fit and 85% in 
the validation) and smaller RMSE, 
nRMSE, and RMSEkv values (Figure 
6). For E. grandis, GNDVI was 
incorporated as a predictor variable, 
exhibiting lower RMSE, nRMSE and 
RMSEkv values and higher R2 and 
R2kv values than the other VI. For 
both species together, the accuracy 
was higher than 90% when the best VI 
was incorporated (NDVI).
 The indices with the best 
performances were the normalized 
infrared differences, either with 
red or green. Again, spectrally, 
E. grandis behaved in a slightly 
different way from E. dunnii, 
although in the joint modeling 
(Eucalyptus group) it had no weight, 
as happened with LPI 4 and LPI 7.

Table 6 Statistical comparison between models using different 
vegetation indexes (VI) to estimate LAI in Eucalyptus 
dunnii, Eucalyptus grandis and Eucalyptus (sp.) in 
Uruguay by Support vector regression (SVR). 

Model VI RMSE nRMSE RMSEkv R2kv

E. dunnii SVR EVI 0.70 0.23 0.61 0.80
GI 0.66 0.22 0.64 0.79

GNDVI 0.56 0.20 0.62 0.83
NDVI 0.53 0.16 0.60 0.85

SRI 0.69 0.21 0.68 0.73
E. grandis SVR EVI 0.50 0.17 0.68 0.79

GI 0.60 0.20 0.68 0.79
GNVDI 0.40 0.13 0.57 0.82
NDVI 0.43 0.14 0.59 0.80
SRI 0.69 0.23 0.64 0.76

Eucalyptus SVR EVI 0.75 0.20 0.64 0.83
GI 0.74 0.20 0.63 0.82

GNDVI 0.78 0.20 0.61 0.82
NDVI 0.50 0.16 0.50 0.88

SRI 0.78 0.19 0.61 0.83
Note: Root Mean Squared Error (RMSE, m2 m-2), normalized root 

mean squared error (nRMSE, %), root-mean-squared error of 
the k-cross-validation (RMSEkv, m2 m-2) and determination 
coefficient of the k-cross-validation (R2kv). Values in bold show 
the best performing model per vegetation indices. 

Figure 6 Observed versus predicted LAI values from models using different Vegetation indexes (Vindex) for 
Eucalyptus dunnii, Eucalyptus grandis and Eucalyptus (sp.) by Support vector regression (SVR).
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 Regarding the model performance assessed in 
terms of nRMSE, the model of LAI estimation 
for E. grandis that included GNDVI showed the 
lowest relative value error (0.13%) with respect 
to the average for all cases (Groups and indices). 
The relative error values were highest for E. dunnii. 
For E. grandis, graphical analysis revealed an 
underestimation behavior for all models (Figure 6).
 Overall, the LAI prediction was best for 
all Groups using ALSm+ALS-PWF and VI, 
and the LAI predictions were acceptable. 
Nevertheless, SRI performed relatively poorly 
in LAI estimation and yielded the lowest RMSE, 
nRMSE, and R2 values for the E. dunnii and 
E. grandis groups. According to these results, 
CCF, Elev.P99, Sk, LPI 7, and NDVI (for E. 
dunnii), LPI 4, CCF, Elev.P40, Cv, and GNDVI 
(for E. grandis), and CCF, Cv, LPI 4, and NDVI 
(for Eucalyptus) were the most suitable indices 
combination for LAI estimation because they 
showed higher accuracy and precision than the 
other indices.

Discussion

Leaf area index is a key physiological variable 
for understanding forest dynamics and 
growth, and as such it has been widely used 
in forest models. To improve LAI estimation 
in intensive Eucalyptus plantations, we have 
considered an integrated two-step method, 
including ALS and high spatial resolution 
vegetation indices, based on ML algorithms. 
We have demonstrated the ability of this 
approach to estimate LAI with high accuracy 
and stability, which is consistent with previous 
research (Yuan et al. 2017). The temporal gap 
between the acquisition of ALS, MS HR, and 
field data increases the uncertainty in LAI 
estimates (Zhao & Popescu 2009). In our 
study, the temporal difference was less than 2 
months, avoiding uncertainty.

