Sustainable forest management of Natura 2000 sites: a case study from a private forest in the Romanian Southern Carpathians

H. Walentowski, E.D. Schulze, M. Teodosiu, O. Bouriaud, A. von Heßberg, H. Bußler, L. Baldauf, I. Schulze, J. Wäldchen, R. Böcker, S. Herzog, W. Schulze

Walentowski H., Schulze E.D., Teodosiu M., Bouriaud O., von Heßberg A., Bußler H., Baldauf L., Schulze I., Wäldchen J., Böcker R., Herzog S., Schulze W., 2013. Sustainable forest management of Natura 2000 sites: a case study from a private forest in the Romanian Southern Carpathians. Ann. For. Res. 56(1): 217-245, 2013.

Abstract. Biodiversity and forest management are analyzed for a 500 ha privately owned forest within the Natura 2000 area "ROSCI0122 Munții Făgăraş". Habitat types and indicator species are identified to measure environmental quality. Working towards an integrated approach to conservation, a range of options that will result in sustainable forest management are then considered. For beech forests light heterogeneity emerges as a crucial management target to ensure tree species richness and structural diversity as a basis for saving indicator species such as Morimus funereus, Cucujus cinnaberinus, Bolitophagus reticulatus and Xestobium austriacum. For spruce forests thinning over a broad range of diameters and maintenance of veteran trees would provide habitats for indicator species such as Olisthaerus substriatus. The populations of a number of bird species would be increased by strip-harvesting slopes: species such as Tetrao urogallus, Bonasia bonasia and Ficedula parva prefer forest margins. Steep slopes, and the areas around springs and watercourses, as well as rock faces, should remain unmanaged. Future management should start with a grid-based inventory to create an objective database of forest structure and life. An example is presented for high-elevation spruce forest. The inventory should quantify the variations in diameter, height and volume of trees per unit area. Such data would allow the advanced planning of forest operations. We discuss a wide range of administrative and organizational changes; changes that are needed for the sustainable forest management of the vast close-to-natural forests of the Munții Făgăraş, the maintenance of the *Nardus* grasslands and the protection of wetland vegetation around springs and streams in this Natura 2000-area. **Keywords** Natura 2000, Integrated Forest Management, Fagus, Picea, Romania, Făgăraş, Boişoara.

Authors. H. Walentowski, H. Bußler - Bavarian State Institute of Forestry, Hans-Carl-v.-Carlowitz-Platz 1, 85354 Freising, Germany; E.D. Schulze, I. Schulze, J. Wäldchen - Max-Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany; M. Teodosiu, O. Bouriaud - Forest Research and Management In-

stitute, Calea Bucovinei 73b, 725100 Câmpulung Moldovenesc, România; A. von Heßberg - Theta 28, 95463 Bindlach; L. Baldauf - Görmer & Baldauf GmbH, Am Kirchberg 6a, Burkersdorf, 07570 Harth-Pöllnitz, Germany; R. Böcker - University of Hohenheim, Institute of Landscape and Plant Ecology, Germany; S. Herzog - Dr. Ion Ratiu 9, 550012 Sibiu/Hermannstadt, România; W. Schulze - University of Hohenheim, Dept. of Plant Systems Biology, 70593 Stuttgart, Germany.

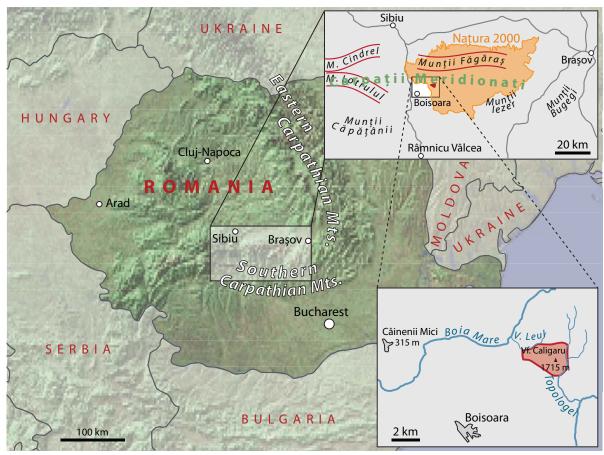
Manuscript received November 02, 2012; revised November 09, 2012; accepted March 08, 2013; online first March 20, 2013.

Introduction

Forests provide a diverse mixture of environmental services. Beyond their historical role of wood supply, increasing attention is now paid to the maintenance of biodiversity and carbon reservoirs, protection of water resources, and recreation. The acknowledgement of these additional services requires a re-evaluation of forest management, which must now balance the costs of the ecological against the commercial functions of forest (Wippel et al. 2013).

Establishing rules for ecologically sustainable forest management is a challenge for forestry and nature conservation organizations across the European Union (MCPFE 2003). Moreover, there are regional differences in the urgency and ecological significance of such rules. The 2007 enlargement of the European Union to include Bulgaria and Romania has required some amendments to be made to the EU nature conservation legislation – the "Birds Directive" (2009/147/EC) and the "Habitats Directive" (92/43/EEC). In Bulgaria and in Romania, a major natural heritage (BirdLife European Forest Task Force 2009) is confronted by large wood resources, relatively low property prices and pressure to exploit the commercial resources of the forest. This creates an urgent need to develop best-practice forest management, which addresses the European priority of combining commercial forest management with nature conservation. One route to achieving this goal would be for the international ecological community to establish innovative pilot projects and demonstrate

how biodiversity in forest ecosystems can be maintained in parallel to commercial exploitation.


The study reported here has the objective of examining the diversity and structure of a managed forest area, and of establishing the contribution of forest management to the protection of soils and water resources, and the habitats of protected plants and animals. We demonstrate how a grid-based inventory approach could be widely used to research the forest composition and commercial potential. The results of this research could then be used to draw up best-practice forest management plans.

Characteristics of Boisoara forest

Site location and Natura 2000 area

The study-site is the Boişoara forest, that is owned and managed by the Boişoara Forest Enterprise. The forest is located in the Făgăraş Mountains, that are in the southern bow of the Carpathian Mountains, Boişoara forest (Figure 1) stretches across Mt Caligaru between the River Boia Mare in the west and the River Topolog in the east. The forest ranges between 790 and 1715 m a.s.l. (above sea level).

The Boişoara forest is part of the Natura 2000 area of the <u>Romanian Site of Community Importance</u>, "ROSCI0122: Munții Făgăraș". The area of ROSCI Munții Făgăraș is 198,512 ha and ranges in altitude from 350 m to 2500 m a.s.l. at 24°44'E and 45°31'N (Figure 1). According to the biogeographic classification of Europe the Făgăraș Mountains belong

Figure 1 Geographic map of the study area: Southern Carpathian Mountains (up right) and Boişoara Forest (bottom right)

Table 1 Elevation zones of the southern Carpathian Mountains (Mayer 1984, Coldea 2004)

Level	Zone	Zonal vegetation	Annex l-habitat type Habitats Directive	Tree species	Elevation (m a.s.l.)	Temperature average (°C)	Annual rainfall (mm)
pediment							
lower	colline	Euro-Siberian steppic woods with <i>Quercus spp</i> .	91I0 ^x	Quercus, Acer, Tilia, Sorbus	200-500	>9-10.5	< 650
median	colline to submontane	Dacian oak-hombeam forests	91YO	Carpinus, Quercus, Tilia,	500-700	8-9	650-800
upper	submontane	warmbeech forests	91VO	Fagus, Carpinus	700-900	7-8	
montane							
lower	lower montane	cool beech forests		Fagus	900-1100	6-7	
median	midmontane	mixed mountain forests	91V0, 9110	Fagus, Abies, Picea	1100-1300	5-6	800-1100
upper	upper montane	mixed mountain forests		Picea, Abies, Fagus	1300-1500	4-5	
subalpine	<u> </u>						
lower	lower subalpine	spruce forests	9410	Picea	1500-1800	2.5-4	1100-1200
upper	upper subalpine	krummholz	4060, 4070	Pinus mugo	1800-2300	0-2.5	
crest							
peak	alpine	boreo-alpine mosaic vegetation (grasslands,screes, rocks,snow beds)	6150		2300-2500	-1 -0	1200-1400

to the "Alpine Region" (EEA 2012). These mountains are of biogeographic significance as pleistocene refugia and as a link between different biogeographic regions. The flora and fauna of the Boisoara forest are typical of this region. Carpathian endemic species, and the Carpathian-Balkan and Alpine-Carpathian elements are biogeographically significant and of importance to conservation. According to recent analyses of the flora (Stancu 2010, Vintilă 2012) the territory belongs to the Holarctic region, the Eurosiberian subregion, the Central-European domain, the Eastern-Carpathian Dacian province, the Southern Carpathian circumscription, and the Făgăraş Mountains district (Borza & Boşcaiu 1965).

The Făgăraş Mountains comprise a vast and coherent mountain landscape of forests and grasslands with intact wildlife corridors. There is a low population density and continuous forest covers about 75% of the land, the remaining

area is grass and heathland, but this is not used for agriculture (Table 2, Appendix). Beech and spruce forests cover about 70% of the area. "Priority" habitats (in danger of disappearing at European level) may have less than 10% of total cover, but deserve particular attention (Table 3, Appendix). *Nardus* grasslands are particularly important, with more than 15% of this habitat type in Romania being located in ROSCI Munții Făgăraș.

ROSCI Munții Făgăraș contains a very rich fauna and flora (EEA 2006), see Table 2 which is focused on the Annex II-species of the Habitats Directive listed on the respective Natura 2000 standard data form. Plant species names follow the Romanian flora (Ciocârlan 2009). Animal species and plant community names follow Natura 2000 checklists (EEA 2006, Gafta & Mountford 2008).

Table 2 Species listed on Annex II of Council directive 92/43/EEC in the Natura 2000 area ROSCI0122 Munții Făgăraș

Mammals (6 species)	Amphibians and Reptiles (3 species)	Fishes (4 species)	Invertebrates (13 species)	Plants and Mosses (7 species)
Canis lupus*	Bombina variegata	Barbus meridionalis	Callimorpha quadripunctaria	Campanula serrata*
Lynx lynx	Triturus cristatus	Cottus gobio	Carabus hampei	Drepanopladus vernicosus
Lutra lutra	Triturus montandoni	Eudontomyzon mariae	Chilostoma banaticum	Liparis loeselii
Myotis myotis		Gobio uranoscopus	Euphydryas aurinia	Eleocharis cornioloca
Rhinolophus hipposideros			Lucanus cervus	Tozzia carpathica
Ursus arctos*			Lycaena dispar	Poa granitica subsp. Disparilis
			Morimus funereus Ophiogomphus cecilia Osmoderma eremita *	Meesia longiseta
			Pholidoptera transsylvanica	
			Rosalia alpina * Stephanopachys substriatus	
			Vertigo angustior	

Note. Source data: Natura 2000 standard data form. The priority species are indicated by an asterisk (*).

