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Abstract. Disease ecology is a new approach to the understanding of the spread 
and dynamics of pathogens in natural and man-made environments. Defin-
ing and describing the ecological niche of the pathogens is one of the major 
tasks for ecological theory, as well as for practitioners preoccupied with the 
control and forecasting of established and emerging diseases. Niche theory 
has been periodically revised, not including in an explicit way the pathogens. 
However, many progresses have been achieved in niche modeling of disease 
spread, but few attempts were made to construct a theoretical frame for the 
ecological niche of pathogens. The paper is a review of the knowledge ac-
cumulated during last decades in the niche theory of pathogens and proposes 
an ecological approach in research. It quest for new control methods in 
what concerns forest plant pathogens, with a special emphasis on fungi like 
organisms of the genus Phytophthora. Species of Phytophthora are the most 
successful plant pathogens of the moment, affecting forest and agricultural 
systems worldwide, many of them being invasive alien organisms in many 
ecosystems. The hyperspace of their ecological niche is defined by hosts, 
environment and human interference, as main axes. To select most important 
variables within the hyperspace, is important for the understanding of the 
complex role of pathogens in the ecosystems as well as for control programs. 
Biotic relationships within ecosystem of host-pathogen couple are depicted 
by ecological network and specific metrics attached to this. The star shaped 
network is characterized by few high degree nodes, by short path lengths 
and relatively low connectivity, premises for a rapid disturbance spread.
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Introduction

Pathogens are recognized as structuring force 

in natural communities, a fact emphasized by 
Clements still from 1928 (Dobson & Crawley 
1994, Van der Putten & Peters 1997, Lafferty 
et al. 2006, 2008, Pascual & Dunne 2006). 
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Parasites play major roles in ecosystems: they 
promote diversity, as they affect the popula-
tions of dominant species. The consequence is 
the facilitation of subordinate species to build 
up larger populations. Parasitism and disease 
are, probably, the most significant causes of 
population regulation under natural control 
(Loreau et al. 2005). However, under environ-
mental and anthropogenic stress, in natural and 
man managed ecosystems, epidemic diseases 
cause major economic losses and represent a 
major threat to biological conservation (Beldo-
menico & Begon 2009).
 Disease ecology is a new area of study, fo-
cused on the underlying principles that influ-
ence the spatial-temporal patterns of disease 
(Glass 2006) and the characterization of the 
pathosystem in the larger context of the eco-
system. There is a need of sound theoretical 
frame for the understanding of complex prob-
lems concerning pathogens in ecosystems, 
mostly the host-pathogen interaction: such a 
frame is represented by niche theory. 
 Niche is one of the most discussed concepts 
in ecology, one the few theories subjected to 
evolution, denial and resurrection, and it is also 
a valuable framework for explaining how and 
what species become invasive (Chase 2005).
 Pathogens co-evolve with their hosts, and 
accordingly, their niches co-vary. Generally, 
the species richness of parasites in various 
communities is underestimated, but it is hy-
pothesized that their biomass is considerable. 
Plant pathogens have high ability to diversify, 
when new ecological opportunities appear (De 
Neegaard 1987). Specialization permits rela-
tively large number of species to utilize a giv-
en resource, the hosts functioning as a system 
of resources.
 Plants and their fungal/fungal-like patho-
gens are modular organisms. The potential to 
differentiate is greater in modular organisms 
than in unitary organisms (Begon et al. 2006). 
These categories of organisms display exploit-
ative and exploratory strategies for resource 
exploitation. A compartmentalized plant is less 

vulnerable as an individual, to the impact of 
herbivory and pathogen attack (Valladares &Valladares & 
Nümets 2007). A tree is a complex succession). A tree is a complex succession 
mosaic of hierarchically organized modular 
construction, which promotes heterogeneity 
to cope with organisms subsisting on or within 
it (Whitham 1981). On the other hand, fungi 
and fungi-like organisms combine the iterative 
modular growth with externalized metabolism, 
a way to cope with lack of mobility. Oomycota 
that includes aggressive plant pathogens (Phy-
tophthora spp., Pythium spp., Peronospora 
spp.), form a unique branch of eukaryotic or-
ganisms, of independent yet convergent with 
fungi, life histories. Many pathogens display 
a saprotrophic life style and also attack a host 
or a group of host species that are members of 
plant communities. Accordingly, their niche is 
bivalent and the same controlling factors play 
different roles whether a pathogen infects a 
host or lives saprophytically. Oomycota display 
intermediate life history between sessile, itera-
tive mode of exploring/exploiting resources 
and the mobile mode by means of zoospores, 
for pathogenic species as Phytophthora spp. 
and Pythium spp. meaning host acquisition. 
They combine filamentous growth strategies, 
common for real fungi (as evidence of hori-
zontal gene capture from fungi), and microbial 
motile mode.
  Plant pathology and epidemiology focus on 
pathogen-host interaction, on disease progress, 
on molecular mechanisms involved in disease, 
in order to find most efficient control meth-
ods. In forest plant pathology, much effort is 
consumed to early diagnosis and prevention of 
tree diseases in natural and managed woody 
ecosystems. The emerging domain of disease 
ecology widens the area of investigation in the 
frame of population, community, ecosystem 
and landscape ecology, by considering host-
pathogen relationship in the multispecies net-
works of trophic and non-trophic interactions 
(Glass 2006).
 The integration of pathogens and disease in 
ecosystem structure and processes is one of 
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important research streams, a special case de-
serving attention - niche description in terms 
of critical factors for survival of both pathogen 
and host.
 A pragmatic approach to niche concept ap-
plied to pathogens is to consider them as an en-
tity to be analyzed, the host - pathogen system 
in the environmental envelope and complex 
relationships build with other functional cate-
gories of organisms, at different trophic levels. 
At the present time, scientists have gathered 
knowledge on molecular interactions, charac-
teristics at individual and population level of 
the interaction described by both pathogen and 
host attributes (epidemiology and symptoma-
tology as pathogen-host interaction variables), 
on environmental factors facilitating disease 
and very little knowledge on interactions of 
pathogens with other organisms than hosts 
(competition, predatorism or hyperparasitism). 
Lately, it was recognized that pathogens can 
be keystone species, which control productiv-
ity and main processes in ecosystems, that in 
equilibrium conditions they act as density de-
pendent controlling factors of the host popu-
lations (Manion 200�). We know little about 
their favorable and unfavorable ranges, with 
respect to environmental variables included 
in the niche. However, knowing the species 
niche characteristics one is able to explain and 
predict biological invasions (Dash 2007). For 
instance, species of genus Phytophthora used 
as models for the argumentation in the present 
paper are necrotrophic pathogens also invasive 
organisms causing epidemic development in a 
large number of plant species, many of them 
being woody species, both in natural and man 
managed ecosystems.
 In this paper I overview the main traits of 
the niche theory applied to pathogens and host-niche theory applied to pathogens and host-
pathogen systems, with special emphasis on 
Phytophthora spp. Also for the sake of argu-
mentation I propose the new methodological 
approach of ecological networks, developed 
on a worked example, the couple Phytophtho-
ra quercina – Quercus spp and the associated 