LAI values and ALS variable selection

The Eucalyptus LAI observed values varied 
between 1.17 and 5.07 m² m-², with mean 

values of 2.95 and 3.26 m² m-² for E. grandis 
and E. dunnii, respectively. Those values are 
within the range reported by Scurlock et al. 
(2001) , who reported LAI value for Eucalyptus 
species of 3.51 m² m-². Observed values also 
agree with  Whitehead & Beadle (2004), who 
reported a value of 3.19 m² m-². However, in 
Uruguay Alonso (2011) determined a mean 
LAI value of 1.82 m² m-² in Eucalyptus globulus 
stands. This difference could be explained by 
differences in the species (E. grandis vs E. 
globulus), age (6-year-old plantations in our 
study vs over 10 years old for E. globulus), 
and estimation method (ceptometer vs fish-eye 
photography), among other factors.
 When ranking the importance of ALSm and 
ALS-PWF variables in LAI estimation, the 
LPI and a shape parameter were always ranked 
at or near the top, showing the importance 
of the height distribution metric. The CCF 
metric was the most important ALSm in LAI 
estimation, and it was included in all the LAI 
models selected. The CCF corresponded to 
the upper canopy cover, where we expected 
the greatest density of foliage. The number of 
ALSm selected for each model was a balance 
between parsimony and relevance, determined 
by the permutation variable importance. The 
difference in the branching between the two 
species meant that LAI models for E. dunnii 
selected middle height percentiles (Elev.P40) 
while in E. grandis they included high height 
percentiles (Elev.P99).
 The LPI is related to the canopy development; 
the closer and denser the vegetation, the fewer 
the laser pulses that penetrate to reach the 
ground (Peduzzi et al. 2012). Thus, LPI has 
been used to predict LAI, and models including 
this variable were able to explain 80% or 
more of LAI variation (Peduzzi et al. 2012). 
The penetration metric selected for E. grandis 
and Eucalyptus was a metric of return heights 
(LPI 4), while for E. dunnii the most important 
penetration metric focused on intensity (LPI 
7). This may be related to the characteristics 
of the two species; the spectral response of 
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the leaves in E. dunnii was more sensitive to 
infrared radiation, related to a healthier status of 
the plantations. Canopy relief ratio was deleted 
for the Eucalyptus group, likely because the 
biological information provided by this variable 
was already included through the CCF.

LAI models

In our study, an SVM approach was chosen to 
predict the LAI in E. dunnii, E. grandis, and 
Eucalyptus. Ability to handle non-linearity 
and to quantify the importance of independent 
variables makes SVR an effective algorithm. 
SVR has been implemented in a wide range of 
analyses with ALS and MS HR in agricultural  
and forest investigations (Mountrakis et al. 
2011). However, in our study ANN showed 
poor LAI prediction, which contrasts with 
other studies where ANN proved more efficient 
than RF and SVR in predicting forest structural 
parameters (increment in diameter, height, 
dbh) (Tavares Júnior et al. 2020).
 The best models, with the highest R2 (>0.78) 
and the lowest nRMSE (0.137 m² m-²), 
included four (E. grandis and E. dunnii) or 
three (Eucalyptus) ALSm. These results are 
consistent with previous studies. Assessing E. 
grandis, (Tesfamichael et al. 2018) achieved 
R2=0.67 with two LiDAR metrics (height and 
standard deviation of points below the 10th 
height) and obtained R2=0.83 when employing 
14 metrics (with collinearity problems). 
Peduzzi et al. (2012) obtained models with 
R2 values between 0.61 (two model inputs) 
and 0.83 (six model inputs). Jensen et al. 
(2008) reported estimated LAI R2 values of 
0.86 (RMSE = 0.76) and 0.69 (RMSE = 0.61). 
Morsdorf et al. (2006) estimated returned R2 
values of 0.69 (RMSE = 0.01), but it should be 
noted that the LAI values in their study were 
within a narrower range (0–2) than ours.
 We expected that ALS height metrics would 
be present in all the LAI models, because 
increases in canopy height should occur in 
tandem with increases in LAI, and this was 
observed for E. dunnii (Elev.99) and E. grandis 

(Elev.P40). In this study, LAI was sensitive 
to the inclusion of LPI, and LPI 7 and LPI 4 
related the vegetation returns with the total 
returns and the intensity of the returns with 
the intensity of the ground returns. Sumnall 
et al. (2016a) reported an R2 value of 0.89 
when employing LPI1 in LAI estimation. We 
computed the vegetation return and intensity 
above a threshold of 1.3 m, at the same height 
as the LAI data (ceptometer measurements, dbh 
height). By implementing this minimum height 
threshold for the within-plot ALS, the returns 
and the corresponding metrics were limited to 
the vertical space in which the greatest amount 
of foliage was distributed. In addition, the link 
between field LAI measurement height and the 
threshold of what is defined as ‘ground’ and 
‘canopy’ within LiDAR returns, as suggested in 
Sumnall et al. (2016b), implies that estimation 
of the vertical distribution of LAI through the 
canopy is possible.

