Transpiration of Anatolian black pine and sessile oak forest stands in a sub-humid region of Turkey

Authors

  • Mehmet Said Ozcelik Isparta University of Applied Sciences
  • Kamil Şengönül Istanbul University

DOI:

https://doi.org/10.15287/afr.2020.2047

Keywords:

Forest transpiration, sap flow, vegetation management

Abstract

Objectives of this study were to compare transpiration of Anatolian black pine (Pinus nigra Arn. subsp. pallasiana (Lamb.) Holmboe) and sessile oak (Quercus petraea (Matt.) Liebl) tree stands and modelling stand transpiration based on the measured climatic factors. Stand transpirations were calculated from sap flow measurements made by the trunk heat balance method. Mean daily and yearly canopy transpirations (Ec) were 1.05 mm day-1 and 378.3 mm year-1 for the pine stand and 3.52 mm day-1 and 801.7 mm year-1 for the oak stand, respectively. There was a highly positive correlation between daily stand transpiration and wind speed, global radiation, air vapour pressure deficit and air temperature, but a negative correlation with relative humidity for both stands. Soil water potential had little effect on stand transpiration. We conducted an exploratory factor analysis (PCR) to detect effective meteorological factors of stand transpiration and to develop linear regression equations for predicting transpiration of pine and oak stands. The model equations accounted to 81% of the variations in transpiration for pine stand and 85% for oak stand. Transpiration of forest stands should be considered for effective vegetation management practices and the model equations can be used to estimate transpiration of pine and oak stands in the region.

Author Biographies

Mehmet Said Ozcelik, Isparta University of Applied Sciences

Faculty of Forestry, Department of Watershed Management, PhD.

Kamil Şengönül, Istanbul University

Faculty of Forestry, Department of Watershed Management, 34473, Bahcekoy/Istanbul.