Environmental features

The area was lifted during the Alpine uplift in the Cretaceous period. The steep northern faces of the Southern Carpathians lack any foothills, while the southern slopes are elongated, flat ridges of 40 to 50 km length. The mountains are composed of crystalline gneisses and mica-schist. Specific soils at lower and mid elevation are Dystric Cambisols (brown and acid brown soils) and Lithic Leptosol (very shallow soils over rock). Higher elevations are covered by brown Podzols and Alpine humic-silicate soils. Headwaters contain alluvial sites, escarpments, and woody debris. Valleys contain gley on loamy or clayey alluvium.

At the median pediment (700 m a.s.l., Table 1) monthly average temperatures range between about -4° and -3° in January and 18° to 20° in July; annual precipitation is 700 to 800 mm, with dry summers. Following Mayer (1984) and Coldea (1991, 2004) the range of elevation zones results in a gradient of about 10°C in temperature and of about 700 mm in annual rainfall over a distance of about 50 km. Thus, the altitudinal change in climate is greater than would be encountered by a change of many degrees of latitude (Table 1).

Vegetation changes with altitude from deciduous beech to evergreen coniferous forest, resembling latitudinal vegetation zones. The highest point of Boişoara at Mt. Caligaru (1715 m a.s.l.) is about 100 m below the timberline in the Făgăraş Mountains. At the treeline, the mean annual temperature is estimated to be +2°C and the mean annual precipitation >1100 mm per year.

Forest history and human intervention

The history of the forest is not well documented because of changes in Romania's political and economic system. Probably the stand structure is the best indirect indicator of the past.

Boişoara Forest extends across the historic border between the Austro-Hungarian Monar-

chy (region of Transylvania or Siebenbürgen) and the kingdom of Romania (Vâlcea or Walachei), which runs north-south across the top of the mountain range. During World War I, the grassland of Caligaru was used as an Austrian military base. The present road along this border was built by the military during World War I. On the East side of Caligaru there are trenches (Figure 1A, Suppl. material). The steep slope running parallel with the border also appears to be a military artefact. No military action or battle was reported for this area during the World War I. During World War II this border had no military significance. No military relics (ammunition, metal) have been found.

It is very likely that the subalpine area had been deforested before World War I, because it would not make sense to dig trenches in a dense forest. The abundant occurrence of *Veratrum album* in dense stands of *Picea* may further indicate a former grassland cover (Figure 1B, Suppl. material).

In the montane elevation (middle part of the slope) charcoal was found within levelled circular structures, indicating charcoal works. Charcoal was produced until the Ceauşescu era (1956-1989). Forests near these charcoal works also have a high proportion of *Betula* and *Populus* indicating disturbance.

Following World War I, the inhabitants of Transylvania, mostly of German origin, were invited to vote for their integration either into Hungary or into Romania. The majority elected for Romania, even though many emigrated after World War I and II to Germany or Austria

After World War II Romania was under Soviet occupation (1944 to 1956). Extended areas of forest were clear-cut in the Carpathian Mountains to serve as war-compensation. Topographic maps of the year 1976 produced by Russia during the period when Romania was under the occupation of Soviet Unition show large deforested areas, which were, according to information from local forest engineers, in

part compensation cuts.

A Romanian government followed the Soviet period headed by G. Gheorghiu-Dej from October 1956 until 1965, who was followed by the dictator N. Ceauşescu until December 1989. Ceauşescu reserved large forest districts as personal hunting grounds. On the east side of Boişoara forest old hides for bear hunting and the ruins of a large villa are evidence that this old growth forest was part of a Ceauşescu hunting range (Figure 1C-D, Suppl. material). The present borders of the Romanian hunting districts still follow the partitioning introduced by Ceauşescu, and contain huge areas per district (>10,000 ha) which are difficult to control operatively and administratively.

Boişoara forest belonged to the Popovich family, who have lived in Curtea de Arges, probably since the 17th century. The title of the property was previously under the name of the Mrs. Necula who inherited the property of Popovich, but upon her death in 2012 the son Necula inherited the property and received the title. The borders of the forest are documented in the city archive of Curtea de Argeş under the family name of Popovich with qualitative descriptions of the terrain following streams and mountain ranges.

Private property was expropriated during the communist period (1944 until 1989). The Romanian forest administration mapped the region in the 1960s and subdivided the forest into management units (parcele), and marked these with stones and border trees. Forest maps were not geo-referenced and remained separate from the geodetic map of Romania.

The Popovich's property rights were restored in 2000 on behalf of Mrs Necula, but only after harvests had taken place in the lowermost elevation of the western corner. About 10 transects, visible on aerial photographs, indicate wood extraction by cable-crane over lengths of about 200 m and 30 m width in the northern part.

Following restoration of the property, the owners were legally required to join the new

forest administration. However, Necula Popovich did not pay the necessary dues and the forest administration therefore made unauthorized cuttings in 2002. The distribution of the proceeds contravened the management rules (one third for the owner, one third for the forester, and one third for the controlling agent). Only by 2006 was a management plan introduced that quantified wood stocks and prescribed wood harvests over a 10-year management period (i.e., until 2016). A skidding track was built in 2008 to give access to the subalpine belt of Picea for clear-cutting two areas of 1.2 ha each (30% for the owner, 70% for the forest agents). Boisoara forest was sold by Necula to Boisoara Forest Enterprise in 2011.

In summary, the upper mountain zone had been deforested before World War I and was probably used as alpine pasture, as indicated by heavily branched *Picea* trees which grew up as isolated trees, but which were later surrounded by *Picea* succession (see Figure 5). In the 1920s there was probably a state-controlled afforestation programme with large scale plantation of *Picea*. This would explain the abrupt border of the *Fagus* and the *Picea* zone in Boişoara forest and the lack of any well-developed mixed mountain forest with both *Picea*, *Abies* and *Fagus* in the upper montane zone (1300 - 1500 m a.s.l.) for most part of the region.

The *Fagus* zone was probably cut after World War I (upper range of the stream Leu). A few isolated *Fagus* trees remained and these can be recognized today as deeply branched large trees in the present stands. Wood was extracted by dragging along the courses of mountain streams. Stands remained uncut if there were no streams for extracting wood within reach. These old stands were partially cut during the Ceauşescu period. Additional harvests took place after restoration of private ownership.

The large scale and intensive forest use after both World Wars had no significant long lasting effect on the species composition of the forest floor vegetation, even though the number of species representing pristine forest are more abundant at other locations in the Carpathian Mountains. The present canopy is rich in early succession tree species. Old growth stands and late succession species, such as *Acer* and *Ulmus*, are rare. It remains unclear where the presently detected relict species of insects survived the periods of intense forest use. Was the number of remaining isolated trees sufficient? Was there a large volume of slash? Or were 100 years sufficient for regeneration of the biota? What was the role of neighbouring forests in re-migration (habitat connectivity)?

Biodiversity drivers and landscape patterns

The outstanding biodiversity of the south Romanian beech forest region within the mountain ranges of an alpine region results from palaeo-historic connections to the flora and fauna of the Neogene Period and Pleistocene refuges which were the basis for macroevolution (palaeo-endemic species, neo-endemic species). A short distance to Pleistocene refuges allowed an early expansion of spruce and of broadleaf tree species during inter- and postglacial periods. The high mountain region also promoted divergent microevolution of species. The habitat tradition, i.e. preservation of coherent forest areas with remains of primeval beech forests even in the Holocene, supported an integrity of succession and species pools (genetic and species diversity) in forest tree communities.

Boişoara forest benefited from this exceptional framework. The high mountain terrain provides enormous spatial contrasts with respect to local climatic conditions. Untamed mountain torrents and steep-sided valleys also may have prevented human colonization and subsequent human influence on vegetation dynamics. The patterns and ecological gradients discussed below are of crucial importance for the flora and fauna of Boişoara forest.

Biodiversity patterns in space (ecological zones)

Two spatial gradients are important for plant species distributions and forest communities elevation and the soil properties.

- (i) Elevation. The upper pediment zone (Table 1) is dominated by deciduous forests, where beech is accompanied by lowland species of the Transylvanian mixed oak-hornbeam forest, such as Carpinus betulus and Prunus avium. In the lower montane zone Fagus is becoming increasingly dominant. Above 1100 m (mid-montane level) the pure deciduous forests change only locally to mixed conifer-deciduous forests (Fagus sylvatica, Abies alba and Picea abies). The upper montane and the lower subalpine zones are covered by coniferous forests, which belong to the Habitat Type 9410: "Acidophilous *Picea* forests of the montane to alpine levels (Vaccinio-Piceetea)". They are dominated by spruce (Picea abies) with admixed Abies alba extending to the uppermost elevation (1715 m Mt. Caligaru).
- (ii) Soil acidity and nutrients. The species poverty of vascular plants in forests on acidic, nutrient-poor sites, compared to sites with high base saturation and nutrition is well-known. However, despite an acidic bedrock of mica the forest floor vegetation shows locally species with high demand for base saturation, such as *Corydalis solida*.

Coarse woody debris has important functions for the nutrient cycle of potassium, nitrogen and calcium and for late-season water storage. Deadwood as a driver for species diversity is considered to be particularly important on acid soils, as proved for snails by Müller et al. (2005b), and for saproxylic beetles by Lachat et al. (2012).