Prediction of LAI using combined ALS 
and MS HR variables

The integration of Planet-derived VIs markedly 
improved the LAI estimation with respect 
to the results obtained by ALSm+PWF. The 
integration of ALSm, ALS-PWF metrics, and 
VIs involved four different approaches. The 
use of high spatial resolution, multispectral VIs 
can provide continuous and detailed spectral 
signatures of forest biophysical attributes (Shen 
et al. 2018). The ANN, RF, and SVR models 
contained a stochastic element that resulted in a 
different LAI model each time they were applied 
to the same training data. With the addition of 
VIs, the improvement in the accuracy of the 
predictive models was significant. In general, 
the NIR-based VIs (i.e., NDVI and GNDVI) 
performed better in terms of LAI assessment 
than the other indices evaluated, and NDVI for 
E. dunnii, GNDVI for E. grandis, and NDVI 
for Eucalyptus were the best-fitted parameters, 
the improvement in nRMSE being 16%, 51%, 
and 39%, respectively. The gain in explained 
variance (R2) was 14 % (E. dunnii and E. 



180

Ann. For. Res. 64(2): 165-183, 2021 Research article 

grandis) and 7 % (Eucalyptus) when using 
these VIs. The R2kv and RMSEkv obtained 
from 20-fold cross-validation also agreed well. 
For a Eucalyptus clone (grandis x urophylla) 
in Brazil, R2 values between 0.68 and 0.77 
were reported when LAI was estimated with 
NDVI models, using Landsat (De Almeida et 
al. 2015) and RapidEye sensors (Alvares et al. 
2015).
 The plots of the observed against the 
estimated values for the VIs (Figure 5) 
demonstrate that the NDVI showed less data 
dispersion with respect to the (1:1) trend line 
and gave lesser trends of overestimation or 
underestimation of LAI for the Eucalyptus 
group. NDVI is the most widely used vegetation 
index, and it is based on the red and near-
infrared wavelength bands (Xue & Su 2017). 
On the other hand, GNDVI uses the green band 
instead of the red and can be more sensitive to 
chlorophyll; thus, it may be more accurate than 
NDVI over areas with dense vegetation cover 
(Gitelson & Merzlyak 1998). In Rio Grande 
do Sul, De Godoy Goergen et al. (2016) using 
Landsat 5, found that GNDVI, NDVI, and SRI 
were correlated with the age of E. dunnii trees 
and that GNDVI could be used to differentiate 
E. dunnii from E. urograndis.
 Our results demonstrate that the combination 
of the ALSm and PWF datasets with VIs was 
suitable for the estimation of LAI. Together, 
these variables yielded the highest prediction 
accuracies in the k-cross-validation, with 
R2kv> 0.85 and RMSEkv <0.6 (m2 m-2). The 
standard deviation of RMSEcv was small for 
SVR, ranging from 0.05 m2 m-2 (Eucalyptus) 
to 1.23 m2 m-2 (E. dunnii). The ANN models 
produced substantially higher R2kv and 
RMSEkv standard deviations than SVR and 
RF. When both species were treated as a single 
group (Eucalyptus), an increase in the accuracy 
(R2kv=0.88), precision (RMSEkv=0.5 m2 m-2), 
and stability (standard deviations of R2kv 
<0.05) was observed. 
 Previous studies demonstrated that the 
integration of these two complementary 

