Evaluating primary forest fuel rail terminals with discrete event simulation: A case study from Austria

Authors

  • Ulrich J. Wolfsmayr University of Natural Resources and Life Sciences, Vienna
  • Rossana Merenda University of Calabria, Italy
  • Peter Rauch University of Natural Resources and Life Sciences, Vienna
  • Francesco Longo University of Calabria, Italy
  • Manfred Gronalt University of Natural Resources and Life Sciences, Vienna

DOI:

https://doi.org/10.15287/afr.2015.428

Keywords:

biomass, bioenergy, terminal, simulation, multimodal transport, rail transport

Abstract

Biomass rail transport is a useful alternative to unimodal truck transport for medium or long transport distances, if only a short road pre-haulage is required. Up to now primary forest fuels (PFF) are rarely transported on the rail network in Austria and rail terminals able to tranship notable volumes are not established yet. The objective of this study is to investigate the potentials of existing transhipment infrastructure for introducing and operating PFF terminals. Such PFF terminals enable a regular PFF supply to bioenergy plants and additionally provide opportunities for buffer storage and production processes like comminution. Three existing railway sidings in South, Central and Western Austria were chosen to serve as a multimodal transhipment hub with a road pre-haulage and a rail main-haulage for this case study. The logistic potential of these terminals was investigated, modelling the specific PFF supply chains, by means of a discrete event simulation. Simulation results provide daily and annual transhipment capacities and revealed bottlenecks in the terminal layout under different supply scenarios.