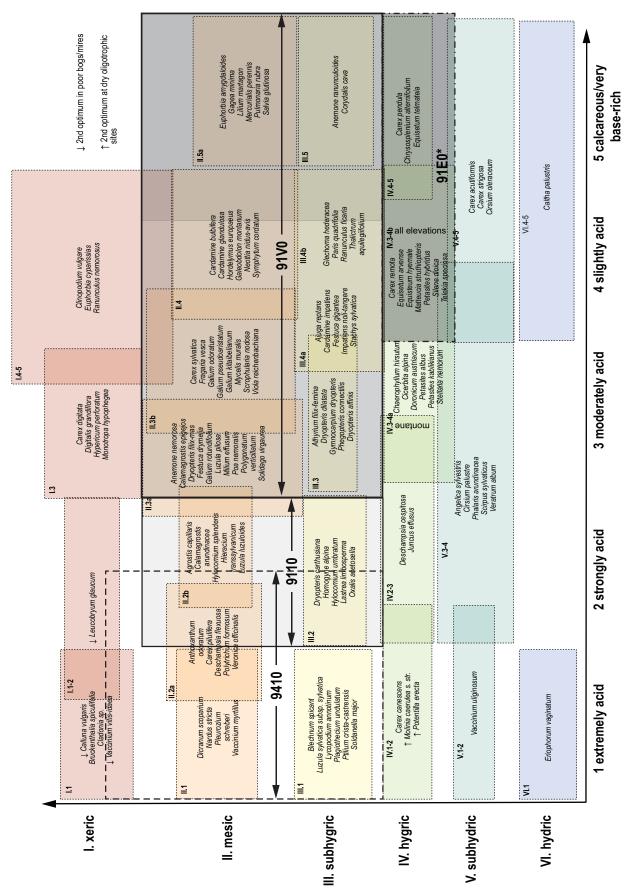
Biodiversity patterns in time (ecological succession)

Very important drivers of succession are based on three types of disturbances.

- (i) Gap-driven ecosystems resulting from rare stand-initiating events. Most forest stands have a closed canopy with relatively low wood volumes. One may classify them as "optimal phase" of a natural succession. These are gap-driven ecosystems with regeneration taking place in small gaps created by the death of an individual tree.
- (ii) Disturbance driven-ecosystems resulting from frequent stand-initiating events. Perfect examples are relatively unmodified alluvial sites belonging to Habitat Type 91E0* "Alluvial forests with *Alnus glutinosa* and *Fraxinus excelsior* (Alno-Padion, Alnion incanae, Salicon albae)" and 6430 "Hydrophilous tall-herb fringe communities of plains and of montane to alpine levels". Regular flooding is an essential disturbance to maintain this structure.
- (iii) Managed ecosystems resulting from singular or frequent stand-maintaining events. Earlier succession stages exist from clear cuts after World War I and II. Pioneer species still contribute to the canopy cover (*Populus, Betula*). Only on smaller areas may one find old-growth stages and regeneration. In addition, there are the anthropogenic grasslands resulting from deforestations centuries ago and belonging to Habitat Type 6230* "species-rich *Nardus* grasslands on siliceous substrates in mountain areas". These require continuation of the current management system to prevent forest re-establishing itself.

Main forest types

Phytosociological and site-ecological characterization


The main plant communities, as summarized in relation to soil acidity and water supply (Figure 2) extend across a very wide range of soil acidity, water status and elevation.

The main habitat type at lower elevation is the "Dacian beech forests of the Symphyto cordatae-Fagion (Habitat Type 91V0)". The defining beech forest communities of the type (Symphyto cordatae-Fagetum Vida 1959, Pulmonario rubrae-Fagetum (Soó 1964) Täuber 1987) are composed of Carpathian endemics (Symphytum cordatum, Dentaria glandulosa), Carpathian-Balkan species (Pulmonaria rubra), pre-Alpine species (Euonymus latifolia and Salvia glutinosa), and even boreo-circumpolar distributed species (Polystichum braunii). Obviously, the beech forests are by no means a uniform "community" but contain species of vastly different origin and geographical distribution, which by chance meet in the present Dacian beech forest (Bohn & Bergmeier 2003, Moravec 1985).

Due to the species combination and the ecological indicator groups, the prevailing beech forest association of the Boişoara Forest is classified as the Dentario glandulosae-Fagetum on moderately acid, brown soil, rich in humus of the mull or moder type (Mayer 1984). The most common sites are moderate fresh cambisols on steep slopes. On soils with higher base saturation it is replaced by the Pulmonario rubrae-Fagetum. A nutrient-poor

Figure 2 Indicator species ecogram of diagnostic understorey plant species in forests. Based on Ewald (2007), modified for some Carpathian-Balkan species

	Habita	nt type	Plant association
;	9410	Acidophilous spruce forests	(Soldanenello majoris-Piceetum)
9	9110	Luzulo-Fagetum beech forests	(Hieracio rotundati-Fagetum)
9	91V0	Dacian beech forests	(Dentario glandulosae-Fagetum)
9	91V0	Dacian beech forests	(Pulmonario rubrae-Fagetum)
9	91E0*	Alluvial forests with Alnus glutinosa and Fraxinus excelsion	(Telekio speciosae-Alnetum incanae)

sub-association of the Dentario glandulosae-Fagetum is the Dentario-Fagetum festucetosum drymejae occurring on steep slopes with brown acidic soil and loose rocks.

Less common are beech forests on acid soils with reduced biological activity and litter decomposition belonging to Habitat Type 9110 (Luzulo-Fagetum beech forests). Even though they contain only few vascular plants and mosses, they harbour significant Carpathian-Balkan species (e.g. *Hieracium transsylvanicum* Heuff. [= *Hieracium rotundatum* auct. non Kit.]). Due to this peculiarity, the acid-oligotrophic beech forests of the Carpathians are

classified as a separate association at European level (Hieracio rotundati-Fagetum [Vida 1963] Täuber 1987; [Syn: Luzulo-Fagetum auct. Roman.; Fagetum dacicum luzuletosum Beldie 1951; Deschampsio flexuosae-Fagetum Soo 1962]; see Bohn & Bergmeier 2003, Laviniu 2009). They usually grow on acid rocky outcrops with shallow acid brown soil.

The *Picea* forests at higher elevation (Figure 6A; Soldanello majoris-Piceetum, Habitat Type 9410) with dominant *Picea abies* are characterized by *Soldanella major* s.l. a narrow-range species of Alpine-Carpathian distribution (Figure 3). According to Ciocârlan

Note. A-C Carpathian and Carpathian-Balkan elements of mid-montane forests are: *Symphytum cordatum, Dentaria glandulosa* and *Pulmonaria rubra* (Photos: H. Walentowski). D: *Soldanella major* s.l., the eponymous species for Carpathian high-elevation spruce forests (Photo: H. Walentowski), E: *Bruckenthalia spiculifolia*, commonly known as Spike Heath, is native to rocky grasslands in the Eastern Alps, Carpathians and Balkans (Photo: E.D. Schulze). F: *Myricaria germanica*, a key species of natural and near-natural watercourses of the Alpine region (Photo: E.D. Schulze).

(2009) Soldanella major s.l. comprises several microspecies (incl. Soldanella hungarica Simonk., S. marmarossiensis Kldst., S. oreodoxa L.B. Zhang), which evolved during different cycles of range expansion and contraction during late Quaternary climate changes. With 16 microspecies (Zhang et al. 2001), Soldanella is an example of high-mountain endemism.

Due to accumulation of raw humus the *Picea* forests contain indicator species of the "billberry-group" (II.1: *Dicranum scoparium, Pleurozium schreberi, Vaccinium myrtillus*), the "hard fern group" (III.1: *Blechnum spicant, Luzula sylvatica, Plagiothecium undulatum. Ptilium crista-castrensis*) and the "woodsorrel group" (III.2: *Dryopteris carthusiana, Homogyne alpina, Oxalis acetosella*; numerical codes of the groups according to Figure 2).

The upper elevation of the Carpathian mountains has been deforested for centuries and is covered by acidophilous grasslands (Figure 6; Violo declinatae-Nardetum Simon 1966), which are priority habitat types at European scale (Type 6230*). Characteristic species are Viola declinata, Potentilla ternata, Gentiana acaulis, Geum montanum, and the grasses Anthoxanthum alpinum, Deschampsia flexuosa and Nardus stricta. Ecotonal edges to the surrounding spruce forests are characterized by Habitat Type 4060 (Alpine and Boreal heaths, including the Junipero-Bruckenthalietum Horvat 1936, Figure 3E). Semi-natural high-mountain grasslands and heaths provide important refugia for a relict glacial flora of arctic-alpine distribution as well as for Carpathian endemics, Carpathian-Balkan and Alps-Carpathian species (Negrean & Oltean 1989, Stancu 2010).

The geomorphology of the hillsides is formed by numerous wet sites, springs and small streams. Headwater catchments may form conspicuous V-shaped encroachments and canyons (Figure 4A).

Alluvial sites along the headwaters occur upstream of bedrock bars and barriers of coarse woody debris. The often torrential streams are accompanied by up to 3 m tall herbaceous fringe communities (e.g. Petasitetum kablikiani Szafer et al 1926) enjoying good water and nutrient supply (natural organic flotsam). They belong to the Habitat Type 6430 (Figure 4B).

The upper courses of the rivers Leul and Topolog are accompanied by narrow bands of alluvial *Alnus* forests (Figure 2: Telekio speciosae-Alnetum incanae (Coldea 1986) 1991) which belong to the priority habitat type 91E0* of Annex I of the Habitats Directive. Early successional species are the grey alder (*Alnus incana*) and willows (*Salix caprea*). With ongoing succession *Acer pseudoplatanus, Ulmus glabra* and *Picea* follow. The watercourses remain bordered by tall herbaceous vegetation (LRT 6430). Boia Mare Tamarisk grows on sandy portions of the gravel banks (Figure 3F) (Habitat Type 3230).

Rock faces, hillside debris and stream debris flank the mountain streams harbouring numerous species, which are specialized at growing on rocky slopes (e.g. *Saxifraga cuneifolia, Valeriana tripteris*). The habitat complexes comprise Annex-I-habitat types like siliceous rocky slopes with vegetation specialized at growing on rocky cracks (8220), and ravine forests (Tilio-Acerion, 9180*). The Topolog Canyon may even harbour autochthonous spruce growing on scree fans (Leucanthemo waldsteinianae-Piceetum Krajina 1933, Habitat Type 9410).

Tree species and structural diversity

The following community description is based on regional observations, which will be supplemented and quantified by a grid-based forest inventory as presented in the third section.