datasets can improve the prediction of forest 
structural parameters (Shen et al. 2018). 
Although multispectral data have limitations 
regarding the quantification of the vertical 
structure of forests, multispectral metrics 
such as VIs have the capability to improve the 
accuracy of the prediction of forest structural 
parameters. This indicates that multispectral 
metrics have great potential in the prediction 
of forest structural parameters.
 There are some potential limitations in our 
study. First, the temporal gap in the acquisition 
of the ALS, MS HR, and field data may increase 
the uncertainty in the LAI estimates (Zhao & 
Popescu 2009). However, in our study, the 
temporal difference was less than 2 months, 
thus minimizing the uncertainty. Second, 
there was no spatial mismatch between the 
field measurements (plots of 314 m2) and the 
CubeSat pixels (3 m resolution). This may have 
resulted in a homogeneous pixel covering one 
stand with homogeneous growth conditions. 
Differences among stands would have been 
included in the different pixels. The pixel 
effect can cause LAI underestimation at coarse 
spatial resolution because of area aggregation 
that produces averaged values.
 The results allowed us to suggest a new 
approach to LAI estimation in intensive 
Eucalyptus plantations that can be applied 
over distinct forest test sites, selecting and 
applying the best features of each source of 
data to improve LAI estimation.

Conclusion

In this study, we applied a modeling approach 
to estimate LAI in Eucalyptus plantations, 
integrating several remote sensing data 
sources. The SVM and RF models were more 
accurate than the ANN model. The SVM 
model, using ALS metrics, ALS-PWF shape 
parameters, and Vis from MS HR, performed 
well for E. grandis, E. dunnii, and both species 
together. The most informative ALS metrics 
for LAI estimation were related to the upper 
and middle tree height percentiles and the 
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canopy cover fraction. The most important 
pseudo-waveforms parameters shapes were the 
coefficient of variation (Cv, for E. grandis and 
Eucalyptus) and skewness (Sk, for E. dunnii). 
The NDVI and GNDVI from the Planet data 
were proven to be highly appropriate for the 
assessment and prediction of LAI in Eucalyptus 
plantations. The selected models, incorporating 
ALSm, ALS-PWF, and multispectral data, 
have great potential for LAI values. This study 
provides an improved foundation for LAI 
estimation in intensive Eucalyptus plantations, 
which is crucial for forest management and 
research.

Acknowledgments

The authors thank the Instituto Nacional 
de Investigaciones Agropecuarias (INIA-
Uruguay) for supporting our research work 
and for help during the fieldwork. We are 
particularly grateful to Roberto Scoz, Demian 
Gomez, Leonidas Carrasco and Alicia Peduzzi 
for their assistance during this research. 
RMNC acknowledge the institutional support 
of the Ministerio de Ciencia, Innovación 
y Universidades (Spain), through the 
ESPECTRAMED (CGL2017-86161-R).
show significant changes.

References
Alonso J., 2011. Modelación de procesos hidrológicos 

asociados a la forestación con Eucalyptus en el Uruguay. 
Facultad de Ingeniería, Universidad de la República.

Altmann A., Toloşi L., Sander O., Lengauer T., 2010. 
Permutation importance: A corrected feature importance 
measure. Bioinformatics, 26(10): 1340–1347. https://
doi.org/10.1093/bioinformatics/btq134

Alvares C.A., Mattos E.M. de, Campoe O.C., Marrichi 
A.H.C., Stape J.L., 2015. Uso de sensoriamento remoto 
na estimativa do índice de área foliar em Eucalyptus. 
XVII Simpósio Brasileiro de Sensoriamento Remoto, 
pp. 6429–6436.

Ariza Salamanca A.J., Navarro-Cerrillo R.M., Bonet-
García F.J., Pérez-Palazón M.J., Polo M.J., 2019. 
Integration of a Landsat time-series of NBR and 
hydrological modeling to assess Pinus pinaster Aiton. 
Forest Defoliation in South-Eastern Spain. Remote 
Sensing, 11(19): 2291. https://doi.org/10.3390/
rs11192291

Castaño J.P., Giménez A., Ceroni M., Furest J., Aunchayna 

R., Bidegain M., 2011. Caracterización agroclimática 
del Uruguay 1980-2009. Serie Técnica INIA, 193: 33.