References

Aguade D., Poyatos R., Rosas, T., Martinez-Vilalta J., 2015. Comparative drought responses of Quercus ilex L. and Pinus sylvestris L. in a montane forest undergoing a vegetation shift. Forests 6(8): 2505-2529. https://doi.org/10.3390/f6082505Asbjornsen H., Goldsmith G.R., Alvarado-Barientos M.S., Rebel K., Van Soch Floortje P., Rietkerk M., Chen J., Gotsch S., Tobon C., Geissert D.R., Gomez-Tagle A., Vache K., Dawson T.E., 2011. Ecohydrological advances and applications in plant–water relations research: a review. Journal of Plant Ecology 4(1-2): 3-22. https://doi.org/10.1093/jpe/rtr005Atalay I., Efe R., 2012. Ecological attributes and distribution of Anatolian Black Pine [Pinus nigra Arnold subsp. pallasiana Lamb. Holmboe] in Turkey. Journal of Environmental Biology 33(2): 509-519. PMID: 23424857Becker P., Tyree M.T., Tsuda M., 1999. Hydraulic conductances of angiosperms versus conifers: similar transport sufficiency at the whole-plant level. Tree Physiology 19(7): 445-452. https://doi.org/10.1093/ treephys/19.7.445Bosch J.M., Hewlett J.D. 1982. A review of catchment experiments to determine the effect of vegetation change on water yield and evapotranspiration. Journal of Hydrology 55(1/4): 3–23. https://doi. org/10.1016/0022-1694(82)90117-2Bosch D.D., Marshal L.K., Teskey R., 2014. Forest transpiration from sap flux density measurements in a Southeastern Coastal Plain riparian buffer system. Agricultural and Forest Meteorology 187: 72-82. https://doi.org/10.1016/j.agrformet.2013.12.002Breda N., Cochard H., Dreyer E., Grainer A., 1993. Field comparison of transpiration, stomatal conductance and vulnerability to cavitation of Quercus petraea and Quercus robur under water stress. Annals of Forest Science 50: 571-582. https://doi.org/10.1051/ forest:19930606Campbell G.S., Norman J.M., 1998. An introduction to environmental biophysics. 2nd ed., Springer-Verlag, New York, pp. 281.Cermak J., Deml M., Penka M., 1973. A new method of sap flow rate determination in trees. Biologia Plantarum 15(3): 171-178. https://doi.org/10.1007/BF02922390Cermak J., Ukehla J., Kucera J., Penka M., 1982. Sap flow rate and transpiration dynamics in the full-grown oak (Quercus robur L.) in the floodplain forest exposed to seasonal floods as related to potential evapotranspiration and tree dimensions. Biologia Plantarum 24 (6): 446- 460. https://doi.org/10.1007/BF02880444Cermak J., Cienciala E., Kucera J., Lindroth A., Bednarova E., 1995. Individual variation of sap flow rate in large pine and spruce trees and stand transpiration: a pilot study at the central NOPEX site. Journal of Hydrology 168: 17-27. https://doi.org/10.1016/0022- 1694(94)02657-WCermak J., Kucera J., Nadezhdina N., 2004. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sampled trees to entire forest stands. Trees 18: 529-546. https://doi.org/10.1007/s00468-004-0339-6Choat B., Jansen S., Brodribb T.J., Cochard H., Delzon S., Bhaskar R., et al. 2012. Global convergence in the vulnerability of forests to drought. Nature 491: 752– 755. https://doi.org/10.1038/nature11688Cienciala E., Mellander P.E., Kucera J., Oplustilova M., Ottoson-Löfvenius M., Bishop K., 2002. The effect of a north-facing forest edge on tree water use in a boreal Scots pine stand. Canadian Journal of Forest Research 32: 693-702. https://doi.org/10.1139/x02-013Cepel N. 1986. Barajların yukarı yağış havzaları için arazi kullanım planlamasının ekolojik esasları. Istanbul Universitesi Orman Fakültesi Dergisi, Seri B, 36(2): 17-27. https://doi.org/10.17099/jffiu.79061Deligoz A., Carus S., 2006. Statistical analysis of some seed and cone characteristics in the discriminant of seed stands of Anatolian Black Pine [Pinus nigra Arn. subsp. pallasiana (Lamb.) Holmboe]. Turkish Journal of Forestry 2(A): 13-22.Deng J., Ding G., Gao G., Wu B., Zhang Y., Qin S., Fan W., 2015. The sap flow dynamics and response of Hedysarum scoparium to environmental factors in semiarid Northwestern China. PLoS One 10(7): e0131683. https://doi.org/10.1371/journal. pone.0131683Dierick D., Hölscher D., 2009. Species-specific tree water use characteristics in reforestation stands in the Philippines. Agricultural and Forest Meteorology 149(8): 1317-1326. https://doi.org/10.1016/j. agrformet.2009.03.003Du S., Long-Wang Y., Kume T., Zhang J.G., Otsuki K., Yamanaka N., Liu G.B., 2011. Sap flow characteristics and climatic responses in three forest species in the semi-arid Loess Plateau region of China. Agricultural and Forest