The beech forests of Boişoara are not pristine. However, they are embedded in a large, un-dissected forest region. The remoteness and inaccessibility of the area with steep slopes and ravines, and the complete predator-prey pyramid provide the basis for the development and persistence of a long-term habitat tradition and

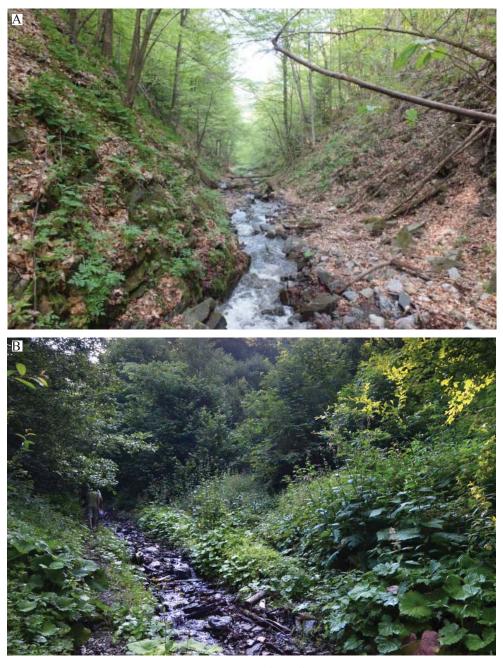


Figure 4 Mountain valleys

Note. A: V-shaped forest streams of the Boisoara Forest (Photo: H. Walentowski). B: Hydrophilous tall herb fringe communities (Habitat type 6430 (Photo: E.D. Schulze).

ecological structures. The forest communities are close to natural. Particularly the midmontane zone of mixed mountain forests (Table 1) exhibits several canopy strata with a high contribution of *Abies* growing in the deep shade of the lower canopy. If *Abies* does eventually reach the upper canopy it may reach a height

of 50 m overtopping *Fagus* by more than 10 m.

Only above 1500 m a.s.l. (subalpine coniferous forest belt), *Picea* forests are considered to be near-natural. Extensive *Picea* stands at lower elevation (1300-1500 m a.s.l., upper montane zone) appear to be of anthropogenic

origin having been planted or formed as a succession following sheep grazing. At a similar elevation on neighbouring mountains, the monoculture of *Picea* is not as prominent as in Boişoara forest. Admixed individuals of *Fagus* and *Abies* indicate that a mixed mountain forest might be more natural.

Most *Fagus* and *Picea* stands in Boişoara are up-growing stands probably younger than 140 years. Successional stands have a high abundance of *Betula pendula* and *Populus tremula* (initial phase). The medium phase of succession contains tall stands of relatively low density. *Fagus* stands more than 200 years old are rare and in a stage of decline (regeneration phase).

Deadwood is surprisingly rare, except for sites with age-related decline, even though trees with rotting trunks, broken crowns and canopy dieback are frequent. Former grasslands can be detected by heavily branched trees, which have grown up as isolated individuals. The large number of butt-rotted hollow trees appears to be related to damage caused by former thinning operations and local ground fires. Conspicuous veteran trees are scattered over the whole area of the beech forests. The largest observed stems of Fagus have a diameter at breast height (DBH) of 115.5 cm and 40 m height (Figure 2, Suppl. material), Acer pseudoplatanus have a DBH of 113 cm and Abies have a DBH of 145 cm and a height of 50 m. The regeneration, except for *Acer*, shows little damage by browsing.

Even though the origin of the high-elevation spruce is unclear (reforesting of alpine pastures), the populations in inaccessible canyon-like valleys deserve special attention. Studies on allele length polymorphism designate several glacial refugia for *Picea* in the Southern Carpathian Mountains (Magyari et al. 2011), but infer only limited expansion from these refugia after the last glaciation. Several unique cpDNA and mitochondrial DNA (mtDNA) haplotypes suggested long-lasting isolation (Bucci & Vendramin 2000, Tollefsrud et al.

2008).

Most *Picea* stands are about 100 years old. There is a large number of trees with rotten stems, broken tops, canopy dieback and bizarre forms (e.g. heavily branched trees, Figure 5A) originating from isolated trees growing in pastures. Multiple stems of *Picea* are further indicators of former grassland originating from clumps of browsed regeneration (Figure 5B and Figure 6).

The 80 to 100 year old *Picea* stands are dense, bare of ground vegetation and featuring low abundance of coarse woody debris (Figure 5C). In contrast, high amounts of downed logs are accumulated in small ravines (Figure 5D) indicating lateral transport probably after snowmelt. The regeneration of *Picea* shows very little damage except where sheep and goats have entered into the forest. Regeneration of *Picea* on top of coarse woody debris is frequent. Also, regeneration is more frequent in the shelter of fallen trees indicating effects of deer browsing despite the low deer population density.

The grassland communities of the alpine pastures show remarkable micropatterns and ecotones. Young *Picea* trees germinate on mineral soil exposed by digging by wild boar or from animal hoofs; these are heavily grazed and form Bonsai structures (Figure 6A).

Wind-exposed, snow free ridges on shallow Regosols are covered with arctic-alpine lichens (*Cetraria cucullata*). 20 to 30 cm high hemispheric ant mounds are conspicuous structures in *Nardus* grasslands; they have been described for other siliceous mountain ranges (e.g., Schwabe-Kratochwil 1980 for the Black Forest / Southwest Germany) (Figure 6B).

Disturbances

Thinning operations and skidding of long-wood with tractors have caused major damage to remaining stems (Figure 7A). These remaining trees were usually not major canopy trees but formerly suppressed trees of the sub-canopy. Skidding of long-wood with uncut crowns

Note. A-C: Conspicuous structures of cultivated spruce stands, resulting from secondary forests regenerating from pastures (for early successional stages, see Fig. 6A). A: Heavily branched "open grown" spruce trees (Photo: E.D. Schulze). B: Multitrunk trees, to be considered to be a cluster of individuals trees, C: bare ground stage of 80 to 100 yr old stands (Photo: E.D. Schulze). D: wood accumulation in headwater streams (Photo: E.D. Schulze).

Figure 6 Habitat structures of semi-natural mountain pastures, framed by natural spruce forests

Note. A: Pygmy and heavily browsed spruces try to occupy the recent pasture land (Photo: W. Schulze). B: Hemispherically shaped anthills protrude the surrounding grass level (Photo: H. Walentowski).

caused major erosion affecting water quality. Felling operations may have lasted until after bud break.

Besides disturbances due to wood extraction, there is visible damage by deer, despite the presence of free roaming bears and wolves. *Acer pseudoplatanus* and *Euonymus latifolia* are generally browsed at the terminal bud (Figure 7B). This damage would promote the regeneration of uniform *Fagus* stands. Fraying of *Abies* is abundant.

Additional anthropogenic disturbance is the grazing of forest stands by goats, sheep, cows, donkeys and horses in the vicinity of the grassland and during their migration in spring and autumn from the valley to the mountain meadows (Figure 7C).

The main disturbance to headwaters is the sediment flow from surface erosion following forest operations, and the construction of dams for hydropower in the area, but not on this property.

Figure 7 Anthropo-zoogenetic pressure

Note. A: Skidding damage, skidding of long wood (Photo: E.D. Schulze). B: Browsing damage to *Acer pseudoplatanus* (Photo: E.D. Schulze). C: Grazing of sheep in spruce forest (Photo: E.D. Schulze).

Bioindicators for habitat and environmental quality

In beech forests (Habitat Types 91V0 and 9110), conservation efforts should not only be targeted at the dominant *Fagus* but also at other rare tree genera. A successful rejuvenation of admixed species in beech forests and the associated successional communities across forested landscapes is an indicator of the intactness and completeness of a beech forest ecosystem (Schulze pers. com.). Examples of

such associated species are the pioneer trees (Betula, Populus), later successional species (e.g., Acer pseudoplatanus, Carpinus betulus, Prunus avium), and the late successional Abies alba.

Some indicator species reveal the age of the habitat, its structural diversity and habitat longevity, and the environmental quality. The saproxylic beetle *Xestobium austriacum* indicates autochthonous *Abies* habitats. It is confined to very old trees with large stems. In Germany this beetle is classified as "relict

Figure 8 Selected indicator species of habitat and environmental quality

Note. A: Cucujus cinnaberinus. The species needs open spaces and prefers lowland areas with soft-wooded broadleaves. The adults and older stages of larvae hibernate under bark on the deadwood. In Romania larvae develop under very decayed bark of aspen Populus tremula trees with the fungi Aspergillus, Trichoderma, Ceratocystis etc. (Photo: H. Bußler). B: The fungus Polyporus squamosus has a widespread distribution, being found in North America, Australia, Asia, and Europe, where it causes a white rot in the heartwood of living and dead hardwood trees (Photo: A. Heßberg). C: The foliose lichen Lobaria pulmonaria, commonly known as lungwort or lung lichen. Due to declining

population, *L. pulmonaria* is considered to be rare or threatened in many parts of the world, especially in lowland areas of Europe (Photo: H. Walentowski).

of lost virgin forests" (Müller et al. 2005a). Bolitophagus reticulatus is a beetle of montane forests associated with the fungus Fomes fomentarius on Fagus and Betula. Cucujus cinneraberinus (Figure 8A) lives as larvae under the bark of wet coarse deadwood mainly of Populus tremula. The rare fungus Polyporus squamosus (Figure 8B) grows on coarse woody debris causing white rot, while the lichen Lobaria pulmonaria (Figure 8C) that indicates low air pollution, has almost been eliminated from central Europe.

In spruce forests (Habitat Type 9410) the following taxonomic groups and species are indicators for habitat quality and intact environmental conditions: epiphytic lichen species, e.g. *Bryoria, Evernia, Pseudevernia, Hy*-

pogymnia and Usnea, require high air quality. The red rove beetle Olisthaerus substriatus is a typical indicator for older Norway spruce forests (Jönsson et al. 2011) living predatorily under the bark of old Picea trees. This species lives in the boreal and the alpine region. In Germany this rove beetle (family Staphylinidae) is considered as relict of lost virgin forest (Müller et al. 2005a).

Indicators for pristine watercourses with intact hydrology, dynamics and water quality of the Habitat Types 3230, 6430, 91E0* include the species ostrich fern (*Matteucia struthiopteris*) which grows in moist soils of deciduous and mixed forest, wooded river bottoms, and swamps. This species is representative of intact alluvial forests that accompany and shelter

headwater catchments. Similarly, the German tamarisk (*Myricaria germanica*, Figure 3F) indicates unregulated rivers of the Alpine region. Fish species like *Barbus meridionalis*, *Cottus gobio* and *Gobio uranoscopus* indicate clean, oxygen-rich, rapid-flowing rivers.

Future management frameworks should have the objective of maintaining these bioindicators.