De Almeida A.Q., Ribeiro A., Delgado R.C., Rody Y.P., De 
Oliveira A.S., Leite F.P., 2015. Índice de área foliar de 
eucalyptus estimado por índices de vegetação utilizando 
imagens TM - landsat 5. Floresta e Ambiente, 22: 368–
376. https://doi.org/10.1590/2179-8087.103414

De Godoy Goergen L.C., De Vargas Kilca R., Da Silva 
Narvaes I., Silva M.N., Silva E.A., Pereira R.S., 
Adami M., 2016. Distinção de espécies de eucalipto de 
diferentes idades por meio de imagens TM/Landsat 5. 
Pesquisa Agropecuaria Brasileira, 51: 53–60. https://
doi.org/10.1590/S0100-204X2016000100007

Fassnacht F.E., Hartig F., Latifi H., Berger C., Hernández J., 
Corvalán P., Koch B., 2014. Importance of sample size, 
data type and prediction method for remote sensing-
based estimations of aboveground forest biomass. 
Remote Sensing of Environment, 154: 102–114. https://
doi.org/10.1016/j.rse.2014.07.028

Frazier A.E., Hemingway B.L., 2021. A technical review 
of planet smallsat data: Practical considerations for 
processing and using planetscope imagery. Remote 
Sensing, 13(19): 3930. https://doi.org/10.3390/
rs13193930

Gitelson A.A., Merzlyak M.N., 1997. Remote estimation of 
chlorophyll content in higher plant leaves. International 
Journal of Remote Sensing, 18: 2691–2697.

Gitelson A.A., Merzlyak M.N., 1998. Remote sensing 
of chlorophyll concentration in higher plant leaves. 
Advances in Space Research, 22(5): 689–692. https://
doi.org/10.1016/S0273-1177(97)01133-2

Gleason C.J., Im J., 2012. Forest biomass estimation 
from airborne LiDAR data using machine learning 
approaches. Remote Sensing of Environment, 125: 80–
91. https://doi.org/10.1016/j.rse.2012.07.006

Hopkinson C., Chasmer L., 2009. Testing LiDAR models 
of fractional cover across multiple forest ecozones. 
Remote Sensing of Environment, 113(1): 275–288. 
https://doi.org/10.1016/j.rse.2008.09.012

Huete A., Van Leeuwen W., 1999. MODIS vegetation index 
(MOD13). Algorithm Theoretical Basis Document, 
3(213), 295-309.

Ingram J.C., Dawson T.P., Whittaker R.J., 2005. Mapping 
tropical forest structure in southeastern Madagascar 
using remote sensing and artificial neural networks. 
Remote Sensing of Environment, 94(4): 491–507. 
https://doi.org/10.1016/j.rse.2004.12.001

Jain P., Coogan S.C.P., Subramanian S.G., Crowley 
M., Taylor S., Flannigan M.D., 2020. A review of 
machine learning applications in wildfire science and 
management. Environmental Reviews, 28(4): 478-505. 
https://doi.org/10.1139/er-2020-0019

Jensen J.L.R., Humes K.S., Vierling L.A., Hudak A.T., 
2008. Discrete return lidar-based prediction of leaf 
area index in two conifer forests. Remote Sensing 
of Environment, 112(10): 3947–3957. https://doi.
org/10.1016/j.rse.2008.07.001

Jonckheere I., Fleck S., Nackaerts K., Muys B., Coppin 



182

Ann. For. Res. 64(2): 165-183, 2021 Research article 

P., Weiss M., Baret F., 2004. Review of methods for 
in situ leaf area index determination Part I. Theories, 
sensors and hemispherical photography. Agricultural 
and Forest Meteorology, 121(1-2): 19–35. https://doi.
org/10.1016/j.agrformet.2003.08.027

Jordan C.F., 1969. Derivation of leaf‐area index from quality 
of light on the forest floor. Ecology, 50(4): 663–666.

Lary D.J., Alavi A.H., Gandomi A.H., Walker A.L., 
2016. Machine learning in geosciences and remote 
sensing. Geoscience Frontiers, 7(1): 3–10. https://doi.
org/10.1016/j.gsf.2015.07.003

Le Maire G., Marsden C., Nouvellon Y., Stape J.L., 
Ponzoni F.J., 2012. Calibration of a species-specific 
spectral vegetation index for leaf area index (LAI) 
monitoring: Example with MODIS reflectance time-
series on eucalyptus Plantations. Remote Sensing, 
4(12): 3766–3780. https://doi.org/10.3390/rs4123766

Luo S., Wang C., Xi X., Nie S., Fan X., Chen H., Yang 
X., Peng D., Lin Y., Zhou G., 2019. Combining 
hyperspectral imagery and LiDAR pseudo-waveform 
for predicting crop LAI, canopy height and above-
ground biomass. Ecological Indicators, 102: 801–812. 
https://doi.org/10.1016/j.ecolind.2019.03.011

Megown R.A., Webster M., Jacobs S., 1999. Using 
Landsat TM imagery to estimate LAI in a Eucalyptus 
plantation. 1–13.