functional groups of organisms (predators, 
pathogens, competitors, mutualists, facilita-
tors) to both focal species of the couple and 
to each of them. It is used to analyze quantita-
tively and qualitatively the interspecific rela-
tionships of hosts and pathogens as main axes 
of the realized niches in the sense other authors 
stressed previously (Hannon 197�, Fath at al. 
2007). ENA (ecological network analysis) is a 
holistic methodology permitting the study of 
interactions (food-web, pollinator-plant, mu-
tualistic, etc.); the network analysis based on 
graph theory permits to reveal higher order 
properties of direct and indirect interactions 
figured as links connecting nodes that corre-
spond to species, functional groups of species 
or other entities influential in terms of relation-
ships such as nutrient pool or detritus (Fath 
2007).
 The paper is structured in parts correspond-
ing to important issues connected to niche 
theory: (i) how the niche concept has evolved 
and which are the actual main streams, (ii) how 
is defined the fundamental niche and how this 
definition can be extended to pathogens cou-
pled with hosts and disease, (iii) how realized 
niche is circumscribed in the particular case 
of pathosystems, (iv) how realized niche with 
respect to interspecific relationships can be de-
picted and quantified using network approach. 
A network organized around Phytophthora 
quercina and Quercus spp. is proposed to il-
lustrate this concept.
 Most effort in studying pathogens at large 
was directed to answer questions such as 
“what and how”. Niche theory answers to the 
question ”why” a pathogen dwells in a particu-
lar community (the presence of a pathogen is 
host driven but also community driven), being 
at the same time, a member of the pathogen 
subsystem or guild, and member of microbial 
community. 



6

Ann. For. Res. 54(1): 3-21, 2011                                                                                                                             Review articles

Niche theory evolution

There is a vast plethora of niche definitions, 
subjected to revision and reconstruction with 
time. The basic idea is that niche is an inte-
grative concept. It is also an organizing prin-
ciple in ecology: it summarizes the effects of 
opportunity and constraint of the environment, 
as they are used by individuals, populations, 
species and communities (Hannah & Freeman 
199�). It is also a system concept because it 
addresses how ecological objects fit together 
to form wholes/entities (Patten & Auble 1981). 
Niche contains sets of biotic and abiotic condi-
tions of the environment that define the limits 
of a species ability to survive. Alternatively, 
the niche is a set of resources occupied by an 
organism (Putman & Wratte 1984). Early ap-
proaches of Grinnell and Elton emphasized 
the niche as species habitat requirements and 
the fact that niche is a property of the biotic 
community. Later niche formalization, the 
niche hypervolume introduced the concept of 
niche variables and axes. Each dimension of 
the hypevolume is a variable and variables are 
interrelated to match species to environmental 
gradients (van der Maarel 2005). This new ap-
proach lead to the opinion that environment 
contains empty niches waiting to be filled (Re-
ich et al. 200�). The principal trigger of niche 
differentiation is the competition and species 
can co-exist as a consequence of this differen-
tiation (Hutchinson 1959, Tilman 1985)
 The classical, hutchinsonian approach of 
the fundamental and realized niche, is still thefundamental and realized niche, is still the 
most operational. Niche space contains several 
distinct regions summarized in various ways 
as for example: habitat, trophic and multidi-
mensional (Dash 2007). 
 The basic idea is that there are several im-
portant axes to be considered, those which cor-
relate best with species survival. An example 
is soil pH and concentration in nitrate ions, as 
best predictors for the presence of arbuscular 
mycorrhizae (Fitzsimons at al. 2008).
 Organisms also alter the environmental vari-

ables, an aspect that has been included in the 
niche concept (Chase & Liebold 200�).
 In a similar manner with individual, popu-
lation and species niche, a community niche 
can be defined as the total niche space being 
a multidimensional volume in which different 
species exist, with each dimension represent-
ing a particular resource or abiotic gradient 
(Keeney & Poulin 2007). Parasitic communi-
ties are described with respect not only to spe-
cies composition but also to functional rich-
ness, each species occupying a specific niche 
space, for instance a specific organ or host 
tissue. Within each functional group, species 
redundancy is expressed by same traits, in a 
more pronounced manner at closely related 
species. Species which share a large number 
of biological traits also experience wide niche 
overlap (Hérault et al. 2008).
 One of the most debated issues in niche 
theory was generated by the statement of the 
preexistence of niches or empty/vacant niches 
(Lewontin 1978, Rohde 1991) versus the niche 
as an individual/population/species property 
(Chase & Liebold 200�). Rohde (1991, 2005) 
has shown that hosts are preexisting niches for 
parasites. A proof of the statement is the fact 
that invasive species, initially enemy-free, ac-
quire parasites in time. As a general rule, hosts 
are not saturated with parasites (Lekevičius 
2009). It is a partial explanation for the coloni-
zation success of alien Phythophthora species, 
which are also highly competitive and can dis-
place the resident pathogens.
 Niche concept centered on species require-
ments and functional position is a lucrative 
frame for other important theories and con-
cepts in ecology: distribution of species abun-
dances and diversity, community structure and 
trophic web (MacArthur 1960, Pielou 1975, 
He & Tang 2007).
 The hyperspace concept made niche more 
affordable in practical, quantitative terms 
(Strain & Billings 1974). This hyperspace can 
be divided in subspaces, containing sets of 
conditions or variables to be analyzed. In other 
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words, niche space is a set of environmental 
variables and all the response vectors of the or-
ganism. Niches can be modeled: environmen-
tal variables can be measured along axes, and  
internal structure of the niche is determined by 
the species performance (population fitness) 
(Petersen 2007). Response variables are niche 
dimensions, depicting the reaction of popula-
tions/species. Species abundance is a response 
variable, included in the niche preemption 
model. Most abundant species acquire the 
most important part of a particular resource, a 
model which describes communities with few 
dominant species (He & Tang 2007).
 In plant-pathogen interaction, there are 
genomic responses of the plant to infection 
(Straalen & Roelof 2006), which can be quan-
tified. Any point inside this space is a function 
of all environmental variables and responses. 
If there are overlaps in environmental vec-
tors (or trophic vectors) of two organisms, a 
competition region differentiates. Niche can 
be summarized as a system of stochastic/de-
terministic, compartment or static/dynamic 
models, there are internal and external vari-
ables included in models, but for the time be-
ing most of the models treat external variables. 
Adjacency matrices and ecological networks 
are used to depict possible links between state 
variables, such as vegetation, climate, hosts 
and disturbance regime. Niche modeling is 
another promising direction in niche descrip-
tion comprising abiotic niche including distur-
bance regimes, biotic niche and accessibility 
within dispersal capabilities. The later is not 
a niche dimension, but a set of factors that 
constrain the species to inhabit less than its 
distributional capabilities. The geographical 
projection of these conditions represents the 
distribution of species (Peterson 2006). In the 
case of pathogens, I consider that proxis for 
population parameters are pathogenicity, viru-
lence, infectivity, or disease attributes, such as 
disease severity or disease frequency and they 
can be used for the construction of matrices. 
These are functional traits that are directly or 

