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Abstract Terrestrial laser scanning (TLS) has quickly gained momentum in forestry as a fast and 
nondestructive alternative to determine tree shape and volume. Determining tree shape and volume 
is fundamental for a wide range of forestry applications, including the estimation of carbon stock 
and development of volume and biomass allometric models. However, tree shape and volume are 
often determined from TLS data based on different available algorithms, with direct implications 
on the measured tree feature. In this study we compared several algorithms for tree reconstruction 
from TLS data, with respect to their capacity to accurately determine tree characteristics such 
as diameter at breast height (DBH), tree height (H), stem volume (Vst) and total aboveground 
tree volume (Vtot). The following algorithms were compared using Bland-Altman limits of 
agreement (LoA): (i) TreeQSM, (ii) 3D Forest, (iii) RANSAC and (iv) Poisson. The data used 
for the comparison was collected from 10 sample plots, totalizing 40 European beech (Fagus 
sylvatica L.) trees, covering a DBH range from 6.2 cm to 76.0 cm and H range from 9.5 m to 
36.2 m. The results showed that the algorithm used to analyse the TLS data affected notably the 
tree characteristics. The LoA were up to 3.65 m3 for Vtot, up to 7.5 cm for DBH and up to 1.1 m 
for H, suggesting a rather weak agreement between algorithms. From our comparison, TreeQSM 
emerged as the most reliable algorithm for comprehensive trait reconstruction, while Poisson was 
well suited for stem volume estimation. Moreover, determining H seems to be less affected by the 
algorithm selection compared to DBH. Our findings raise awareness about algorithm selection in 
TLS data processing and highlight the importance of selecting an appropriate algorithm to meet 
the specific objective when using TLS to determine tree shape and volume.
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Introduction

Promoting sustainable forestry practices 
necessitates gathering precise measurements 
of key tree attributes, including diameter at 
breast height (DBH) and tree height. These 
measurements are crucial predictors for 
estimating tree volume or biomass (Ketterings 
et al. 2001, Dutcă et al. 2022). For instance, 

improved biomass and volume estimates 
contribute to more accurate monitoring of 
forest carbon, benefiting climate modeling and 
conservation planning (Indirabai et al. 2019).
 Traditionally, tree volume and biomass 
are estimated through allometric models or 
destructive sampling, but Terrestrial Laser 
Scanning (TLS) now provides a nondestructive, 
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efficient alternative by directly reconstructing 
tree structure from point cloud data. Unlike 
typical model-based estimations, TLS 
reconstruction utilises point clouds to develop 
geometric models that more accurately capture 
the unique architecture of each tree. This has 
allowed for faster and more detailed data 
collection, as demonstrated in ecological studies 
of tree architecture, which reveal complex 
branching structures that would otherwise be 
difficult to measure. Recent advancements in 
TLS technology have significantly improved the 
scanning and reconstruction of tree shape form 
(Malhi et al. 2018). That is a key step forward, 
offering a labor-efficient solution compared to 
destructive sampling methods.
 Current forest management tools primarily 
use classic inventory methods combined with 
allometric equations, but TLS can be used 
to determine tree volume directly and avoid 
allometric model prediction error, producing 
more accurate volume estimates, beneficial for 
various applications, from estimating biomass 
and stock volume to improving accuracy in 
carbon estimations (Fischer et al. 2020).
 TLS has also provided new insights into 
structural parameters of trees, which is crucial 
for understanding variations due to tree taper, 
diameter-height ratios, and growth patterns 
that affect volume estimation (McTague & 
Weiskittel 2021).
 There is a need for volume measured at the 
tree level to develop models for estimating 
forest tree volume and biomass (Temesgen et 
al. 2015), especially in cases where allometric 
models and formulas are unavailable (Jan et al. 
2021). Avoiding prediction errors due to regional 
variation of tree allometry (Jan et al. 2021) 
yields an improved the accuracy and precision 
of biomass and implicitly carbon estimates, 
which further improves the effectiveness of 
emission reduction initiatives (Petrokofsky et 
al. 2012). 
 Compared to traditional mapping methods, 
LiDAR offers more detailed information that 
can be used for many different applications 