Forest management: past practices and future orientation

Present wood extraction

The Romanian forest regulations distinguish four types of extraction: hygiene cutting i.e. thinning of stands in the thicket stage to reduce forest pests and diseases; successive cutting, i.e. thinning of pole-stage stands; progressive cutting, i.e. inducing natural regeneration; and conservation cutting, i.e. the final cut. The final cut may leave shelterwood with natural regeneration in *Fagus* or clear cutting and re-planting in *Picea*.

The actual extraction method is constrained by the topography, the technical equipment available for harvest and transport, and the wood market. Trees are generally cut manually by chainsaw and dragged as long-wood by tractors or by a cable-line, with associated damage to the remaining trees and the forest regeneration. There is no network of skidding trails (Figure 3, Suppl. material).

The wood market is the dominant control on the harvest. *Fagus* is cut at a diameter below 50 cm because more than 80% of the wood has low quality and will be sold as firewood or for chipboard. Other hardwoods (e.g. *Acer*) receive higher prices than *Fagus*, but require

large diameters. Coniferous wood receives a higher price than hardwood. Heavily branched stems with large diameter are uneconomic to fell. *Abies* sells for a 10% lower price than *Picea*.

Most wood is sold in bulk, with the sawmill, rather than the forest owner, sorting the wood into merchantable assortments of different wood quality. The lack of machinery and the business structure encourages the transport of timber from the site to the forest road as longwood, with the associated devastating effects on soils, regeneration and remaining trees. The whole operation from cutting to sawing is in the hands of single companies. Wood volume is estimated before harvest using general national equations without sorting the stems according to lumber quality on the basis of a management plan. The forest engineers mark the block, where the cutting takes place but do not oversee the harvest operation. Thus, the operator cuts more than was initially estimated (1 to 10% of the felled trees were found unmarked). This whole system favours clear-cutting, or there are major damages to the remaining stand.

Given these constraints, with current forestry practice the final harvest is inevitably restricted to clear-cutting. It is a type of "cut and go" technology dictated by sawmills. In mixed stands, the cuttings are more progressive with a focus on coniferous species, which results in an apparent rise in elevation of the border between deciduous and coniferous forests.

Considerations for future management

Future forest management should be ecologically sustainable in view of the existing fauna and flora, but it must also be economic in view

Table 3 Management of *Fagus* and *Picea* forest as related to slope

Slope	Fagus forest	Mixed alpine forest	Picea forest
0 to 20°	Selection cutting by target diameter	Selection cutting by	Balanced selection
	target diameter	target diameter	cutting
20 to 35°	Gap regeneration	Gap regeneration	Stripe regeneration
> 35°	Protection forest	Protection forest	Protection forest

of harvesting cost and wood sales. Here we consider management schemes in relation to terrain and tree species (Table 3).

Future management must use harvester and forwarder technology. The present situation of cutting trees only within reach of easy skidding is unacceptable. Transport of wood as long-wood must be avoided because of the unacceptable damage to remaining trees and regeneration. Steep slopes should be maintained as a kind of "strict forest reserve" because the steep canyons may be the only places where original genetic resources have been maintained.

Picea forests. On gentle slopes selective logging with conservation of large-dimensioned veteran trees would ensure the habitat continuity and diversity needed to maintain rare species. Special forest sites, such as springs should remain untouched. The proposed management would be characterized by medium-intervention in beech-spruce forest, and high intervention in Norway spruce, as suggested by Duncker et al. (2012).

Selective logging, while maintaining permanent forest cover, becomes technically impossible on steep slopes, where the transport of single trees causes so much damage to the root collar of remaining trees that the stand as a whole is endangered. In this case harvesting on narrow downhill strips can be used; this method is commonly applied in the Alps. Strip cutting also exposes mineral soil promoting the establishment of a wide range of tree species. The forest may change from a Picea monoculture into a mixed mountain forest. At present Romanian forest law requires the collection of slash and re-planting, but erosion would decrease if slash were not collected, and local genetic sources would be preserved with natural regeneration. The preservation of veteran trees would support habitat continuity for many organisms such as the saproxylic beetle Olisthaerus substriatus. The slash and the root stocks should ensure a deadwood store of >30 m³ ha⁻¹, which is important in cool forests (Lachat et al. 2012). A number of ascertained bird species (Supplement Table S4) would also be promoted by strip harvesting, such as the capercaillie (*Tetrao urogallus*), the hazel grouse (*Bonasia bonasia*) and the red-throated flycatcher (*Ficedula parva*) which prefer forest margins because of higher occurrence of *Vaccinium*. Forest management reaches a natural limit at slopes >35°, and these sites must remain un-managed.

Fagus forests. On gentle slopes selective logging by target diameter with the maintenance of veteran trees appears ecologically the most sustainable option. The proposed management would be a low-intervention type as proposed by Duncker et al. (2012). The creation of a heterogeneous light regime by combining gap and shelterwood cutting would allow early and late successional species to regenerate, including Populus and Betula. At the same time Abies would be promoted under dense canopies and Acer under semi-open canopies. This type of management would also ensure the habitats for a range of endangered saproxylic beetle species (Bouget pers. comm.) such as Morimus funereus, Cucujus cinnaberinus, Bolitophagus reticulatus and Xestobium austriacum.

An example of a novel grid-based inventory

The Romanian management plan or "amenajament" contain average data without an indication of their variation. These numbers are not sufficient for detailed planning of specific operations. Only grid-based inventories, measuring each tree within a prescribed area, can quantify the uncertainty in variables. We therefore established an example 200 x 200 m grid on a mountain plateau, in Boişoara forest. The site was above 1500 m elevation. The grid was comprised of 45 circles of 1000 m², which is statistically marginally sufficient for inventory purposes. Within these circles, all trees were mapped and breast height diameter and tree height were measured. In addition both bole quality and damages to trees were

Table 4	Forest inventory data and analysis of high-elevation spruce forest of the Boişoara forest based on
	45 inventory plots of 1000m ² per plot

		ory prous c		Option 1		Option 2		Option 3	
	Donaitre	Doga1	W 1	Thinning	Thinning from top		Thinning from below		balance
DBH	Density (trees	Basal area	Wood volume	Remai-	Remai-	Remai-	Remai-	Remai-	Remai-
(cm)	per ha)		$(m^3 ha^{-1})$	ning	ning	ning	ning	ning	ning
	per na)	(III IIa)	(III IIa)	density	volume	density	volume	density	volume
				(trees ha ⁻¹)	(m³ ha-1)	(trees ha ⁻¹)	(m³ ha-1)	(trees ha ⁻¹)	$(m^3 ha^{-1})$
0-10	249	1.2	4.1	249		249		249	
10-20	466	8.8	46.4	40		80	8	80	8
20-30	315	15.2	102.1	31	4	99	32	99	32
30-40	150	13.1	98.6	15	10	32	21	32	21
40-50	57	8.9	62.1	56	10	8	9	27	30
50-60	15	3.7	23.2	15	62	5	7	10	15
60-70	3	0.9	5.2	3	23	5	5	5	13
70-80	1	0.2	1.2	1		1		1	1
Tracks					12		12		12
Total	1254	51.9	343.1	410	121	479	94	503	121

recorded. Regeneration density and deadwood was quantified.

Table 4 summarizes the data giving the range of tree densities, basal areas, and wood volumes per ha of the 45° slope-corrected inventory circles. Total tree density at elevations above 1500 m is about 1200 trees per ha with a basal area of about 52 m² ha⁻¹, and a wood volume of about 340 m³ ha⁻¹. Tree height reaches a maximum of about 30 m, but average top height is about 22 m.

A pre-requisite for any forest operation is a network of tracks to ensure that the machines operate only on prescribed paths. Thus hauling or skidding tracks of 4 m width and 30 m apart, at right angles to the main howling path need to be established. Based on our inventory data, this operation would yield about 12 m³ ha⁻¹ of wood, irrespective of diameter. The wood extraction between the tracks largely depends on the price for industrial wood which contributes about 50% of the total harvest. Trees above 60 cm diameter should not be harvested unless they root on the skidding track. De-branching of the former isolated trees would be uneconomic.

Based on the inventory data various thinning schemes can now be planned. The highest

commercial value would be achieved by "thinning-from-the-top", i.e., extracting trees with diameter of 40 to 60 cm because this diameter class will only lose economic value with further growth. The main disadvantage of this operation would be the large amount of damage done to the remaining trees. Further, it would also not extract badly formed and distorted sub-canopy trees. The total amount of wood, which would be extracted by thinning-from-the-top would total about 120 m³ ha-1, which would be 30% of the standing crop.

In a second scenario, "thinning-from-below", a plot of 1 ha was marked to support the dominating trees by reducing competition with minor trees. In this approach, only about 95 m³ ha¹ would be harvested (Table 4), and most of the large trees remain.

In a third scenario, "balanced-thinning", the low diameter trees would still be extracted as above, but 50% of the 40 to 50 cm diameter class and 75% of the 50 to 60 cm diameter class would also be thinned. In this way, the canopy structure and tree-size distribution would be maintained. In this case, the felling would total about 120 m³ ha⁻¹, the same as with the thinning-from-the-top method.

In order to establish a sustainable Natura

2000 management plan a number of additional administrative and structural changes appear necessary. The current Management plan ("amenajament") should be replaced by grid-based inventories. An infrastructure of forest roads suitable for trucks must be provided to avoid long distance skidding of long-wood with its associated damage. Harvesting and hauling must use harvester and forwarder technology based on short-wood, and not tracktors skidding long-wood.

Training in applying these new methods and technologies will be needed for all forest workers, and for most forest engineers. Most likely, their salaries will then need to be raised to avoid trained personnel migrating to other EU countries. Start-up money will be needed for small independent companies specialized in harvesting, thinning, tending, planting and other forest works.

The hunting regime must change from the Ceauşescu heritage of large game reserves, which encourage "legalized" poaching (i.e. selling unknown numbers of trophies) to smaller management units. The level of hunting should be determined as part of an integrated management plan which balances silvicultural need with the demands of hunters. It is no longer acceptable that hunters claim the wild life as their property, while the forest owners suffer the consequences of browsing damage without legal right for hunting.