indirectly measurable. It is a valid approach 
in quantifying species niche by using traits 
instead of environmental parameters (Violle 
& Jiang 2009). In fact, the niche may be also 
defined as a fitness measure in a multidimen-
sional environmental space (Levins 1966, Holt 
1987).

Intersection niche of host and patho-
gens

Host and pathogens share axes of the environ-
mental envelope, which encompasses also the 
space of the fundamental niche. Because of the 
principle of competitive exclusion, species are 
placed in different positions along same axes 
that eventually represent several environmen-
tal gradients.
 The most striking difference between the 
ecology of parasites/pathogens and free liv-
ing organisms is the fact that the habitat of 
the pathogen is a living organism (Begon et 
al. 2006). Host plays the role of habitat and 
nutrient resource for the pathogen, meaning 
that host contains axes of the fundamental 
niche related to habitat and to resources for the 
pathogen, as well as axes representing utiliza-
tion or physiological response of the pathogen. 
Realized niche of the pathogen incorporates 
response of the hosts to infection as well as bi-
otic limiting interactions discussed in more de-
tail further in the text. The outcome of parasitic 
relationship is controlled by the host physiol-
ogy at individual level and the degree of indi-
vidual traits variability at population level. The 
niche of a pathogen with complex life cycle, 
including host alternation or saprophytic stage, 
is adjusting, changing and it is affected by bi-
otic and abiotic environment, within the limits 
of its genotype and phenotypic plasticity.
 The interaction of the host with the patho-
gen places pathogen attributes among the axes 
of the realized niche. Also, the niche not be-
ing a property of the species, it shows varia-
tion between populations. In terms of popula-
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tion attributes or pathogenic markers, different 
pathogen populations display different viru-
lence or infectivity. An alternative approach 
is consid to host defined ecological niche of 
a pathogen or group of pathogens (Gudelj et 
al. 2004), which means a host imagined as a 
partial niche hypervolume for the pathogen. 
Pathogen-host interaction have two outcomes: 
(1) same pathogen – new host, (2) emergence 
of a new pathogen, in both events the niche be-
ing re-dimensioned.  One largely commented 
example is of the emergence of P. alni, causing 
alders’ decline in Europe, from P. cambivora x 
P. fragariae by means of hybridization (Bra-
sier 1999).
 There are two major approaches in niche 
description: (i) structural, which takes into ac-
count the trophic relationship host-pathogen, 
population structure with specific attributes of 
the pathogen (virulence, pathogenicity, infec-
tiveness) of the host (resistance, anatomical, 
physiological barriers), the habitat description 
including environmental envelope and rela-
tionships with other organisms and (ii) func-
tional, with three hierarchical levels: molecu-
lar (gene-to-gene, elicitors), individual (which 
is a physiological response) and population 

(numerical response in terms of host fitness, 
host biomass as consequence of host-pathogen 
interaction and the numerical response of the 
pathogen in terms of populations of lesions).
 An important issue related to host-pathogen 
interaction is the body scaling: there are scale 
differences between host and parasite, while 
body size predicts the metabolic rate, energy 
uptake, physical forces have different impacts 
on small organisms (pathogens), as compared 
to large organisms (hosts) (van Straalen & 
Roelof 200�).
 It is worth to mention that niche dimension 
of the patho-system is different during epidem-
ics to the same from the latent development 
of pathogen population. Pathogens attacking 
same organ or tissue are grouped functionally 
in guilds. Members of the guild share at least 
three important axes: resource, namely the host 
organ/tissue, space or location inside host and 
host response to infection (Pedersen & Fenton 
2006). These axes are placed in different plac-
es: host niche, disease niche, pathogen niche.
 The dynamics of infectious disease is viewed 
as an overlap in time-space of niches, of the 
component populations (Glass 2006). In the 
case of vectored diseases, there is an overlap 

