Phylogenetic analysis of Chosenia arbutifolia (Pall.) A. Skv. in Salicaceae using complete chloroplast genome sequence

Authors

  • Xudong He Department of Tree Genetics and Breeding, Jiangsu Academy of Forestry, Nanjing, China Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing, China
  • Yu Wang Department of Tree Genetics and Breeding, Jiangsu Academy of Forestry, Nanjing, China College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
  • Jiwei Zheng Department of Tree Genetics and Breeding, Jiangsu Academy of Forestry, Nanjing, China Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing, China
  • Zhongyi Jiao Department of Tree Genetics and Breeding, Jiangsu Academy of Forestry, Nanjing, China Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing, China
  • Jie Zhou Department of Tree Genetics and Breeding, Jiangsu Academy of Forestry, Nanjing, China Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing, China
  • Baosong Wang Department of Tree Genetics and Breeding, Jiangsu Academy of Forestry, Nanjing, China Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing, China
  • Qiang Zhuge College of Biology and the Environment, Nanjing Forestry University, Nanjing, China

DOI:

https://doi.org/10.15287/afr.2022.2153

Keywords:

chloroplast genome, comparative analysis, phylogeny, Chosenia arbutifolia, Salix

Abstract

As a unique and endangered species in the family Salicaceae, Chosenia arbutifolia (Pall.) A. Skv. has great potential for use in ornamental and industrial purposes. Despite its comprehensive importance, the phylogenetic position of C. arbutifolia within Salicaceae is still ambiguous. In the present study, the whole chloroplast genome of C. arbutifolia was sequenced and compared with the genome of other Salicaceae species. A phylogenetic tree was established based on the maximum-likelihood (ML) methods. The de novo assemblies generated 155684 bp in length for the completed cp genome of C. arbutifolia, including a large single-copy region of 84551 bp, a small single-copy region of 16217 bp, and two inverted repeat regions of 27458 bp each. In total, 130 genes were predicted, of which 85 protein-coding genes were annotated in at least one of the five reference databases. In the repeat analysis, 23 forward, 15 palindromic, one complement, one reverse long repeats, and 221 putative SSRs were identified. The results of genome comparison showed that the large single copy region (LSC) region was more divergent than the small single copy region (SSC) and inverted repeated (IR) regions, and a higher divergence occurred in non-coding regions than in coding regions. Significant contractions or expansions were also observed at the IR-LSC/SSC boundaries. Phylogenetic analysis of 20 Salicaceae species confirmed that C. arbutifolia is closely related to Salix species and may therefore be treated as a member of the genus Salix. The complete C. arbutifolia chloroplast genome will provide insight into the chloroplast architecture, function, and evolution of this species and provide additional resources for future research