The degree of ecological damage caused by clear-cutting remains an open question. Clear-cuts do not necessarily destroy the forest ecosystem. Looking at the effects of large scale clear-cutting after World War I and II and at the effects of large scale wind throws (Don et al. 2012) which were taking place on this property, clear cuts in temperate forests may not be ecologically as damaging as it is claimed. Regenerating forest on clear-cut land had the highest tree diversity in Thuringia (Schulze pers. com.). The presence of indicator species representing un-managed forest show that clear-cutting had no long-lasting effect, if it

was a "cut-and-go" operation. Probably diversity is lost during thinning.

Conclusions

The diversity of the Carpathian forests is very high and contains a large number of relicts of unmanaged forest even at the scale of 500 ha and even though the area has undergone intensive management in the past. Management and wood extraction is needed to provide income to pay the costs of supervision of the state forest; the present far-reaching governmental controls, which provide limited services, are not fit-for-purpose and should be abandoned. Long periods without human interference (following cut-and-go) may be the secret of the high biological diversity of the Carpathian Mountains. However, this may not be a realistic option for the future and a better course of action would be the promotion of management plans based on a foundation of grid-based inventories. This would allow planning to take account of all the economic and ecological constraints. A pilot study is needed to demonstrate and promote modern integrated forest management as the best way of maintaining biological diversity in this Natura 2000 region.

Acknowledgements

We greatly acknowledge the help of Annett Boerner in drawing of Fig. 1 and 3, and of Dr John Gash to edit our English. We also acknowledge the help of Uli Pruschitzki and Angela Günther who carried out most of the field work of the grid-based inventory. O.B. and M.T. were supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0781

Additionally, we would like to thank the following people for their contributions to this study: Tim Besser, Iulian Straut and Otilia Mazilu. We thank Martin Kaiser for fruitful discussions about forest management.

References

- BirdLife European Forest Task Force, 2009. Bulgarian-Romanian Forest Mapping Project, final report, 69 p. Web:http://www.hcvnetwork.org/resources/assessments/BRFM%20report_English_low%20resolution. pdf Accessed: 09.11.2012.
- Bohn U., Bergmeier E., 2003. Formation F.5 (Beech forests and beech mixed forests). In: Bohn et al. Map of the natural Vegetation of Europe. Part 1: Explanatory Text with CD-ROM. Federal Agengy for Nature Conservation, Bonn, pp. 310-344.
- Borza A., Boşcaiu N., 1965. Introducere în studiul covorului vegetal [Introduction on the study of the vegetal covers]. Editura Academiei Române, Bucureşti, 340 p.
- Bouriaud L., Marzano M., 2012. Conservation, extraction and corruption: will sustainable forest management be possible in Romania? In: Gilberthorpe, E. (ed.), Natural resource extraction and indigenous livelihoods: development challenges in an era of globalisation, Ashgate International
- Bucci G., Vendramin G.G., 2000. Delineation of genetic zones in the European Norway spruce natural range: preliminary evidence. Molecular Ecology 9: 923-934.
- Ciocârlan V., 2009. Flora illustrata a României: Pteridophyta et Spermatophyta [Romanian ilustrated flora: Pteridophyta et Spermatophyta]. Ceres, Bucureşti, 1141 p.
- Coldea G., 1991. Prodromme des associations végétales des Carpates du sud-est (Carpates roumains) [Prodrom of the vegetal associations from south-east Carpathians]. Doc. Phytosociol., N.S. 13: 317-539.
- Coldea G., 2000. Southeastern Carpathians / Tatra Mountains. In: Burga C.A., Klötzli F., Grabherr G. (eds.): Mountains of the world. Ulmer, Stuttgart, pp. 104-114.
- Don A., Bärwolff M., Kalbitz K., Andruschkewitsch R., Jungkunst H.F., Schulze E.D., 2012. No rapid carbon loss after a wind throw event in the High Tatra. Forest Ecolology and Management 276: 239-246.
- Duncker P.S., Raulund-Rasmussen K., Gundersen P., Katzensteiner K., De Jong J., Ravn H.P., Smith M., Eckmüllner O., Spieker H., 2012. How forest management affects ecosystem services, including timber production and economic return: Synergies and trade-offs. Ecology and Society 17(4): 50.
- EEA (European Environment Agency), 2006. Factsheet Munții Făgăraş. Web: http://eunis.eea.europa.eu/sites/ROSCI0122/general. Accessed: 30.10.2012.
- EEA (European Environment Agency), 2012. Biogeographic regions in Europe. Web: http://www.eea.europa.eu/data-and-maps/figures/biogeographical-regions-in-europe-1. Accessed: 04.02.2013.
- Ewald J. 2007. Ecogram of forest plants indicator species.

- Web: http://www.hswt.de/uploads/media/Oekogramm_lateinisch.pdf. Accessed: 22.10.2012.
- Gafta D., Mountford O., 2008: Manual de interpretare a habitatelor Natura 2000 din România. [Manual of interpretation for Natura 2000 Habitats from Romania]. Risoprint, Cluj-Napoca. 101 p. Web: http://www.coastal-biodiv.ro/docs/manual_de_interpretare_a_habitatelor.pdf. Accessed: 30.10.2012.
- Jönsson M.T., Fraver S., Jonsson B.G., 2011. Spatio-temporal variation of coarse woody debris input in woodland key habitats in central Sweden. Silva Fennica 45(5): 957-967.
- Lachat T., Wermelinger B., Gossner M.M., Bussler H., Isacsson G., Müller J., 2012. Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecological Indicators 23: 323-331.
- Laviniu B., 2009. Phytocoenological and ecological study of beech forests from Pădurea Craiului Mountains (North-Western Romania, Bihor County). Analele Universității din Oradea, Fascicula Protecția Mediului 14: 441-446.
- Magyari E.K., Major A., Bálint M., Nédli J., Braun M., Rácz I., Parducci L., 2011. Population dynamics and genetic changes of *Picea abies* in the South Carpathians revealed by pollen and ancient DNA analyses. BMC Evolutionary Biology 11: 66.
- Mayer H., 1984. Wälder Europas [Forests of Europe]. G. Fischer, Stuttgart, 691 p.
- Moning C., Bußler H., Müller J., 2009. Ökologische Sc hlüssel werte in Bergmisc ergmisc hwäldern als Grun dlage für eine nac hhaltige Forst wirtsc haft [Ecological key values in mixed montane forests as basis for sustainable forestry]. Bavarian Forest National Park Scientific Series 19, Grafenau, 103 p.
- MCPFE (Ministerial Conference on the Protection of Forests in Europe), 2003. Improved Pan-European Indicators for Sustainable Forest Management as adopted by the MCPFE Expert Level Meeting 7-8 October 2002, Vienna, Austria. Web: http://www.foresteurope.org/documentos/improved_indicators.pdf. Accessed: 17.02.2013.
- Moravec, J. 1985. Chorological and ecological phenomena in the differentiation and distribution of the *Fagion* associations in Bohemia and Moravia (Czechoslovakia). Vegetatio 59: 39-45.
- Müller J., Bußler H., Bense U., Brustel H., Flechtner G., Fowles A., Kahlen M., Möller G., Mühle H., Schmidl J., Zabransky P., 2005a. Urwald relict species Saproxylic beetles indicating structural qualities and habitat tradition Urwaldrelikt-Arten Xylobionte Käfer als Indikatoren für Strukturqualität und Habitattradition. Waldökologie online 2: 106-113.
- Müller J., Strätz C., Hothorn T., 2005b. Habitat factors for land snails in European beech forests with special focus on coarse wood debris. European Journal of Forest Research 124: 233-242.
- Negrean G., Oltean M., 1989. Endemite și zone endemo-

- conservatoare din Carpații S-E [Endemics and conservation areas from the SE Carpathians]. Ocrotirea Naturii și a Mediului Înconjurător. . 33 (1): 15-25.
- Schwabe-Braun A., 1980. Eine pflanzensoziologische Modelluntersuchung als Grundlage für Naturschutz und Planung [A phyto-sociological model-investigation as basis for nature conservation and planing]. Urbs et Regio 18: 1-212.
- Stancu D.I., 2010. The floristic richness of Buda and Râiosu Mountains, Făgăraş massif. Studii şi Comunicări, Ştiințele Naturii 26 (2): 52-56.
- Tollefsrud M.M., Kissling R., Gugerli F., Johnsen O., Skrøppa T., Cheddadi R., Van der Knaap W.O., Latałowa M., Terhürne-Berson R., Litt T., Geburek T., Brochmann C., Sperisen C., 2008. Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Molecular Ecology 17: 4134-4150.
- Vintilă A., 2012. The anthropogenic potential impact on flora in Ghiţu-Moliviş area (Argeş county). Studii şi Comunicări, Ştiinţele Naturii 28(2): 52-56.

- Wäldchen J., Schulze E.D., Schöning I., Schrumpf M., Sierra C., 2012. The influence of changes in forest management over the past 200 years on present soil organic carbon stocks. Forest Ecology and Management 289: 243-254.
- Wippel B., Becker G., Seintsch B., Rosenkranz L., Englert H., Dieter M., Möhring B., Stratmann J., Gerst J., Paschke M., Riedinger D., 2013. Project FFH-Impact: Implementing the Habitats Directive in German forests. Executive summary of a case study on the economic and natural impacts on forest enterprises. Thünen-Institute of Forest Based Sector Economics, Hamburg, 34 p. Web.: http://www.ti.bund.de/fileadmin/dam_uploads/vTI/Bilder/Aktuelles/Downloads_2013/FFH-Impact_Executive%20Summary%20english_.pdf. Accessed: 17.02.2013.
- Zhang L.B., Comes H.P., Kadereit J.W., 2001. Phylogeny and quaternary history of the European montane/alpine endemic *Soldanella (Primulaceae)* based on ITS and AFLP variation. American Journal of Botany 88(12): 2331-2345.

Appendix

 Table 1 Habitat Classes of the ROSCI0122 Munții Făgăraș

Habitat Class	% of land area
Heath, Scrub	12
Dry grassland, steppe	10
Broad leaved deciduous woodland	18
Coniferous woodland	25
Mixed forest	32
Rock faces, Screes, Sands, Snow, Ice	3
Total habitat cover	100

Note. Source: Natura 2000 standard data form

(http://natura2000.eea.europa.eu/Natura2000/SDFPublic. aspx?site=ROSCI0122#4).