Figure 1 Intersection of host, pathogen (left) and host-pathogen-vector (right) niche within the environ- 
 mental envelope diagram.
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among pathogen niche, host niche and vector 
niche (Fig. 1).
 An intriguing issue is the virulence, as an im-
portant trait, which can be severe, with lethal 
outcome, sustaining the paradox of the patho-
gen that both harms and depends on the host 
(Dethlefsen et al. 2006). The common view 
is that virulent pathogens originated recently 
and had not established a balanced relationship 
with the host. The measure of pathogens per-
formance represents the reproductive output 
and the transmission success, meaning that the 
host must survive long enough to permit the 
reproduction and dispersal of the pathogens. 
The selective trade off in the case of many 
epidemic Phytophthora species is directed in 
maximizing the production of infectious prop-
agula before the host succumbs. However, an 
optimally virulent pathogen is possible to be a 
poor competitor in mixed infections.
 Virulence together with other pathogen at-
tributes (infectivity, pathogenicity) describes 
pathogen population and represents response 
variable in niche space. Increase of virulence 
appears when a pathogen invades a new en-
vironment, host or tissue and is the general 
case of emerging or invasive pathogens such 
as Phytophthora spp. In fact, up to 65-85% of 
pathogens in a region are alien (Pimentel et al. 
2000). Most of Phytophthora spp. being in-
vasive species, the mechanism of extra-range 
dispersion is poorly understood. For the mo-
ment, one single explanation covers the known 
introductions: human trade.
 Lesions form distinct populations and rep-
resent a measure of disease severity (response 
variable) as well as of potential transmission 
success. For instance, in the case of infected 
host with Phytophthora ramorum a significant 
relationship was described between lesion area 
on leaves and the number of resting spores 
suggesting that more inoculum is produced 
from larger lesions (Anacker et al. 2007).
 In my opinion, host disease related traits 
such as susceptibility are important axes that 
can be placed in the intersection area corre-
sponding to disease.

Fundamental niche of the pathogen

Fundamental niche is an abstract construction. 
It contains axes connected to host as habitat 
and resource but also to environmental enve-
lope that affect both partners in a different way 
or in different regions along axes representing 
environmental gradients. At large scales, cli-
matic envelope that incorporates most impor-
tant abiotic axes, dictates the species distribu-
tion.
 I consider that disease intersection describes 
the space of the hypervolume which incor-
porates the successful acquisition of the host 
resources by the pathogen, the favorable (for 
the pathogen) regions of the environmental 
gradients, and successful colonization of the 
habitat, namely the host. For the sake of sym-
metry, same axes incorporate for the host the 
unfavorable regions along environmental gra-
dients facilitating the pathogen. For instance, 
soil prolonged flooding which is a limiting 
condition for trees and is a favorable condition 
for soil-borne species of Phytophthora. 
 A subsystem of fundamental niche is the 
habitat of a species (habitat niche), popula-
tion or community, for pathogens, a part of the 
habitat is the host itself. Niche of an organism 
can vary although the habitat is the same.
 If there are no habitat vectors in common, no 
niche overlap occurs. Overlap appears in the 
competition region. Response vectors differ in 
different parts of a species niche as biological 
processes respond to environmental gradients. 
There is an optimal part of species niche and 
suboptimal in other areas.
 In my opinion, the habitat of pathogens scales 
at least at three levels: the restricted habitat is 
represented by the host, sometimes a particular 
tissue or particular organ; the extended habitat 
is represented by the microenvironment close 
to the host and the general population habitat. 
The restricted habitat is defined by molecular 
interactions and incorporates axes of the funda-
mental niche as well as axes of realized niche 
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since pathogen-host interaction is a particular 
type of biotic relation. The extended habitat 
contains axes of the fundamental niche. The 
habitat of pathogens represented by the host is 
also a nested entity consisting of target tissue, 
target plant species, target population within a 
target community, within a specific ecosystem 
within a specific landscape. Habitat use is also 
nested: biochemical regulation of pathogen-
host interaction, susceptible individuals within 
population and the process of probabilistic/
stochastic interception by pathogen meaning 
successful colonization and successful disper-
sal with respect to community and ecosystem, 
also influenced by some landscape attributes 
such as connectivity, topography, and spatial 
distribution of environmental factors relevant 
to the hosts.
 Habitat alteration increases disease risk, a 
fact sustained by extended crisis phenomena 
affecting habitats worldwide. Environmental 
disturbance increases the rate of evolution of 
fungal pathogens. Hybrids have increased ag-
gressiveness as the case of the newly emerged 
pathogen, as Phytophthora alni demonstrates 
(Brasier et al. 1999). Asexual reproduction 
and self fertilization commonly encountered 
in many species of fungi and fungi-like organ-
isms are beneficial for marginal populations in 
marginal habitats.
 At regional and continental scales, biogeo-
graphic processes that affect hosts must have 
some influence on the pathogen. For invasive 
pathogens which is the case of Phytophthora 
spp. there are several probabilistic filters con-
tributing to the establishment in new area 
and/or host: local habitat suitability in terms 
of abiotic factors between the accepted limits 
of variation for the pathogen (climatic factors 
are highly correlated with pathogens), suscep-
tible host, colonization capacity, sustainability 
of a viable population (Mǿller 2005). Predic-
tive models of Phytophthora potential occur-
rence at large, regional scale were generated 
using detailed climatic data and temperature 
requirements inferred from laboratory trials. 
One example is CLIMEX model for poten-