Mesas-Carrascosa F.J., Castillejo-González I.L., De la 
Orden M.S., Porras A.G.F., 2012. Combining LiDAR 
intensity with aerial camera data to discriminate 
agricultural land uses. Computers and Electronics 
in Agriculture, 84: 36–46. https://doi.org/10.1016/j.
compag.2012.02.020

Morsdorf F., Kötz B., Meier E., Itten K.I., Allgöwer B., 
2006. Estimation of LAI and fractional cover from 
small footprint airborne laser scanning data based on 
gap fraction. Remote Sensing of Environment, 104(1): 
50–61. https://doi.org/10.1016/j.rse.2006.04.019

Mountrakis G., Im J., Ogole C., 2011. Support vector 
machines in remote sensing: A review. ISPRS Journal 
of Photogrammetry and Remote Sensing, 66(3): 247–
259. https://doi.org/10.1016/j.isprsjprs.2010.11.001

Pavithra B., Kalaivani K., Ulagapriya K., 1998. Remote 
sensing techniques for mangrove mapping. International 
Journal of Engineering and Advanced Technology, 8: 
27–30.

Pearse G.D., Morgenroth J., Watt M.S., Dash J.P., 
2017. Optimising prediction of forest leaf area index 
from discrete airborne lidar. Remote Sensing of 
Environment, 200: 220–239. https://doi.org/10.1016/j.
rse.2017.08.002

Peduzzi A., Wynne R.H., Fox T.R., Nelson R.F., Thomas 
V.A., 2012. Estimating leaf area index in intensively 
managed pine plantations using airborne laser scanner 
data. Forest Ecology and Management, 270: 54–65. 
https://doi.org/10.1016/j.foreco.2011.12.048

Planet Labs, 2018. Precision Ag insights from frequent 
imaging smarter farming throughout the season. 22.

R Core Development Team, 2013. A language and 

environment for statistical computing. 1.
Rouse jr. J.W., Haas R.H., Schell J.A., Deering D.W., 1973. 

Monitoring the vernal advancement and retrogradation 
(green wave effect) of natural vegetation.

Scurlock J.M.O., Asner G.P., Gower S.T., 2001. Worldwide 
historical estimates of leaf area index, 1932–2000. 
ORNL/TM-2001/268, 34. https://doi.org/0RNL/TM-
2001/268

Shen X., Cao L., Chen D., Sun Y., Wang G., Ruan H., 
2018. Prediction of forest structural parameters using 
airborne full-waveform LiDAR and hyperspectral data 
in subtropical forests. Remote Sensing, 10(11): 1729. 
https://doi.org/10.3390/rs10111729

Solberg S., Næsset E., Hanssen K.H., Christiansen E., 
2006. Mapping defoliation during a severe insect attack 
on Scots pine using airborne laser scanning. Remote 
Sensing of Environment, 102(3-4): 364–376. https://
doi.org/10.1016/j.rse.2006.03.001

Staben G., Lucieer A., Scarth P., 2018. Modelling LiDAR 
derived tree canopy height from Landsat TM, ETM+ 
and OLI satellite imagery — A machine learning 
approach. International Journal of Applied Earth 
Observation and Geoinformation, 73: 666–681. https://
doi.org/10.1016/j.jag.2018.08.013

Sumnall M., Peduzzi A., Fox T.R., Wynne R.H., Thomas 
V.A., Cook B., 2016a. Assessing the transferability of 
statistical predictive models for leaf area index between 
two airborne discrete return LiDAR sensor designs 
within multiple intensely managed Loblolly pine forest 
locations in the south-eastern USA. Remote Sensing of 
Environment, 176: 308–319. https://doi.org/10.1016/j.
rse.2016.02.012