References

Asaf S., Khan A.L., Khan M.A., Shahzad R., Lubna, Kang S.M., Al-Harrasi A., Al-Rawahi A., Lee I.J. 2018. Complete chloroplast genome sequence and comparative analysis of loblolly pine (Pinus taeda L.) with related species. PLoS ONE 13(3): e0192966. https://doi.org/10.1371/journal.pone.0192966Azuma T., Kajita T., Yokoyama J., Ohashi H. 2000. Phylogenetic relationships of Salix (Salicaceae) based on rbcL sequence data. Am. J. Bot. 87(1): 67-75. https:// doi.org/10.2307/2656686Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17: 540-552. https://doi. org/10.1093/oxfordjournals.molbev.a026334Chen J.H., Hao Z.D., Xu H.B., Yang L.M., Liu G.X.,Sheng Y., Zheng C., Zheng W.W., Cheng T.L., Shi J.S. 2015. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. Front. Plant Sci. 6: 447. https://doi.org/10.3389/ fpls.2015.00447Chen J.H., Sun H., Wen J., Yang Y.P. 2010. Molecular phylogeny of Salix L. (Salicaceae) inferred from three chloroplast datasets and its systematic implications. Taxon 59: 29-37. https://doi.org/10.1002/tax.591004Chen Y.N., Hu N., Wu H.T. 2019. Analyzing and characterizing the chloroplast genome of Salix wilsonii. BioMed Res. Int. Article ID: 5190425. https://doi. org/10.1155/2019/5190425Cronn R., Liston A., Parks M., Gernandt D.S., Shen R., Mockler T. 2008. Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by- synthesis technology. Nucleic Acids Res. 36: e122. https://doi.org/10.1093/nar/gkn502Daniell H., Lin C.S., Yu M., Chang W.J. 2016. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 17: 134. https://doi. org/10.1186/s13059-016-1004-2Darriba D., Taboada G.L., Doallo R., Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9: 772. https://doi. org/10.1038/nmeth.2109De Las Rivas J., Lozano J.J., Ortiz A.R. 2002. Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Res. 12(4): 567-583. https://doi. org/10.1101/gr.209402Drescher A., Ruf S., Calsa Jr T., Carrer H., Bock R. 2000. The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J. 22(2): 97-104. https://doi.org/10.1046/j.1365- 313X.2000.00722.xEbert D., Peakall R. 2009. Chloroplast simple sequence repeats (cpSSRs): technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. Mol. Ecol. Resour. 9(3): 673-690. https://doi.org/10.1111/j.1755- 0998.2008.02319.xEguiluz M., Rodrigues N.F., Guzman F., Yuyama P., Margis R. 2017. The chloroplast genome sequence from Eugenia uniflora, a Myrtaceae from Neotropics. Plant Syst. Evol. 303: 1199-1212. https://doi.org/10.1007/ s00606-017-1431-xFeng C. H., He C. Y., Wang Y., Zeng Y. F., Zhang J. G. 2019. Phylogenetic position of Chosenia arbutifolia in the Salicaceae inferred from whole chloroplast genome. Forest Res. 32(2): 73-77. https://doi.org/10.13275/j. cnk.lykxyj.2019.02.011Guisinger M.M., Kuehl J.V., Boore J.L., Jansen R.K. 2011. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol. Biol. Evol. 28: 583-600. https://doi.org/10.1093/molbev/msq229Hardig T.M., Anttila C.K., Brunsfeld S.J. 2010. A phylogenetic analysis of Salix (Salicaceae) based on matK and ribosomal DNA sequence data. J. Bot. Article ID: 197696. https://doi.org/10.1155/2010/197696Ingvarsson P.K., Ribstein S., Taylor D.R. 2003. Molecular revolution of insertions and deletion in the chloroplast genome of Silene. Mol. Biol. Evol. 20: 1737-1740. https://doi.org/10.1093/molbev/msg163Jheng C.F., Chen T.C., Lin J.Y., Chen T.C., Wu W.L., Chang C.C. 2012. The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish Phalaenopsis orchids. Plant Sci. 190:62-73. https://doi.org/10.1016/j. plantsci.2012.04.001Kadis I. 2005. Chosenia: an amazing tree of Northeast Asia. Arnoldia 63: 8-17.Katoh K., Kuma K.I., Toh H., Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33: 511-518. https://doi.org/10.1093/nar/gki198Kurtz S., Choudhuri J.V., Ohlebusch E., Schleiermacher C., Stoye J., Giegerich R. 2001. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29: 4633-4642. https://doi. org/10.1093/nar/29.22.4633Leskinen E., Alström-Rapaport C. 1999. Molecular phylogeny of Salicaceae and closely related Flacourtiaceae: evidence from 5.8 S, ITS 1 and ITS 2 of the rDNA. Plant Syst. Evol. 215: 209-227. https://doi. org/10.1007/BF00984656Li X., Li Y.F., Zang M.Y., Li M.Z., Fang Y.M. 2018. Complete chloroplast genome sequence and phylogenetic analysis of Quercus acutissima. Int. J. Mol. Sci. 19: 2443. https://doi.org/10.3390/ijms19082443Lohse M., Drechsel O., Bock R. 2007. OrganellarGenomeDRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52: 267-274. https://doi.org/10.1007/s00294-007-0161-yLu D.Y., Zhang L., Zhang G.S., Hao L. 2020. Chloroplast genome structure and variation of Salicaceae plants.J. Northwest A&F Univ. (Nat. Sci. Ed.), 48(2): 87-94. https://doi.org/10.13207/j.cnki.jnwafu.2020.02.011Mader M., Pakull B., Blanc-Jolivet C., Paulini-Drewes M., Bouda Z.H.N., Degen B., Small I., Kersten B. 2018. Complete chloroplast genome sequences of four Meliaceae species and comparative analyses. Int. J. Mol. Sci. 19: 701. https://doi.org/10.3390/ijms19030701Mayor C., Brudno M., Schwartz J.R., Poliakov A., Rubin E.M., Frazer K.A., Pachter L.S., Dubchak I. 2000. Vista: Visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16: 