References

Anbumozhi V., Gunjima T., Prem Ananth A., Visvanathan C., 2010. An assessment of inter-firm networks in a wood biomass industrial cluster: lessons for integrated policymaking. Clean Technologies and Environmental Policy 12: 365-372. DOI:10.1007/s10098-009-0246-z Austrian Biomass Association, 2013. Basisdaten Bioenergie 2013,Vienna. 52 p. Behrends S., 2012. The Significance of the Urban Context for the Sustainability Performance of Intermodal Road-rail Transport. Procedia - Social and Behavioral Sciences 54: 375-386. DOI:10.1016/j.sbspro.2012.09.757 Börjesson P., Gustavsson L., 1996. Regional production and utilization of biomass in Sweden. Energy 21: 747-764. DOI: 10.1016/0360-5442(96)00029-1. DOI:10.1016/0360-5442(96)00029-1 Callahan R.N., Hubbard K.M., BacoskiN.M., 2006. The use of simulation modeling and factorial analysis as a method for process flow improvement. The International Journal of Advanced Manufacturing Technology 29: 202-208. DOI:10.1007/s00170-004-2497-5 Dornburg V., Faaij A.P.C., 2001. Efficiency and economy of wood-fired biomass energy systems in relation to scale regarding heat and power generation using combustion and gasification technologies. Biomass and Bioenergy 21: 91-108. DOI:10.1016/S0961-9534(01)00030-7 Etlinger K., Rauch P., Gronalt M., 2014. Improving rail road terminal operations in the forest wood supply chain – a simualtion based approach. In: Bruzzone, Del Rio Vilas, Longo, Merkuryev, Piera (Eds.), Proceedings of the International Conference on Harbor Maritime and Multimodal Logistics M&S 2014, 199-206 FOROPA, 2014. http://www.foropa.eu/. Accessed 2014-03-05 Gan J., Smith C.T., 2011. Optimal plant size and feedstock supply radius: A modeling approach to minimize bioenergy production costs. Biomass and Bioenergy 35: 3350-3359. DOI:10.1016/j.biombioe.2010.08.062 Gronalt M., Rauch P., 2007. Designing a regional forest fuel supply network. Biomass and Bioenergy 31: 393-402. DOI:10.1016/j.biombioe.2007.01.007 Hamelinck C.N., Suurs R.A.A., Faaij A.P.C., 2005. International bioenergy transport costs and energy balance. Biomass and Bioenergy 29: 114-134. DOI:10.1016/j.biombioe.2005.04.002 Haneder H., Furtner K., 2013. Biomasse-Heizungserhebung 2013. Landwirtschaftskammer Niederösterreich, St. Pölten, 20 p. Innofreight, 2013. http://www.innofreight.at. Accessed 2013-04-18 Jäppinen E., Korpinen O.-J., Ranta T., 2013. GHG emissions of forest-biomass supply chains to commercial-scale liquid-biofuel production plants in Finland. GCB Bioenergy 6: 290–299. DOI:10.1111/gcbb.12048 Jenkins T.L., Sutherland J.W., 2014. Acost model for forest-based biofuel production and its application to optimal facility size determination. ForestPolicy and Economics 38: 32-39. DOI:10.1016/j.forpol.2013.08.004 Junginger M., Faaij A., van den Broek R., Koopmans A., Hulscher W., 2001. Fuel supply strategies for large-scale bio-energy projects in developing countries. Electricity generation from agricultural and forest residues in Northeastern Thailand. Biomass and Bioenergy 21: 259-275. DOI:10.1016/S0961-9534(01)00034-4 Lindholm E.-L., Berg S., 2005. Energy requirement and environmental impact in timber transport. Scandinavian Journal of ForestResearch 20: 184-191. DOI:10.1080/ 02827580510008329 Lundmark R., 2006. Cost structure of and competition for forest-based biomass. Scandinavian Journal of ForestResearch 21: 272-280. DOI:10.1080/02827580600688251 Madlener R., Bachhiesl M., 2007. Socio-economic drivers of large urban biomass cogeneration: Sustainable energy supply for Austria's capital Vienna. Energy Policy 35: 1075-1087. DOI:10.1016/j.enpol.2006.01.022 Madlener R., Vögtli S., 2008. Diffusion of bioenergy in urban areas: A socio-economic analysis of the Swiss wood-fired cogeneration plant in Basel. Biomass and Bioenergy 32: 815-828. DOI:10.1016/j.biombioe.2008.01.006 Ranta T., Rinne S., 2006. The profitability of transporting uncomminuted raw materials in Finland. Biomass and Bioenergy 30: 231-237. DOI:10.1016/j.biombioe.2005.11.012 Rauch P., 2010. Stochastic simulation of forest fuel sourcing models under risk. Scandinavian Journal of ForestResearch 25: 574-584. DOI:10.1080/02827581.2010.512876 Rauch P., Gronalt M., 2010. The terminal location problem in a cooperative forest fuel supply network. International Journal ofForestEngineering 21: 32-40. DOI: 10.1080/14942119.2010.10702596 Sauter P., Witt J., Billig E., Thrän D., 2013. Impact of the Renewable Energy Sources Act in Germanyon electricity produced with solid biofuels – Lessons learned by monitoring the market development. Biomass and Bioenergy 53: 162-171. DOI:10.1016/j.biombioe. 2013.01.014 Searcy E., Flynn P., Ghafoori E., Kumar A., 2007. The relative cost of biomass energy transport. Applied Biochemistry and Biotechnology 137-140: 639-652. DOI:10.1007/s12010-007-9085-8 Tahvanainen T., Anttila P., 2011. Supply chain cost analysis of long-distance transportation of energy wood in Finland. Biomass and Bioenergy 35: 3360-3375. DOI:10.1016/j.biombioe. 2010.11.014 WolfsmayrU., Rauch P., Gronalt M., 2013. Endbericht Intermodales Transportsystem Holzbiomasse (unveröffentlicht). Universität für Bodenkultur, Wien Wolfsmayr U.J., Rauch P., 2013. Transportketten forstlicher Biomasse – Stand der Technik und Innovationen. Schweizerische Zeitschrift fur Forstwesen 164: 365-373. DOI:10.3188/szf. 2013.0365 Wolfsmayr U.J., Rauch P., 2014a. The primary forest fuel supply chain: A literature review. Biomass and Bioenergy 60: 203-221. DOI:10.1016/j.biombioe.2013.10.025 Wolfsmayr U.J., Rauch P., 2014b. Primary forest fuel supply chain: assessing barriers and drivers for the modal shift from truck to train. Silva Fennica 48. DOI:10.14214/sf.1217 Wolfsmayr U.J., Rauch P., 2014c. Strategy development for regional forest fuel supply chains inSoutheast Europe. in: Austrian Biomass Association (Ed.), Central European Biomass Conference. Austrian Biomass Association,Graz

Downloads

Published

2015-07-13

Issue

Section

Research article