Sumnall M.J., Fox T.R., Wynne R.H., Blinn C., Thomas 
V.A., 2016b. Estimating leaf area index at multiple 
heights within the understorey component of Loblolly 
pine forests from airborne discrete-return lidar. 
International Journal of Remote Sensing, 37: 78–99. 
https://doi.org/10.1080/01431161.2015.1117683

Tavares Júnior I da S., Torres C.M.M.E., Leite H.G., 
Castro N.L.M. de, Soares C.P.B., Castro R.V.O., Farias 
A.A., 2020. Machine learning: Modeling increment 
in diameter of individual trees on Atlantic Forest 
fragments. Ecological Indicators, 117: 106685. https://
doi.org/10.1016/j.ecolind.2020.106685

Tesfamichael S.G., van Aardt J., Roberts W., Ahmed F., 
2018. Retrieval of narrow-range LAI of at multiple 
lidar point densities: Application on Eucalyptus grandis 
plantation. International Journal of Applied Earth 
Observation and Geoinformation, 70: 93–104. https://
doi.org/10.1016/j.jag.2018.04.014

Tseng Y.H., Lin L.P., Wang C.K., 2016. Mapping CHM 
and LAI for heterogeneous forests using airborne 
full-waveform LiDAR data. Terrestrial, Atmospheric 
and Oceanic Sciences, 27: 537–548. https://doi.
org/10.3319/TAO.2016.01.29.04(ISRS)

Watson D.J., 1947. Comparative physiological studies on 
the growth of field crops: I. Variation in net assimilation 
rate and leaf area between species and varieties, and 



183

Hirigoyen et al. A machine learning approach to model leaf area index in Eucalyptus...

within and between years. Annals of Botany, 11: 41–76. 
https://doi.org/10.1093/oxfordjournals.aob.a083148

Weiss M., Baret F., Smith G.J., Jonckheere I., Coppin P., 
2004. Review of methods for in situ leaf area index 
(LAI) determination Part II. Estimation of LAI, errors 
and sampling. Agricultural and Forest Meteorology, 121: 
37–53. https://doi.org/10.1016/j.agrformet.2003.08.001

Whitehead D., Beadle C.L., 2004. Physiological regulation 
of productivity and water use in Eucalyptus: A review. 
Forest Ecology and Management, 193: 113–140. https://
doi.org/10.1016/j.foreco.2004.01.026

Xue J., Su B., 2017. Significant remote sensing 
vegetation indices: A review of developments and 
applications. Journal of Sensors, 2017. https://doi.
org/10.1155/2017/1353691

Yan G., Hu R., Luo J., Weiss M., Jiang H., Mu X., Xie 
D., Zhang W., 2019. Review of indirect optical 
measurements of leaf area index: Recent advances, 
challenges, and perspectives. Agricultural and Forest 
Meteorology, 265: 390–411. https://doi.org/10.1016/j.
agrformet.2018.11.033

Yuan H., Yang G., Li C., Wang Y., Liu J., Yu H., Feng H., 
Xu B., Zhao X., Yang X., 2017. Retrieving soybean leaf 
area index from unmanned aerial vehicle hyperspectral 
remote sensing: Analysis of RF, ANN, and SVM 
regression models. Remote Sensing, 9. https://doi.

org/10.3390/rs9040309
Zaletnyik P., Laky S., Toth C., 2010. LIDAR waveform 

classification using self-organizing map. American 
Society for Photogrammetry and Remote Sensing 
Annual Conference 2010: Opportunities for Emerging 
Geospatial Technologies, 2: 1055–1066.

Zhao K., Popescu S., 2009. Lidar-based mapping of leaf 
area index and its use for validating GLOBCARBON 
satellite LAI product in a temperate forest of the 
southern USA. Remote Sensing of Environment, 113: 
1628–1645. https://doi.org/10.1016/J.RSE.2009.03.006

Zhou H., Wang C., Zhang G., Xue H., Wang J., Wan H., 
2020. Generating a spatio-temporal complete 30 m leaf 
area index from field and remote sensing data. Remote 
Sensing, 12: 2394. https://doi.org/10.3390/rs12152394

Zhou Y., Qiu F., 2015. Fusion of high spatial resolution 
WorldView-2 imagery and LiDAR pseudo-waveform 
for object-based image analysis. ISPRS Journal of 
Photogrammetry and Remote Sensing, 101: 221–232. 
https://doi.org/10.1016/j.isprsjprs.2014.12.013