1046-1047. https:// doi.org/10.1093/bioinformatics/16.11.1046McPherson H., van der Merwe M., Delaney S.K., Edwards M.A., Henry R.J., McIntosh E., Rymer P.D., Milner M.L., Siow J., Rossetto M. 2013. Capturing chloroplast variation for molecular ecology studies: a simple next generation sequencing approach applied to a rainforest tree. BMC Ecol. 13: 8. https://doi.org/10.1186/1472-6785-13-8Moskalyuk T.A. 2016. Chosenia arbutifolia (Salicaceae): life strategies and introduction perspectives. Sibirskij Lesnoj Zurnal (Sib J For Sci) 3: 34-45 (in English with Russian abstract).Nakai T. 1920. Chosenia, a new genus of Salicaceae. Bot. Mag. (Tokyo) 34: 66-69.Neuhaus H.E., Emes M.J. 2000. Nonphotosynthetic metabolism in plastids. Annu. Rev. Plant Biol. 51: 111-140. https://doi.org/10.1146/annurev.arplant.51.1.111 Ohashi H. 2001. Salicaceae of Japan. Sci. Rep. Tôhoku Imp. Univ. Ser. 4 40: 269-396.Palmer J.D. 1985. Comparative organization of chloroplast genomes. Annu. Rev. Genet. 19: 325-354. https://doi. org/10.1146/annurev.ge.19.120185.001545Powell W., Morgante M., Andre C., McNicol J.W., Machray G.C., Doyle J.J., Tingey S.V., RafalskiJ.A. 1995. Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome. Curr. Biol. 5: 1023-1029. https:// doi.org/10.1016/S0960-9822(95)00206-5Provan J., Powell W., Hollingsworth P.M. 2001. Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol. Evol. 16(3): 142-147. https://doi.org/10.1016/S0169-5347(00)02097-8Raubeson L.A., Peery R., Chumley T.W., Dziubek C., Fourcade H.M., Boore J.L., Jansen R.K. 2007. Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics 8(1): 174. https://doi.org/10.1186/1471-2164-8-174Skvortsov A.K. 1999. Willows of Russia and adjacent countries. Taxonomical and geographical revision (English translation with additions). Univ. Joensuu. Fac. Math. Nat. Sci. Rep. Ser. 39: 1-307.Song Y., Dong W.P., Liu B., Xu C., Yao X., Gao J., Corlett R.T. 2015. Comparative analysis of complete chloroplast genome sequences of two tropical trees Machilus yunnanensis and Machilus balansae in the family Lauraceae. Front. Plant Sci. 6: 662. https://doi. org/10.3389/fpls.2015.00662Soranzo N., Provan J., Powell W. 1999. An example of microsatellite length variation in the mitochondrial genome of conifers. Genome 42: 158-161. https://doi. org/10.1139/g98-111Sun C.R., Li J., Dai X.J., Chen Y.N. 2018. Analysis and characterization of the Salix suchowensis chloroplast genome. J. For. Res. 29(4): 1003-1011. https://doi. org/10.1007/s11676-017-0531-3Tangphatsornruang S., Uthaipaisanwong P., Sangsrakru D., Chanprasert J., Yoocha T., Jomchai N., Tragoonrung S. 2011. Characterization of the complete chloroplast genome of Hevea brasiliensis reveals genome rearrangement, RNA editing sites and phylogenetic relationships. Gene 475: 104-112. https://doi. org/10.1016/j.gene.2011.01.002Tian X.Y., Zheng J.W., Jiao Z.Y., Zhou J., He K.Y., Wang B.S., He X.D. 2019. Transcriptome sequencing and EST-SSR marker development in Salix babylonica and S. suchowensis. Tree Genet. Genomes 15: 9. https://doi. org/10.1007/s11295-018-1315-4Tóth G., Gáspári Z., Jurka J. 2000. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 10: 967-98. https://doi.org/10.1101/ gr.10.7.967Tu Z.Y. 1982. Breeding and cultivation of Salix. Jiangsu Science and Technology Press, Nanjing, p. 154-196.Varshney R.K., Graner A., Sorrells M.E. 2005. Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 23(1): 48-55. https:// doi.org/10.1016/j.tibtech.2004.11.005Walker J.F., Zanis M.J., Emery N.C. 2014. Comparative analysis of complete chloroplast genome sequence and inversion variation in Lasthenia burkei (Madieae, Asteraceae). Am. J. Bot. 101: 722-729. https://doi. org/10.3732/ajb.1400049Wang R.J., Cheng C.L., Chang C.C., Wu C.L., Su T.M., Chaw S.M. 2008. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol. Biol. 8: 36. https://doi.org/10.1186/1471-2148-8-36Wang Z., Fang C.F. 1984. Salicaceae. In: Flora Reipublicae Popularis Sinicae. Science Press, Beijing, pp 79-81.Wicke S., Schneeweiss G.M., DePamphilis C.W., Müller K.F., Quandt D. 2011. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol. Biol. 76: 273-297. https://doi. org/10.1007/s11103-011-9762-4Wu Z.Q. 2015. The new completed genome of purple willow (Salix purpurea) and conserved chloroplast genome structure of Salicaceae. JNSCI 1(3): e49.Wullschleger S.D., Weston D.J., DiFazio S.P., Tuskan G.A. 2013. Revisiting the sequencing of the first tree genome: Populus trichocarpa. Tree Physiol. 33: 357-364. https:// doi.org/10.1093/treephys/tps081Wyman S.K., Jansen R.K., Boore J.L. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252-3255. https://doi.org/10.1093/ bioinformatics/bth352Zhang L., Xi Z.X., Wang M.C., Guo X.Y., Ma T. 2018.Plastome phylogeny and lineage diversification of Salicaceae with focus on poplars and willows. Ecol. Evol. 8: 7817-7823. https://doi.org/10.1002/ece3.4261Zhao J.T., Xu Y., Xi L.J., Yang J.W., Chen H.W., ZhangJ. 2018. Characterization of the chloroplast genome sequence of Acer miaotaiense: comparative and phylogenetic analyses. Molecules 23: 1740. https://doi. org/10.3390/molecules23071740

Downloads

Published

2022-06-27

Issue

Section

Research article