tial establishment of Phytophthora ramorum 
in Eastern United States (Venette 2005). This 
model resulted in being sensitive to parameters 
describing pathogen’s response to heat stress 
and initial moisture promoting growth. How-
ever, the assumption that laboratory trials are 
reliable and can be extrapolated to field condi-
tions is risky.
 The fundamental niche of an organism can 
be entirely contained in the fundamental niche 
of another organism (a frequent case in host 
associated microbial communities), more of-
ten niches overlap which is a measure of asso-
ciation between organisms. We can predict the 
niche evolution from the knowledge of the en-
vironment and resource utilization of each spe-
cies. For instance, abiotic factors requirements 
are differential and permit a temporal, spatial as 
well tissue type succession of pathogens (niche 
package): P. syringae has optimal temperature 
at 20° C and is found to be active on woody 
tissue during dormant period. P. citricola and 
P. cactorum have optimum at 25-28° C and 
are found on sprouts during the spring. In case 
of P. ramorum relevant field variables at bio-
geographical scale are: minimum average tem-
perature, mean precipitation, longitude. Each 
species has a particular and optimal combina-
tion of factors at which performs best, leading 
at the community level at niche differentiation. 
On the other hand each species covers only a 
part of the habitat considered as being optimal 
(Tilman 1999). Suboptimal habitats are occu-
pied as a consequence of competition pressure, 
with a weaker species performance. The tree 
genetic variability is overridden by effects of 
local environmental factors at landscape level 
(Anacker et al. 2007) explaining the way it 
performs when confronted with pathogens.
 To understand niche, not only limits must 
be known but also the level of response within 
limits. It is sufficient to describe several criti-
cal variables corresponding to a partial niche 
(Maguire 1967) which determine the survival. 
Such partial niches are (Terradas et al. 2009): 
resource niche, habitat niche, life history niche, 
fluctuation niche (heterogeneity of the niche 
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determined by environmental fluctuations – in-
corporates in the niche model the disturbances 
as influential shaping factors).
 In my view, there is an important issue in 
niche subspaces identification: existence of 
specific host variables, pathogen variables and 
specific disease variables such as disease fre-
quency and severity.
 To the fundamental niche is related the dis-
persal of the pathogens. Biotic vectors are cov-
ering a gradient from facilitation to mutualism 
in relation to pathogens and there is a sub-re-
gion of intersection of pathogen and host fun-
damental niches.
 Colony growth characteristics, used for 
species description, are indirect niche specifi-
cations, namely of fundamental niche, corre-
sponding to physiological requirements of the 
organisms. For instance, there are differences 
in growth rates, depending on media. Phy-
tophthora polonica displays moderately-slow 
growth on CA (carrot-agar) and CMA (corn 
meal agar) at 20º C and slow on PDA (potato-
dextrose-agar) and MEA (malt extract agar) 
(Belbahri et al. 2006).
 During its life cycle, Phytophthora spp. re-
sponds in two ways to resource pool, which 
is spatially scaled and, accordingly, varies its 
performances on different resources: (i) duringduring 
saprotrophic stage - fine grained, localized re-
sources, litter and soil, (ii) during pathogenic 
stage - coarse grained, more dispersed resourc-
es (Ritchie & Ollf 1999, Chase 2005), namely 
the hosts.
 Soil borne pathogens have a restricted mode 
of dispersion and several types of vectors are 
involved, that justify the rapid spread of Phy-
tophthora spp. as invasive organism in the 
world.
 In connection with disease niche, the con-
cept of ecosystem vulnerability is an important 
starting point in predictions regarding species 
and ecosystems are possible targets to invad-
ing pathogens. Vulnerable ecosystems to Phy-
tophthora spp. are riparian ecosystems; clade 
6 of Phytophthora is associated with riparian 

ecosystems or forest soils. Diseases develop 
under highly favorable conditions (Brasier et 
al. 200�) meaning that saprophytism is ex-
pressed in suboptimal conditions, while para-
sitism requires highly favorable conditions; an 
environmental gradient is paralleled by sapro-
trophic-parasitic gradient. Ecological strate-
gies of Phytophthora are: adaptation to aquatic 
environment, ability to use organic debris, pa-
thosystems which evolve to the attack a wide 
range of woody perennials.
 Important fundamental niche dimensions 
can be simulated during the cultivation of 
pathogens on media. However, combination 
of suboptimal factors, which cause cessation 
of fungal growth in culture, is a poor predictor 
of effects in nature where competitive interac-
tions occur (Deacon 1997). Organisms with 
different life styles (saprotrophic and patho-
genic) have two different niche configurations 
which intersect. The criteria used to assess 
medium favorability in terms of niche axes/re-
sources are the medium on which the organism 
reproduces. Suboptimal medium induce repro-
duction and act as limitative factors (Nielsen 
et al. 2007). However, the results cannot be 
extrapolated in nature, where many other vari-
ables shape the niche of the pathogens.
 The incorporation of metapopulation theory 
(Hanski 1998) in niche model brought new 
insights in the structure of the fundamental 
niche. With regard to pathogens displaying 
saprophytic/pathogenic life style, saprophytic 
substrates, for Phytophthora those being con-
fined to decomposing litter in soil or in water 
are sink habitats while the host represents the 
source-habitat. Sink habitats extend in fact the 
fundamental niche.

Realized niche of host-pathogen system 
and ecological network model

A full understanding of symbiotic associa-
tions, such as parasitism, requires examining 
the direct and indirect interaction of parasites 
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and the ecological community within which 
they evolve. Indirect interactions can influence 
the outcome of parasitic relationship (Suen et 
al. 2007)
 Niche concept provides instructive context, 
when it is used to evaluate species interaction 
(Chase & Liebold 200�). Moreover, network 
patterns are assumed to represent niche prop-
erties, when drawing conclusions about depen-
dencies on certain association partner (Menzel 
& Blűthgen 2006). Plant community structureommunity structure 
influences the community of pathogens, while 
plant species richness and composition influ-
ence the spread of pathogens. The effects of 
invasive pathogens on community structure, 
as depicted also by ecological networks, is not 
entirely explored (Desprez-Loustreau et al. 
2007), being one of the major areas of inter-
est in the future. Trees are hosts for numerous 
pathogens being in fact, a complex niche with 
many subspaces, some of them vacant or at a 
particular time window, pathogen free.
 Most important interspecific interactions 
that shape the realized niche are the trophic in-
teractions, linked in the food web. Apparently, 
parasites dominate the food webs (Lafferty 
et al. 2006). The specificity of parasites for 
hosts is greater than predator-prey specificity, 
and the interaction implies more of the hyper-
volume space in terms of variables, of which 
many are contained in the fundamental niche 
and the rest in the realized niche. Little interest 
was directed toward interspecific interaction, 
other than host-pathogen, taking into account 
that the pathogens can occupy the position of 
top consumers in the food webs, but they also 
interact with species at different trophic levels 
(Desprez-Lousteau et al. 2007). The construc-
tion of the ecological networks, incorporat-
ing host-pathogen interaction as focal nodes, 
reveals community modules as multispecies 
extensions of pair-wise interactions as well 
as indirect interactions. Knowledge about the 
structure of a network sheds light on important 
issues, as community functioning, stability, im-
portant axes of the realized niche of some focal 

interest species, prediction of the response to 
disturbance.