Meteorology 151: 1-10. https://doi. org/10.1016/j.agrformet.2010.08.011Edwards P.J., Pillard K.W.J., Schoonover J.E., 2015. Fundamentals of forest hydrology. Journal of Contemporary Water Research and Education 154(1): 3-20. https://doi.org/10.1111/j.1936- 704X.2015.03185.xEisalou H.K., Sengonul K., Gokbulak F., Serengil Y., Uygur B., 2013. Effects of forest canopy cover and floor on chemical quality of water in broad leaved and coniferous forests of Istanbul, Turkey. Forest Ecology and Management 289: 373-377. https://doi. org/10.1016/j.foreco.2012.10.031Erdogan B., Gokbulak F., Serengil Y., Yurtseven I., Ozcelik M.S., 2018. Changes in selected physical water quality characteristics after thinning in a forested watershed. Catena 166: 220-228. https://doi.org/10.1016/j. catena.2018.04.010Flo V., Vilalta J.M., Steppe K., Schuldt B., Poyatos R., 2019. A synthesis of bias and uncertainty in sap flow methods. Agricultural and Forest Meteorology 271: 362- 374. https://doi.org/10.1016/j.agrformet.2019.03.012Fuchs S., Leuschner C., Link R., Coners H., Schuldt B., 2017. Calibration and comparison of thermal dissipation, heat ratio and heat field deformation sap flow probes for diffuse-porous trees. Agricultural and Forest Meteorology 244-245: 151-161. https://doi. org/10.1016/j.agrformet.2017.04.003GDF 2015. Türkiye’nin Orman Varlıgı. General Directorate of Forestry, Ankara, Turkey. Available Online: https://www.ogm.gov.tr/ekutuphane/Yayinlar/ T%C3%BCrkiye%20Orman%20Varl%C4%B1%C4% 9F%C4%B1-2016-2017.pdf (accessed 4 July 2020).Gokbulak F., Sengonul K., Serengil Y., Ozhan S., Yurtseven I., Uygur B., Ozcelik M.S., 2016. Effect of forest thinning on water yield in a sub-humid Mediterranean oak-beech mixed forested watershed. – Water Resources Management 30 (14): 5039-5049. https://doi.org/10.1007/s11269-016-1467-7Grainer A., Anfodillo T., Sabatti M., Cochard H., Dreyer E., Tomasi M., Valentini R., Breda N., 1994. Axial and radial water flow in the trunks of oak trees: a quantitative and qualitative analyses. Tree Physiology 14: 1383:1396. https://doi.org/10.1093/ treephys/14.12.1383Granier A., Huc R., Barigah S.T., 1996. Transpiration of natural rain forest and its dependence on climatic factors. Agricultural and Forest Meteolorology 78: 19- 29. https://doi.org/10.1016/0168-1923(95)02252-XGuney A., Zimmermann R., Haas K., 2019. Sap flux and stem radius variations in mature Cedrus libani trees during the growing season. Turkish Journal of Agriculture and Forestry 43 (1): 36-47. https://doi. org/10.3906/tar-1802-115Jiao L., Lu N., Sun G., Ward E.J., Fu B., 2016. Biophysical controls on canopy transpiration in a black locust (Robinia pseudoacacia) plantation on the semi-arid Loess Plateau, China. Ecohydrology 9: 1068–1081. https://doi.org/10.1002/eco.1711Karadag M., 1999. Batı Karadeniz Bölgesinde karaçam (Pinus nigra Arnold ssp. pallasiana (Lamb.) Holmboe), doğal gençleştirme koşulları üzerine araştırmalar. – Orman Bakanlığı Batı Akdeniz Araştırma Enstitüsü Müdürlüğü, Teknik Bülten No:4, Orman Bakanlığı Yayın No: 067, Müdürlük Yayın No:6, Bolu, Türkiye.Kolb T., Stone J.E., 2000. Differences in leaf gas exchange and water relations among species and tree sizes in an Arizona pine-oak forest. Tree Physiology 20 (1) : 1-12. https://doi.org/10.1093/treephys/20.1.1Köstner B., Biron P., Siegwolf R., Grainer A., 1996. Estimates of water vapor flux and canopy conductance of Scots pine at the tree level utilizing different xylem sap flow methods. Theoretical and Applied Climatology 53: 105-113. https://doi.org/10.1007/BF00866415Köstner B., Matyssek R., Heilmeier H., Clausnitzer F., Nunn A.J., Wieser G., 2008. Sap flow measurement as a basis for assessing trace-gas exchange of trees. Flora 203: 14–33. https://doi.org/10.1016/j.flora.2007.09.001Kucera J., Cermak J., Penka M., 1977. Improved thermal method of continual recording the transpiration flow rate dynamics. Biologia Plantarum 19: 413-420. https:// doi.org/10.1007/BF02922976Kucera J., Urban J., 2012. History of the development of the trunk heat balance method in last forty years. Acta Horticulturae 951: 87-94.Liu X., Kang S., Li F., 2009. Simulation of artificial neural network model for trunk sap flow of Pyrus pyrifolia and its comparison with multiple-linear regression. Agricultural and Forest Meteorology 96: 939-945. https://doi.org/10.1016/j.agwat.2009.01.003Loustau D., Berbigier P., Roumagnae P., Arruda-Pacheco C., David J.S., Ferreira M.I., Pereira J.S., Tavares R., 