Table 2 Important habitats according to Annex I of the EC Habitats Directive in the Natura 2000 area ROSCI0122 Munții Făgăraș

		Repre-	Relative	Conservation	Global
Code	Cover (%)	sentativity	surface	Status	assessment
		(i)	(ii)	(iii)	(iv)
6520 - Mountain hay meadows	10.0	В	В	В	В
9110 - Luzulo-Fagetum beech forests	10.9	A	В	В	A
9410 - Acidophilous Picea forests of the montane to alpine levels (Vaccinio-Piceetea)	21.3	A	В	A	A
91V0 - Dacian Beech forests (Symphyto-Fagion)	36.0	A	В	В	A
6230* - Species-rich <i>Nardus</i> grasslands, on siliceous substrates in mountain areas	0.1	A	A	A	A
91E0* - Alluvial forests with <i>Alnus glutinosa</i> and <i>Fraxinus excelsior</i> (Alno-Padion, Alnion incanae, Salicion albae)	10.0	В	В	В	В

Note. Source: Natura 2000 standard data form. The priority habitats are indicated by an asterisk (*). The assessment results for the criterions (i), (iii) and (iv) mean: A - excellent, B - good, C - significant. For criterion (ii), the ranking is expressed in percentage: A: $100 \ge p > 15\%$, B: $15 \ge p > 2\%$, C: $2 \ge p > 0$.

Table 3 Preliminary list of plant species found in the Boisoara Forest

No.	Plant species	Family	No.	Plant species	Family
1	Abies alba	Pinaceae	23	Arctium minus	Asteraceae
2	Acer platanoides	Aceraceae	24	Arctium tomentosum	Asteraceae
3	Acer pseudoplatanus	Aceraceae	25	Arenaria biflora	Caryophyllaceae
4	Achillea millefolium	Asteraceae	26	Asplenium ruta-muraria	Aspleniaceae
5	Actaea spicata	Ranunculaceae	27	Asplenium scolopendrium	Aspleniaceae
6	Aegopodium podagraria	Apiaceae	28	Asplenium trichomanes	Aspleniaceae
7	Agrimonia eupatoria	Rosaceae	29	Athyrium filix-femina	Woodsiaceae
8	Agrostis canina	Poaceae	30	Atropa bella-donna	Solanaceae
9	Agrostis capillaris	Poaceae	31	Betula pendula	Betulaceae
10	Agrostis gigantea	Poaceae	32	Bruckenthalia spiculifolia	Ericaceae
11	Agrostis stolonifera	Poaceae	33	Calamagrostis arundinacea	Poaceae
12	Ajuga reptans	Lamiaceae	34	Calamagrostis epigejos	Poaceae
13	Alchemilla vulgaris agg.	Rosaceae	35	Callitriche spec.	Plantaginaceae
14	Alliaria petiolata	Brassicaceae	36	Calluna vulgaris	Ericaceae
15	Alnus incana	Betulaceae	37	Caltha palustris	Ranunculaceae
16	Anemone nemorosa	Ranunculaceae	38	Campanula spec.	Campanulaceae
17	Anemone ranunculoides	Ranunculaceae	39	Capsella bursa-pastoris	Brassicaceae
18	Angelica sylvestris	Apiaceae	40	Cardamine amara	Brassicaceae
19	Antennaria dioica	Asteraceae	41	Cardamine hirsuta	Brassicaceae
20	Anthoxanthum alpinum	Poaceae	42	Cardamine impatiens	Brassicaceae
21	Anthriscus nitida	Apiaceae	43	Cardamine pratensis	Brassicaceae
22	Anthriscus sylvestris	Apiaceae	44	Cardaminopsis arenosa subsp. borbasi	i Brassicaceae

No.	Plant species	Family	No.	Plant species	Family
5	Carduus acanthoides	Asteraceae	107	Euphorbia amygdaloides	Euphorbiaceae
6	Carduus personata	Asteraceae	108	Euphorbia cyparissias	Euphorbiaceae
7	Carex canescens	Cyperaceae	109	Fagus sylvatica	Fagaceae
3	Carex caryophyllea	Cyperaceae	110	Festuca drymeja	Poaceae
)	Carex caryophytica Carex cf strigosa	Cyperaceae	111	Festuca gigantea	Poaceae
)	Carex digitata	Cyperaceae	112	Festuca rubra	Poaceae
, [Carex ligerica	Cyperaceae	113	Fragaria vesca	Rosaceae
2	Carex pendula	Cyperaceae	114	Fraxinus excelsior	Oleaceae
3	Carex pilulifera	Cyperaceae	115	Gagea minima	Liliaceae
1	Carex remota	Cyperaceae	116	Galeobdolon montanum	Lamiaceae
,	Carex sylvatica	Cyperaceae	117	Galanthus nivalis	Amaranthaceae
6	Carlina acaulis	Asteraceae	118	Galeopsis tetrahit	Lamiaceae
7	Carpinus betulus	Betulaceae	119	Galium kitaibelianum	Rubiaceae
8	Centaurea jacea	Asteraceae	120	Galium odoratum	Rubiaceae
)	Cepahlaria pilosa	Caprifoliaceae	121	Galium palustre	Rubiaceae
)	Cerastium fontanum	Caryophyllaceae	122	Galium pseudoaristatum	Rubiaceae
l	Chaerophyllum bulbosum	Apiaceae	123	Gentiana asclepiadea	Gentianaceae
	Chaerophyllum hirsutum	Apiaceae Apiaceae	123	Gentiana acaulis	Gentianaceae
3			125	Gentiana pneumonanthe	Gentianaceae Gentianaceae
, 1	Chaerophyllum temulum	Apiaceae Papaveraceae		*	Gennanaceae Geraniaceae
+ 5	Chelidonium majus	Amaranthaceae	126 127	Geranium pyrenaicum Geranium robertianum	
	Chenopodium album				Geraniaceae
5	Chenopodium bonus-henricus	Amaranthaceae	128	Geum montanum	Rosaceae
7	Chrysosplenium alternifolium	Saxifragaceae	129	Geum urbanum	Rosaceae
8	Cicerbita alpina	Asteraceae	130	Glechoma hederacea	Lamiaceae
9	Cirsium arvense	Asteraceae	131	Glechoma hirsuta	Lamiaceae
0	Cirsium erisithales	Asteraceae	132	3	Poaceae
1	Cirsium oleraceum	Asteraceae	133	Gnaphalium sylvaticum	Asteraceae
2	Cirsium palustre	Asteraceae	134	7 7 7	Athyriaceae
3	Clinopodium vulgare	Lamiaceae	135	Heracleum sphondylium	Apiaceae
4	Corallorrhiza trifida	Orchidaceae	136	Hieracium transsylvanicum	Asteraceae
5	Cornus sanguinea	Cornaceae	137	Holcus lanatus	Poaceae
6	Corydalis solida	Fumariaceae	138	Homogyne alpina	Asteraceae
7	Corylus avellana	Corylaceae	139	Hordelymus europaeus	Poaceae
8	Crocus vernus	Iridaceae	140	Hypericum hirsutum	Hypericaceae
9	Cruciata glabra	Rubiaceae	141	Hypericum perforatum	Hypericaceae
0	Cruciata laevipes	Rubiaceae	142	Hypericum tetrapterum	Hypericaceae
1	Cynoglossum officinale	Boraginaceae	143	Hypochaeris radicata	Asteraceae
2	Cystopteris fragilis	Athyriaceae	144	Impatiens noli-tangere	Balsaminaceae
3	Dactylis glomerata	Poaceae	145	Juncus alpinoarticulatus	Juncaceae
4	Daucus carota	Apiaceae	146	Juncus articulatus	Juncaceae
5	Dentaria bulbifera	Brassicaceae	147	Juncus effusus	Juncaceae
6	Dentaria glandulosa	Brassicaceae	148	Juncus tenuis	Juncaceae
7	Deschampsia cespitosa	Poaceae	149	Juniperus sibirica	Cupressaceae
8	Deschampsia flexuosa	Poaceae	150	Lamium album	Lamiaceae
9	Digitalis grandiflora	Scrophulariaceae	151	Lamium maculatum	Lamiaceae
0	Doronicum austriacum	Asteraceae	152	Lapsana communis	Asteraceae
1	Dryopteris affinis	Athyriaceae	153	Lastrea limbosperma	Polypodiaceae
2	Dryopteris carthusiana	Athyriaceae	154	Lathraea squamaria	Scrophulariaceae
3	Dryopteris dilatata	Athyriaceae	155	Lathyrus pratensis	Fabaceae
4	Dryopteris filix-mas	Athyriaceae		Lathyrus tuberosus	Fabaceae
5	Eleocharis palustris	Cyperaceae	157	Lilium martagon	Liliaceae
5	Elymus repens	Poaceae	158	Lolium perenne	Poaceae
7	Epilobium angustifolium	Onagraceae	159	Lunaria rediviva	Brassicaceae
7	Epilobium parviflorum	Onagraceae	160	Luzula luzuloides	Juncaceae
3	Epilobium roseum	Onagraceae	161	Luzula pilosa	Juncaceae
)	Equisetum arvense	Equisetaceae	162	Luzula sylvatica	Juncaceae
00	Equisetum drvense Equisetum hyemale	Equisetaceae Equisetaceae	163	Lychnis spec.	Caryophyllaceae
00	Equisetum nyemate Equisetum palustre	Equisetaceae Equisetaceae	164		Lycopodiaceae
02		•			Lycopoaiaceae Primulaceae
02	Equisetum telmateia	Equisetaceae Asteraceae	165	Lysimachia nummularia	
	Erigeron annuus		166	Malus spec.	Rosaceae
04	1 0	Cyperaceae	167	Matteuccia struthiopteris	Athyriaceae
05	Euonymus latifolia	Celastraceae	168	Medicago lupulina	Fabaceae
116	Eupatorium cannabinum	Asteraceae	169	Mentha longifolia	Lamiaceae

Table 3 (continuation)