Ecological networks in the study of host-
pathogen interaction

In the following section I propose a theoretical 
ecological network of relationships describing 
the links between different types of organisms, 
from different trophic levels, with whom the 
focal organism, Phytophthora quercina, is sup-
posed to interact, either directly or indirectly. 
The considered functional groups, organisms 
of direct and indirect interaction, were: host 
the most important trophic link to the patho-
gen, host related interactions, all being indi-
rect links, with respect to the pathogen, such 
as predators (phytophagous insects), competi-
tors, mutualists, facilitators and pathogen re-
lated links with its own predators, competitors, 
hyperparasites, mutualists and facilitators. The 
proposed network was generated for illustra-
tive purpose, nodes representing functional 
groups of organisms interacting with the focal 
pathogen and links - the antagonistic or mu-
tualistic interactions. Originally, this type of 
representation was used for food webs being 
based on graph theory (Cohen 1978, Pimm 
1982), but I extended the network beyond 
trophic relations, in order to understand at a 
general level, the complexity of relationships 
established around host-pathogen interaction. 
The nodes (functional types of organisms) and 
links are appropriate heuristic approaches to 
describe the realized niche of Phytophthora 
quercina, considering the host defined niche 
(the host - Quercus spp.). The links connecting 
groups of species are, in fact, constraints im-
posed on niche space of host and of the patho-
gen. Looking at sub-graphs (interactions with 
a particular functional group) and to the entire 
network structure, one can understand where 
the are weak points, in terms of actual knowl-
edge and where more research effort is needed, 
with the ultimate goal of disease control and 
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biodiversity conservation.
 The choice was made according to the cur-
rent opinion that oak decline in Europe is deter-
mined in high degree by Phytophthora induced 
diseases (Jung et al. 1999). P. quercina was the 
most frequently isolated species from oaks in 
Central Europe, displaying the highest plastic-
ity concerning geological substrate and soil pH 
(Jung et al. 2000), being soil borne pathogen. 
Together with P. cambivora, were demonstrat-

ed as the most aggressive species of the group 
toward roots of young seedlings of Quercus 
robur, in soil tests (Jung et al. 1996, Jung et 
al. 1999, Jung et al. 2000). The ecological net-
work representation, which is opened also for 
the inclusion of abiotic variables as nodes, is a 
promising theoretical, as well as pest control 
approach leading to multitarget strategies (An-
dras et al. 2007). More detailed information on 
the significance of nodes is provided based on 

Box 1 Network metrics employed to illustrate the host-pathogen system and its biotic interactions

A network/graph is defined as a set of vertices connected by a set of links or edges. An edge is a line emanating 
from a vertex i to the vertex j. Examples of networks are Internet, chemicals connected within metabolic pathways, 
human social relationships, trophic webs, etc.
Node degree  Di is the number of edges per vertex. Distance  di is the number of edges connecting two vertices. 
Connectivity or connectance is a global net index and quantifies the realized number of links per network (V - total 
number of vertices, L for total number of observed links),  being a measure of network complexity:
 

C=1/2[L/V(V-1)]

Centrality measures: betweenness of a vertex i is a number of shortest paths between pairs of other vertices that 
run through the vertex i. An average network betweenness centrality can be calculated:
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gjk is the number of equally shortest paths between vertices j and k, gjk(i) stands for the number of these shortest 
paths that include vertex i.
Centrality measure, closeness centrality measures how close to a focal vertex is to all other vertices in the net-
work.

A path is a sequence of adjacent edges, without traversing any vertex twice. Average path length (distance) is the 
average of shortest paths between all nodes in the network. As  principle, networks are characterized by short path 
,no matter of how many vertices and links they display, a property called small world effect  (Albert & Barabási, 
2002).
Network diameter is the maximal distance between any pair of its vertices and it is a measure of the cohesion of 
the network.
The complexity index bi is the ratio of the vertex degree ai and its distance degree di. The sum over all b indices in 
the network is the complexity index B which is a convenient measure of network complexity:
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references in order to clearly depict de nature 
of relationships (Table 2).
 Figure 2 depicts the network of main biotic 
relations of the host, Quercus spp. and Phy-
tophthora quercina, the link between those two 
partners being the focal link with respect to all 
links in the graph. Nodes or vertices represent 
functional groups of organisms linked to the 
subsystem established by host and pathogen. 
A pathogen can be regarded as nodal attribute 
of the host (Chen et al. 2008) and reciprocally. 
For simplicity the graph is undirected and no 
particular weight is assigned to any link. Links 
can be seen as axes of the realized niche of 
both partners of the “pathosystem”. Associ-
ated metrics which describe graph topology, 
also descriptors of the niche axes, as presented 

in Table 1. 
 There are two distinct sub-graphs: one re-
lated to the host, and the other to the pathogen. 
Most of the links of the pathogen sub-graph 
are soil related, being integrated in detrital 
food webs. Any perturbation in this sub-graph 
(addition of pesticides, for instance) will trig-
ger the decline of organisms placed in differ-
ent nodes, with possible enhancing effects on 
the pathogen (predators of the pathogens, hy-
perparasites, saprophytic or pathogenic com-
petitors nodes removal), during its saprophytic 
stage, or at the beginning of the infection proc-
ess.
 Host is also linked to the number of above-
ground and belowground functional groups, 
with positive (mutualists, facilitators) and 

Figure 2 Graph of biotic relations of host-pathogen interaction, Quercus spp. and Phytophthora quercina  
 model
 Notation: vertex1 - host tree; v2 - focal pathogen; v� -  predation by herbivores on host tree; v4  -  mycorrhi 
 zae; v5 - endophytic mutualists; v6 -  non-competing with focal pathogen group of tree pathogens; v7 -  trees  
 intraspecific competition; trees; v8 - interspecific competition ; v9 - facilitators of the hosts; v10 - predators  
 on Phytophthora; v11 - possible mutualists of Phytophthora; v12 - Hyperparasites of Phytophthora; v1� -  
 saprophytic competitors of Phytophthora; v14 - pathogenic competitors; v15 - Phytophthora facilitators. The  
 network was generated using Pajek software (Batagelj & Mrvar 2010)
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negative links (herbivores, interspecific and 
intraspecific competitors). The main character-
istic of the sub-graphs the existence of many 
isolated nodes generating tree-like structure, 
is a fact which is the consequence of our lack 
of knowledge on the possible interactions be-
tween functional groups, represented by these 
nodes. 
 The depicted network is characterized by a 
low network diameter a property associated 
with “small world effect” (Albert & Barabási 
2002), low connectivity (there are only 29% 
realized links compared to possible links), 
the presence of 5 cycles, short paths between 
vertices, high average betweenness and close-
ness centrality suggesting a highly centralized 
network dominated by few nodes (pathogen 
node, host node, mycorrhizae node) and many 
low degree, peripheral nodes. This is a typi-
cal case of centralized, star like networks in 
which a disturbance spreads fast (Ings et al. 
2009). Most connected vertices (the pathogen 
and the host), represent also keystone species. 
The network resulted from of the emergence of 
the two subgraphs (host centered and pathogen 
centered), with several interconnecting links. 
Highest node degree (11 in Phytophthora 
quercina and 8 in Quercus spp.) is associated 
with both focal organisms and there are more 
species grouped within functional nodes that 
are connected to few other species, a pattern 
generally encountered in nature (Montoya et 
al. 2006). Complexity index B is describing 
the topology, close to star, like a network with 