1996. Transpiration of a 64-year-old maritime pine stand in Portugal. Oecologia 107: 33-42. https://doi. org/10.1007/BF00582232Luis V.C., Jimenez M.S., Morales D., Kucera J., Wieser, G., 1995. Canopy transpiration of a Canary Islands pine forest. Agricultural and Forest Meteorology 135: 117- 123. https://doi.org/10.1016/j.agrformet.2005.11.009Martin T. A., Brown K. J., Cermak J., Ceulemans R., Kucera J., Meinzer F. C., Rombold J.S., Sprugerl D.G., Hinckley T.M., 2007. Crown conductance and tree and stand transpiration in a second-growth Abies amabilis forest. Canadian Journal of Forest Research 27: 797- 808. https://doi.org/10.1139/x97-006Meinzer F.C., Woodruff D.R., Eissenstat D., Lin H., Adams T., McCulloh K.A., 2013. Above- and belowground controls on water use by trees of different wood types in an eastern US deciduous forest. Tree Physiology 33: 345–356. Doi: 10.1093/treephys/tpt012Mevik B.H., Wehrens R., 2007. The pls Package: principal component and partial least squares regression in R. Journal of Statistical Software 18(2): 1-24. https://doi. org/10.18637/jss.v018.i02McCulloh K., Sperry J., Lachenbruch B., Meinzer F.C., Reich P.B., Voelker S., 2010. Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse- porous saplings from temperate and tropical forests. New Phytologist 186: 439-450. https://doi.org/10.1111/j.1469- 8137.2010.03181.xNizinski J., Saugier B. 1989. A model of transpiration and soil-water balance for a mature oak forest. Agricultural and Forest Meteorology 47(1): 1-17. https://doi. org/10.1016/0168-1923(89)90082-8.O’brein J.J., Oberbauer S.F., Clark D.B., 2004. Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest. Plant Cell and Environment 27: 551-557. https://doi.org/10.1111/ j.1365-3040.2003.01160.xOren R., Sperry J.S., Katul G.G., Pataki D.E., Ewers B.E., Phillips N., Schäfer K.V.R., 1999. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapor pressure deficit. Plant Cell and Environment 22: 1515–1526. https://doi.org/10.1046/ j.1365-3040.1999.00513.xOren E., Pataki D.E., 2001. Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia 127: 549- 559, https://doi.org/10.1007/s004420000622Ozhan S., 1982. Belgrad Ormanındaki Bazı Meşcerelerde Evapotranspirasyonun Deneysel Olarak Saptanması ve Sonuçların Ampirik Modellerle Karşılaştırılması. Istanbul Üniversitesi Orman Fakültesi Yayınları, Yayın No: 311, Istanbul, pp. 181.Ozhan S., 2004. Havza Amenajmanı. Istanbul Üniversitesi Orman Fakültesi Yayınları I.U. Rektörlük Yayın No: 4510, Orman Fakültesi Yayın No: 481, Istanbul, pp. 384Ozhan S., Gökbulak F., Serengil Y., Ozcan M., 2010. Evapotranspiration from a mixed deciduous forest ecosystem. Water Resources Management 24(10): 2353-2363. https://doi.org/10.1007/s11269-009-9555-6Ozkan U., Gokbulak F., 2017. Effect of vegetation change from forest to herbaceous vegetation cover on soil moisture and temperature regimes and soil water chemistry. Catena 149: 158-166. https://doi. org/10.1016/j.catena.2016.09.017Pallardy S.G., Cermak J., Ewers F.W., Kaufmann M.R., Parker W.C., Sperry J.S., 1995. Water Transport Dynamics in Trees and Stands. In: W.K. Smith and T.M. Hinckley. (ed.), Resource Physiology of Conifers: Acquisition, Allocation and Utilization, Academic Press: San Diego, pp 301-368.Pei Z., Hao S., Pang G., Wang, K., Liu T., 2019. Sap flow of Salix psammophila and its principal influencing factors at different slope positions in the Mu Us desert. PLoS One 14(12): e0225653. https://doi.org/10.1371/ journal.pone.0225653Poyatos R., Llorens P., Pinol J., Rubio C., 2008. Response of Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) to soil and atmospheric water deficits under Mediterranean mountain climate. Annals of Forest Science 65 : 306. https://doi. org/10.1051/forest:2008003Poyatos R., Granda V., Molowny-Horas R., Mencuccini M., Steppe K., Martínez-Vilalta J,. 2016. SAPFLUXNET: Towards a global database of sap flow measurements. Tree Physiology 36: 1449–1455. https:// doi.org/10.1093/treephys/tpw110Renninger H.J., Schafer K.V.R., 2012. Comparison of tissue heat balance and thermal dissipation derived sap flow measurements in ring porous oak and a pine. Frontiers in Plant Science 3: 103. https://doi. org/10.3389/fpls.2012.00103Renninger H.J., Carlo N.J., Clark K.L., Schafer K.V.R., 2015. Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forest. Frontiers in Plant Science 6: 297. https://doi.org/10.3389/ fpls.2015.00297Sanchez-Costa E., Poyatos, R., Sabate S., 2015. Contrasting growth and water use strategies in four co-occurring Mediterranean tree species revealed by concurrent measurements of sap flow and stem diameter variations. Agricultural and Forest Meteorology 207: 24-37. https://doi.org/10.1016/j.agrformet.2015.03.012Saugier B., Granier A., Pontailler J.Y., Dufrene E., Baldocchi D., 1997. Transpiration of a boreal pine forest measured by branch bag, sap flow and micrometeorological methods. Tree Physiology. 17: 511-519. https://doi.org/10.1093/treephys/17.8-9.511Serengil Y., Gokbulak F., Ozhan S., Hızal A., Sengonol K., 2007a. Alteration of stream nutrient discharge with increased sedimentation due to thinning of a deciduous forest in Istanbul. – Forest Ecology and Management 246, 264-272. https://doi.org/10.1016/j. foreco.2007.04.008Serengil Y., Gokbulak F., Ozhan S., Hızal A., Sengonul K., Balcı A.N., Ozyuvacı N., 2007b. Hydrological impacts of a slight thinning treatment in a deciduous forest ecosystem in Turkey. Journal of Hydrology 333(2-4): 569-577. https://doi.org/10.1016/j.jhydrol.2006.10.017Schlesinger W.H., Jasecho S., 2014. Transpiration in the global water cycle. Agricultural and Forest Meteorology 189-190: 115-117. https://doi.org/10.1016/j. agrformet.2014.01.011Sheffer E., 2012. A review of the development of Mediterranean pine-oak ecosystems after land abandonment and afforestation: Are they novel ecosystems? Annals of the Forest Science 69: 429-443.Ugurlu E., Rolecek, J., Bergmeier E., 2012. Oak woodland vegetation of Turkey – a first overview based on multivariate statistics. Applied Vegetation Science 15 (4): 590-608. https://doi.org/10.1111/j.1654- 109X.2012.01192.xUslu E., Bakıs Y., 2012. Geographic distribution of Turkish Oaks. Dendrobiology 67: 41-48.Wang., Gao J.G., Zhao P., Zhu L.W., Ouyang L., Ni G.Y., Zhao X.H., 2018. Biotic and abiotic-driven variations of the night-time sap flux of three co-occurring tree species in a low subtropical secondary broadleaf forest. AoB Plants 10(3): ply025. https://doi.org/10.1093/ aobpla/ply025Whitley R., Zeppel M., Armstrong N., Macinnis-Ng C., Yunusa I., Eamus D., 2008. A modified Jarvis-Stewart model for predicting stand-scale transpiration of an Australian native forest. Plant and Soil 305: 35–47. https://doi.org/10.1007/s11104-007-9399-xWieser G., Leo M., 2012. Whole-tree water use by Pinus cembra at the treeline in the Central Tyrolean Alps. Plant Ecology and Diversity 5(1): 81-88. https://doi.org /10.1080/17550874.2012.688070.Wieser G., Leo M., Oberhuber W., 2014. Transpiration and canopy conductance in an inner alpine Scots pine (Pinus sylvestris L.) forest. Flora 209: 49-49. https:// doi.org/10.1016/j.flora.2014.06.012Wilson K.B., Hanson P.J., Baldocchi D.D., 2000. Factors controlling evaporation and energy partitioning beneath a deciduous forest over an annual cycle. Agricultural and Forest Meteorology 102(2–3): 83–103. https://doi. org/10.1016/S0168-1923(00)00124-6Wullschleger S.D., Meinzer F.C., Vertessy R.A., 1998. A review of whole plant water use studies in trees. Tree Physiology 18: 499-512. https://doi.org/10.1093/ treephys/18.8-9.499Wullschleger S.D., Hanson P., Todd D.E., 2001. Transpiration from multi-species deciduous forest as estimated by xylem sap flow technique. Forest Ecology and Management 143: 205-213. https://doi. org/10.1016/S0378-1127(00)00518-1Yurtseven I., Gokbulak F., Serengil Y., Erdogan B., Ozcelik M.S., Sengonul K., Ozhan S., 2017. Response of selected water chemical quality parameters to slight thinning in a mature oak–beech forest ecosystem under sub-humid climate conditions. European Journal of Forest Research 136(4): 653-664. https://doi. org/10.1007/s10342-017-1062-3Yurtseven I., Serengil Y., Gokbulak F., Sengonul K., Ozhan S., Kılıc U, Uygur B., Ozcelik M., 2018. Results of a paired catchment analysis of forest thinning in Turkey in relation to forest management options. Science of the Total Environment 618: 785-792. https:// doi.org/10.1016/j.scitotenv.2017.08.190Yücedag C., Gailing O., 2013. Morphological and genetic variation within and among four Quercus petraea and Q. robur natural populations. Turkish Journal of Botany 37: 619-629. Doi:10.3906/bot-1205-18Zimmermann R., Schulze E‐D., Wirth C., Schulze E.‐E., McDonald K.C., Vygodskaya N.N., Ziegler W., 2000. Canopy transpiration in a chronosequence of Central Siberian pine forests. Global Change Biology 6: 25–37. https://doi.org/10.1046/j.1365‐2486.2000.00289.x

Downloads

Published

2021-06-29

Issue

Section

Research article