Tab	le 3 (continuation)				
No.	Plant species	Family	No.	Plant species	Family
170	Mercurialis perennis	Euphorbiaceae	222	Sagina procumbens	Caryophyllaceae
171	Milium effusum	Poaceae	223	Salicornia fragilis	Caryophyllaceae
172	Moehringia trinervia	Caryophyllaceae	224	Salix caprea	Salicaceae
173	Monotropa hypophegea	Pyrolaceae	225	Salix cinerea	Salicaceae
174	Mycelis muralis	Asteraceae	226	Salix silesiaca	Salicaceae
175	Myosotis arvensis	Boraginaceae	227	Salix triandra	Salicaceae
176	Myosotis scorpioides	Boraginaceae	228	Salvia glutinosa	Lamiaceae
177	Myosoton aquaticum	Caryophyllaceae	229	Sambucus ebulus	Caprifoliaceae
178	Nardus stricta	Poaceae	230	Sambucus nigra	Caprifoliaceae
179	Neottia nidus-avis	Orchidaceae	231	Sambucus racemosa	Caprifoliaceae
180	Oxalis acetosella	Oxalidaceae	232	Saxifraga stellaris	Saxifragaceae
181	Paris quadrifolia	Liliaceae	233	Scilla bifolia subsp. drunensis	Asparagaceae
182	Petasites albus	Asteraceae	234	Scirpus sylvaticus	Cyperaceae
183	Petasites hybridus	Asteraceae	235	Scrophularia nodosa	Scrophulariaceae
184	Petasites kablikianus	Asteraceae	236	Senecio ovatus	Asteraceae
185	Phacelia tancetifolia	Boraginaceae	237	Silene dioica	Caryophyllaceae
186	Phalaris arundinacea	Poaceae	238	Soldanella hungarica	Primulaceae
187	Phegopteris connectilis	Polypodiaceae	239	Soldanella hungarica	Primulaceae
	Picea abies	Pinaceae	240	Soldanella pusilla	Primulaceae
189	Pinguicula vulgaris	Lentibulariaceae	241	Solidago virgaurea	Asteraceae
190	Plantago lanceolata	Plantaginaceae	242	Sorbus aucuparia	Rosaceae
191	=	Plantaginaceae	243	Spiraea chamaedryfolia	Rosaceae
192	Platanthera bifolia	Orchidaceae	244	Stachys sylvatica	Lamiaceae
193	Poa humilis	Poaceae	245	Stellaria alsine	Caryophyllaceae
	Poa nemoralis	Poaceae	246	Stellaria media	Caryophyllaceae
195	Poa pratensis	Poaceae	248	Stellaria nemorum	Caryophyllaceae
196	Poa supina	Poaceae	249	Symphytum cordatum	Boraginaceae
	Poa trivialis	Poaceae	250	Tanacetum vulgare	Asteraceae
	Polygala vulgaris	Polygalaceae	251	Taraxacum officinale agg.	Asteraceae
199	Polygonatum verticillatum	Liliaceae	252	Telekia speciosa	Asteraceae
200	Polypodium vulgare	Polypodiaceae	253	Thalictrum aquilegiifolium	Ranunculaceae
201	Polystichum aculeatum	Athyriaceae	254	Tilia platyphyllos	Tiliaceae
	Polystichum braunii	Athyriaceae	255	Trifolium pratense	Fabaceae
203	Populus tremula	Salicaceae	256	Trifolium repens	Fabaceae
	Potentilla argentea	Rosaceae	257	Tussilago farfara	Asteraceae
205	Potentilla erecta	Rosaceae	258	Typha latifolia	Typhaceae
206	Potentilla ternata	Rosaceae	259	Ulmus glabra	Ulmaceae
	Primula spec.	Primulaceae	260	Ulmus minor	Ulmaceae
	Prunella vulgaris	Lamiaceae	261	Urtica dioica	Urticaceae
209	Prunus avium	Rosaceae	262	Vaccinium myrtillus	Ericaceae
	Pulmonaria rubra	Boraginaceae	263	Vaccinium vitis-idaea	Ericaceae
211		Rosaceae		Valeriana tripteris	Valerianaceae
	Ranunculus acris	Ranunculaceae		Veratrum album subsp. album	Liliaceae
213	Ranunculus cf. montanus	Ranunculaceae	266	Verbascum nigrum	Scrophulariaceae
	Ranunculus cf. nemorosus	Ranunculaceae	267	Veronica beccabunga	Scrophulariaceae
	Ranunculus repens	Ranunculaceae	268	Veronica chamaedrys	Scrophulariaceae
	Rhamnus cathartica	Rhamnaceae	269	Veronica chamaearys Veronica officinalis	Scrophulariaceae Scrophulariaceae
217		Rosaceae	270	Veronica officinalis Veronica cf. serpyllifolia	Scrophulariaceae
	*		270	Veronica cj. serpynijona Veronica urticifolia	Scrophulariaceae Scrophulariaceae
218	Rubus fruticosus agg. Rubus idaeus	Rosaceae Rosaceae	271	Vicia cracca	Fabaceae
			273	Vicia cracca Viola canina	Violaceae Violaceae
220	Rumex acetosa	Polygonaceae			
221	Rumex obtusifolius	Polygonaceae	274	Viola declinata	Violaceae
			275	Viola reichenbachiana	Violaceae

Table 4 Preliminary list of birds found in the Boişoara Forest. Annex I species of the Birds Directive are indicated by an asterisk (*)

No.	Species	Forest	Grass- land	No.	Species	Forest	Grass- land
1	Accipiter nisus	X	Tanu	24	Motacilla alba	X	X
2	Alauda arvensis	Λ	X	25	Motacilla cinerea	X	21
3	Anthus spinoletta		X	26	Nucifraga caryocatactes	X	
4	Anthus trivialis		X	27	Oenanthe oenanthe	71	X
5	Bonasia bonasia*	X	Λ	28	Parus ater	X	X
6	Buteo buteo	X	X	29	Parus caeruleus	X	
7	Carduelis cannabina		X	30	Parus cristatus	X	
8	Certhia familiaris	X		31	Parus major	X	
9	Ciconia nigra*	X	X	32	Parus montanus	X	
10	Cinclus cinclus	X		33	Phoenicurus ochruros		X
11	Columbia palumbus	X		34	Phylloscopus collybita	X	
12	Cuculus canorus	X		35	Picus viridis	X	
13	Dendrocopos leucotos*	X		36	Prunella collaris	X	X
14	Dendrocopos major	X		37	Pyrrhula pyrrhula	X	
15	Dryocopus martius*	X		38	Regulus regulus	X	
16	Erithacus rubecula	X	X	39	Saxicola rubetra		X
17	Ficedula albicollis	X		40	Stryx aluco	X	
18	Ficedula hypoleuca	X		41	Sylvia atricapilla	X	
19	Ficedula parva	X		42	Tertrao urogallus*	X	
20	Fringilla coelebs	X	X	43	Troglodytes troglodytes	X	
21	Garrulus glandarius	X		44	Turdus merula	X	
22	Hirundo rustica		X	45	Turdus philomelos	X	X
23	Loxia curvirostra	X	X	46	Turdus torquatus		X

Table 5 Preliminary List of the Coleoptera found in the Boişoara Forest (May 5 to 10, 2012)

No.	Taxon	Remark
	Carabidae	
l	Carabus auronitens F., 1792	
2	Carabus coriaceus L., 1758	
3	Carabus glabratus Payk., 1790	Indicator for old growth forest
4	Carabus intricatus L., 1761	
5	Carabus planicollis Küst., 1846	Carpathian endemite
5	Tachyta nana (Gyll., 1810)	Saproxylic species
	Silvidae	
7	Necrophorus vespillo (L., 1758)	
	Leiodidae	
3	Agathidium dentatum Muls.Rey, 1861	
	Staphylinidae	
)	Scaphidium quadrimaculatum Ol., 1790	
10	Atrecus longiceps (Fauv., 1872)	
11	Olisthaerus substriatus (Payk., 1790)	Urwald relict species (Müller et al. 2005)
12	Gyrophaena gentilis Er., 1839	
	Lymexylonidae	
13	Hylecoetus dermestoides (L., 1761)	
	Elateridae	
14	Ctenicera virens (Schrk., 1781)	
15	Melanotus rufipes (Hbst., 1784)	
16	Ampedus pomorum (Steph., 1830)	
17	Actenicerus sjaelandicus (Müll., 1764)	
	Buprestidae	
18	Anthaxia helvetica Stierl., 1868	
	Cerylonidae	
19	Cerylon ferrugineum Steph., 1830	
	Cucujidae	
20	Cucujus cinnaberinus (Scop., 1763)	Annex II and IV Habitats directive
	Erotylidae	
21	Triplax rufipes (F., 1775)	
22	Dacne rufifrons (F., 1775)	
	Colydiidae	
23	Bitoma crenata (F., 1775)	
	Endomychidae	
24	Endomychus coccineus (L., 1758)	
	Ciidae	
25	Cis nitidus (F., 1792)	
26	Ropalodontus perforatus (Gyll., 1813)	Indicator for habitat continuity (Fomes)
	Anobiidae	
27	Xestobium austriacum Rtt., 1890	Urwald relict species (Müller et al. 2005)
	Pyrochroidae	1
28	Schizotus pectinicornis (L., 1758)	
	Tenebrionidae	
29	Bolitophagus reticulatus (L., 1767)	Indicator for habitat continuity (Fomes)
	- r · · · · · · · · · · · · · · · · · ·	

Table 5 (continuation)

No.	Taxon	Remark
	Meloidae	
30	Meloe violaceus Marsh., 1802	
	Geotrupidae	
31	Geotrupes stercorarius (L., 1758)	
32	Anoplotrupes stercorosus (Scriba, 1791)	
	Lucanidae	
33	Platycerus caraboides (L., 1758)	
34	Sinodendron cylindricum (L., 1758)	Indicator for coarse woody debris
	Cerambycidae	
35	Rhagium mordax (Degeer, 1775)	
36	Rhagium inquisitor (L., 1758)	
37	Tetropium castaneum (L., 1758)	
38	Oxymirus cursor (L., 1758)	
39	Evodinus clathratus (F., 1792)	
40	Cerambyx scopolii Fuessl., 1775	
41	Xylotrechus rusticus (L., 1758)	
42	Morimus funereus Muls., 1863	Annex II Habitats Directive
43	Mesosa nebulosa (F., 1781)	
44	Monochamus spp.	
45	Saperda perforata (Pall., 1773)	
	Chrysomelidae	
46	Agelastica alni (L., 1758)	
	Scolytinae	
47	Scolytus ratzeburgi Janson, 1856	
48	Pityogenes chalcographus (L., 1761)	
49	Taphrorychus bicolor (Hbst., 1793)	
50	Xyloterus lineatus (Ol., 1795)	
51	Ips amitinus (Eichh., 1871)	
	Anthribidae	
52	Anthribus albinus (L., 1758)	
	Curculionidae	
53	Liparus glabrirostris Küst., 1849	
54	Otiorhynchus gemmatus (Scop., 1763)	