one or two central vertices of high degree and 
other terminal vertices of low degree, mostly 
1 or 2 (Bonchev & Buck 2005). In this con-
text, it is worth to mention that networks are 
dynamic, changing over time, and the number 
of nodes and links is fluctuating. The removal 
of high degree, highly connected via direct 
and indirect links nodes leads to network dis-
connection (for instance, mycorrhizae can be 
removed by stressful events as soil pollution, 
addition of pesticides): because of high aver-
age betweenness, many nodes lie on important 
path, connecting indirectly important nodes. It 
is worth to mention in this context that indirect 
relationships play important community roles 
as in the case of Quercus spp. herbivores on 
Phytophthora quercina.
 The graph is opened, also, to extensions due 
to peripheral nodes: herbivores feeding on 
host tree are linked to other functional groups, 
when they are considered as focal node their 
predators, pathogens, parasitoids, hyperpara-
sites, and competitors. Interplay of the positive 
and negative relations influence the outcome 
of host consumption and, indirectly, its fate if 
focal pathogen is encountered. Same extension 
can be made for the rest of the nodes, discov-
ering new possible indirect weakly influential 
relations to host/pathogen interaction.
 Not presented here are the interactions be-
tween affected host and categories of organ-
isms, for whom the tree is shelter or hunting 
ground, commensal organisms who are ex-
pected to be influenced by the decline of the 

Table 1 Network metrics of Quercus spp. – Phytophthora quercina ecological network 

Metrics Network
Average degree   2.466
Maximum degree 11.000
Minimum degree   1.000
Connectivity   0.299
Network diameter   �.000
Average distance of reachable pairs   1.952
All closeness centrality   0.656
Beetwenness centrality   0.627
Complexity index B   1.690
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Table 2 Relationships depicted by the host-pathogen network with respect to selected vertices
Vertex Relationships References

1 &2

Plants are subjected to multiple herbivore and parasite attack, the combined 
effect being under certain circumstances additive and under others synergistic or 
antagonistic as co-attack of Carica papaya by the mite Calacarus flagellatus and 
the pathogen Oidium caricae .
When primary attack is developed by herbivores as defoliating insects, secondary 
attack in temporal succession is caused by Erysiphe alphitoides on many Quercus 
spp., in this case, facilitation being involved.
Specific resistance is gene-for-gene model with concomitant presence of 
avirulence gene in pathogen and resistance gene in host- multiple layers of gene-
for-gene interaction form the initial defense barrier against Phytophthora spp.in 
non host plants.
Considering nodes as diseased individuals and links as infection events, an 
epidemiological network  results .

Fournier et al., 2006

Kamoun, 2001

Jeger et al., 2007

�

Predation on host, is represented by rich communities of phytophagous insects. 
Predation is supposed to facilitate under many circumstances pathogenic attack 
by lowering the host fitness. Pathogens affect trophic structure of the biocoenosis: 
in the case of Castanea dentata extinction due to Cryphonectria parasitica, seven 
moth species dependent on Castanea  dentata disappeared. Also insect populations 
outbreaks cause fitness loss of the hosts and facilitate pathogen attack. Laferty et al., 2007

4

Mycorrhizae protect plants against soil borne pathogens by interference 
competition, occupying potential infection sites of the metabolically active roots. 
Among other mechanisms are competition for colonization sites and nutrients, 
induction of plant resistance mechanisms. Whipps, 1997

5

Endophytes as tree mutualists are highly protective against Phytophthora species. 
One potential competitor for oak pathogens is the leaf endophyte Discula quercina. 
Data show that Pythium spp. and Phytophthora spp. are strong competitors with 
endophytic fungi for niches within plants. The status of endophytic fungi in woody 
perennials can be complex and labile from mutualistic to pathogenic. There is 
growing evidence that tree endophytes, pathogens and herbivores display a large 
array of interactions from mutual tolerance and encouragement to antagonism.

Arnold et al., 200�
Morrica & Ragazzi, 
2008
Valois at al., 1996 
Saikkonen, 2007

6
Non-competing pathogens such as leaf local pathogens theoretically interfere 
with Phytophthora but at the time, there no available data on this type of 
interaction.

7 & 8

Competition (intraspecific and interspecific) shapes the niche of the host, is a 
major force in natural plant communities.  Interspecific competition drives the 
niche diversification. Parasites alter the outcome of interspecific competition of 
the host population).

Alexander & Holt,, 
1998
Lafferty et al., 2006

9 &15

Facilitation was a neglected type of interaction, reconsidered in the frame of 
ecological theory and niche concept, it contributes to the expansion of the realized 
niche of the species Allium ursinum which is characteristic for beech and mixed 
beech forests in Central Europe  has moderate antifungal properties and powerful 
antimicrobial effects. Pathogen facilitators are many biotic vectors those which 
are not mutualistic. 

Bruno et al., 200�
Beldie & Chiriţă, 
1972
Ellenberg, 1988

10

Predation on pathogens is observed in many instances being one of the axes 
for pathogen realized niche, a consequence of the integration of the necrotrophic 
pathogens in detritic food-webs during saprotrophic stage. Microarthopods 
control the distribution and abundance of fungi in soil, some of them grazing on 
fungal pathogens. 

Lussenhop, 1992
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Table 2 (continuation)

Sporangia of Phytophthora capsici and P.nicotianae are ingested by seashore 
fleas and excreted as non-viable propagules while the ingestion of the same 
species sporangia by snails is followed by the excretion of viable propagules. 
Caloglyphus sp.(Acari) feeds on Pythium myriophilum 
In my observations, oribatid mites which are common leaf litter dwellers, feed 
eagerly on Phytophthora laboratory cultures. 
It is considered that animal-fungal/ Oomycota interactions including predation, 
contribute to long range dispersal of propagules in food-webs.

Lussenhop 1992

Hydes at al. 2009

11 Mutualists of Phytophthora are highly probable to exist. No available 
information on this topic exists.

12

Hyperparasites control populations of pathogens being important targets in 
pathogen control research. Phytophthora capsici oospores are parasitized by 
actinomycetes and fungal species as Acremonium spp., Humicola fuscoatra, 
Verticillium chlamydosporium.

(Sutherland & 
Papavizas 2008

1� & 14

Parasites are exposed to interspecific competition and the outcome depends 
greatly on their relatedness. Parasites compete for susceptible hosts at two 
levels of organization: within individual host and between hosts. Pathogens 
either occupy different niches within the host, either are antagonistic Species 
of Quercus spp. are attacked by several Phytophthora species, which can be 
isolated from soil and rhizosphere concomitantly, such as P. cinammomi, P. 
citricola, P. europaea, P. cambivora, P. cactorum, P. gonapoyides, P. undulata 
and P. quercina, but aside competition, in several occasions, the hypothesis 
of niche complementarity or other competition reducing mechanisms are 
alternative explanations for species co-existence .
Particular types of competition such as antibiosis (remote interaction) 
characterizing microbial interaction is used as control tool as for instance, 
actynomycetes against species of Phytophthora.
 Most systemic fungi with specific niche in nature, produce mycotoxins 
such as antibiotics, signaling agents or mutagenic agents. Bacillus mycoides, 
Renibacterium salmoninarum and Streptomyces pneumoniae orientate to active 
roots being attracted by same compounds as Phytophthora cinnamomi.
For pathogens with different life styles during life cycle (saprophytic and 
parasitic) competition is directed against other pathogens within host, or 
againt other saprophytic species, in the case of Phytophthora with soil fungi 
and aquatic decomposing fungi. 
Within host competition selection goes on more virulent strains  However, 
the competition outcome tested in vitro differs from competition observed in 
situ accordingly, extrapolation of laboratory experiments into the field is quite 
risky. Competition in soil takes place between soil inhabiting saprotrophic 
organisms and pathogens such as Pythium and Phytophthora primarily for 
colonization of roots and seeds and secondarily for organic matter resource 
acquisition during the saprophytic stage in the life cycle of pathogens. The 
host can be also partitioned in different sub-niches attacked by specialized 
pathogens (roots, leaves, bark or other plant organs as well as different types 
of tissue). The species separate on a particular axis but probably overlap on 
other axes, since competition does not affect all axes.

Koskella et al. 
2006

Peterson & 
Campbell 2002

Jung at al. 1999 
Balci et al. 2007 
Balci et al. 2008

Begon et al. 2006

Valois et al. 1996

Ciegler 2007

Yin et al. 2004

Koskellla et al. 
2006

Fujar et al.  2005

Vertex Relationships References
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tree, they also can be integrated as axes of the 
realized niche of the host, and indirect links to 
the pathogen. For instance, at larger scale, the 
destruction caused by Phytophthora cinnamo-
mi in Australia has triggered the extinction of 
many endangered, species depending on the 
affected plant host species for shelter (Vear & 
Dell 2004)
 In oversimplified ecosystems, such as ma-
naged (agro-systems, tree plantations and or-
chards), ecological networks are also simpli-
fied and pathogens/pests exert a top-down con-
trol, comparable to top predators. 

Conclusion

Niche concept, which is an integrative one,  
is proposed to be used as a tool in identifying 
the most important variables of the pathogen, 
pathogen-host hyperspace: axes of the funda-
mental niche, response variables or ecological 
networks, constructed on multispecies inter-
actions, which may become important in the 
ecological management and control programs. 
A review centered on host-pathogen system, 
largely neglected in ecological literature was 
elaborated referring to an empirical model, 
the system of Quercus spp. and Phytophthora 
quercina, representative for invasive diseases 
phenomenon.
 Disease as a “pathosystem” component is 
a niche subspace, which includes axes, corre-
sponding to gradients of abiotic factors along 
which optimal intervals for the pathogen, fre-
quently corresponding to limiting factors for 
the host. Hosts act as acquired resources and 
habitats, while disease sub-niche response 
axes include population of lesions, symptoms, 
epidemic spread outcomes such as recovery or 
death.
 Fundamental niche of the pathogen cover 
abiotic conditions, which are useful axes, in 
terms of niche modeling, also those axes are  
connected to the host and correspond to the 
restricted habitat of the pathogen. Niche mod-

eling permits to make inferences about inva-
sive spread of non-native pathogens, such as 
Phytophthora spp.
 As parts of the fundamental niche are recip-
rocally included in pathogen, host and vector 
niche, discovering most important axes and 
limiting intervals is an important goal in the 
understanding of host-pathogen interaction.  
Cultivating under laboratory conditions is not 
always the best way for obtaining valuable in-
formation on pathogen requirements in natural 
environment.
 Realized niche of the pathogen incorporates 
axes pertaining to the host, as well as axes or 
links pertaining to other groups of organisms 
if ecological network modeling is employed. 
The present paper is a first attempt in using 
networks to depict the complex structure of 
host-pathogen interaction, together with other 
beneficial or suppressive partners. The rela-
tionships depicted by networks are trophic, but 
also non-trophic, such as competition or facili-
tation. The inspection of the network suggests 
future directions of research on indirect rela-
tionships, which can be exploited at the benefit 
of the host (hyperparasites, allelopathic plants 
suppressive to soil pathogens, etc.)
 Specific graph metrics are shedding light on 
species or group of species importance, also 
on the consequences of eliminating vertices 
and subsequent links. Disturbances propagate 
along links in the network to remote vertices 
affecting large groups of organisms not only 
the primary target of the disturbance. This 
is also a warning, in what concerns control 
methods, currently employed against tree 
pathogens, which are insufficiently tested in 
the larger context of ecological network estab-
lished around pathogen-host interaction.
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