and mitigates errors associated with the 
tree architecture (Bornand et al. 2023). The 
emergence of LiDAR technology has changed 
the mapping paradigm (Niță 2021). Nowadays, 
it is increasingly used in practice as well as in 
scientific research regarding forestry, hydrology, 
geomorphology, urban management, and 
general survey assessments (Liang et al. 2018).
 Reconstructing three-dimensional tree 
architecture and estimating tree parameters, 
using terrestrial LiDAR data, offers a 
nondestructive method that proves to be more 
cost-effective in the long term (Kankare et al. 
2013). Terrestrial laser scanning can provide 
dense point clouds and tree point clouds with 
high accuracy and precision, which can be 
analysed to estimate layered forests and forest 
parameters that are more difficult to estimate 
from airborne laser scanning (Dassot et al. 2011, 
Friedli et al. 2016, Liang et al. 2016). 
 Occlusion was not addressed here because 
each tree was scanned from multiple angles 
using a tripod-mounted scanner, ensuring 
complete coverage and preventing any 
occlusion issues. However, employing these 
reconstruction methods presents two critical 
challenges to the research process. The initial 
bottleneck centers around the individual 
tree segmentation, a crucial step in the 
reconstruction process (Li et al. 2012, Hui et al. 
2021). Segmentation involves the delineation 
or separation of individual trees from the point 
cloud data obtained through LiDAR scanning 
(Yang et al. 2023). Efficient segmentation 
methods play a pivotal role in distinguishing tree 
boundaries, ensuring that reconstructed models 
faithfully represent individual trees (Yang et al. 
2023). The precision of biometrics is directly 
proportional to the accuracy of the segmentation 
process, underscoring that all approaches aimed 
at detailed 3D reconstruction are as good as 
the segmentation of point cloud data, and data 
acquisition (Bornand et al. 2023).
 To address challenges in individual tree 
segmentation, such as noise in the point cloud 
(Xie et al. 2018), missing trees (Windrim & 
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Bryson 2020), and the complexities of dense 
forests where trees can be mixed (i.e., branches 
from a tree or small under trees are attributed 
to another tree), manual segmentation is 
considered a superior approach, as it benefits 
from human expertise (Weiser et al. 2022). 
 The second bottleneck pertains to tree 
reconstruction itself. The literature presents 
various techniques for reconstructing 3D tree 
models using point clouds. These techniques 
can be grouped into three main categories, 
each of which facilitates extraction of tree 
characteristics. The first approach involves 
creating a skeletal model of the tree. This model, 
which is a wireframe with zero thickness, is 
embedded within and aligns with the shape 
outlined by the point cloud. Its primary benefit 
is maintaining the connectivity and topological 
relationships between branches (Cornea et al. 
2005). The second approach involves fitting 
geometric shapes such as cylinders, cones, and 
spheres to the point cloud data of the tree. Among 
these shapes, cylinders are often preferred 
because of their ability to yield realistic tree 
models and extract geometric features (Rahman 
et al. 2015, Shen et al. 2022). The third approach 
involves the use of meshing solutions to create 
detailed tree models. Commonly employed 
methods include quantitative structure models 
(QSMs) for skeletal representations, Random 
Sample Consensus (RANSAC) for geometric 
fitting, and the Poisson algorithm for mesh 
reconstruction.
 Studies on the implementation of TreeQSM 
have revealed certain limitations, particularly 
in accurately reconstructing thinner branches 
with a lower point cloud density (Raumonen et 
al. 2013b) . This method tends to underestimate 
the length of smaller branches and shows a 
systematic underestimation of tree volume, 
especially for thinner branches. A conceptual 
difference in determining the termination 
point of the main stem compared with manual 
measurements has also been identified (Lau et 
al. 2018a). While the RANSAC method proves 
effective in estimating stem volume, it exhibits 

limitations, notably the tendency to overestimate 
stem attributes when applied to diverse forest 
structures (Panagiotidis & Abdollahnejad 2021). 
Regarding mesh reconstruction in exploring 
the efficacy of Poisson surface reconstruction, 
it is essential to consider both its accuracy 
influencing factors, such as point cloud density 
and shape complexity, which contribute to its 
accuracy, as well as its limitations, including 
sensitivity to abrupt changes, potential 
computational delays, and specific applicability 
ranges (Morel et al. 2018). These insights 
underscore the importance of tackling both 
the segmentation challenge and the limitations 
associated with tree reconstruction methods, 
such as RANSAC, POISSON, and QSM. 
Emphasizing the need for reliable methods are 
required to precisely delineate individual trees 
and overcome reconstruction challenges from 
LiDAR point cloud data.
 The aim of this study is to compare four 
algorithms for tree reconstruction from TLS 
data (i.e, TreeQSM, 3D Forest, RANSAC 
and Poisson), with respect to their capacity to 
accurately determine tree characteristics such 
as DBH, tree height (H), stem volume (Vst) 
and total aboveground tree volume (Vtot).

Materials and Methods

Collection of TLS data

A Faro Focus S70 terrestrial laser scanner 
(TLS) was employed to scan the trees, 
providing a maximum range of 70 m and an 
accuracy of 2 mm at a 10-meter distance. We 
scanned 40 trees from 10 different locations 
across seven counties in Romania: Brasov, 
Bihor, Covasna, Prahova, Timis, Hunedoara, 
and Harghita (Figure 1). Each plot contained 
three to six trees. To ensure comprehensive 
data collection, we conducted 8 to 10 scanning 
stations for each sample plot, capturing a 
sufficient number of laser returns to accurately 
represent the tree branches. The scans were 
performed under favorable weather conditions, 
specifically on sunny days with low wind 
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speeds. The diameter at breast height (DBH) 
of the sampled trees ranged from 6.2 to 76 cm, 
with a mean DBH of 30.4 cm and a standard 
deviation of 16.6 cm. Tree heights (H) ranged 
from 9.5 to 36.2 m, with a mean height of 25.4 
m and a standard deviation of 7.9 m.

 The workflow starts with field terrestrial 
LiDAR scanning to acquire a high-resolution 
three-dimensional point cloud of the forest 
plots. The subsequent data processing stage 
involves the segmentation of individual trees, 
noise reduction, and the modelling of tree 
parameters. Advanced analytical techniques, 
including MATLAB-based algorithms, 
specialized forest modeling tools (e.g., 3D 
Forest), Poisson surface reconstruction, and 
RANSAC fitting - were used to extract key 
forest inventory metrics, such as diameter at 
breast height, tree height, and stem volume 
and total volume. The results provide a 
comprehensive basis for further quantitative 
assessments. The following sections provide 
a detailed, step-by-step explanation of each 
component within this workflow, offering 

insights into the specific methodologies, 
algorithms, and parameters utilised.

Tree segmentation

To maximize point-cloud density and accuracy 
in tree segmentation, manual segmentation 
was performed to prevent cross-attribution of 
points between trees. This process utilised the 
CloudCompare software’s “2D polyline cut” 
function, which allowed precise delineation of 
individual trees within the point cloud. The 2D 
polyline cut function defines boundaries based 
on user-drawn polylines, ensuring segmentation 
accuracy by excluding extraneous points from 
surrounding vegetation.

Tree parameters

We used four algorithms to extract DBH, H, 
stem volume or total tree volume (Table 1).
Table 1 The identification of tree attributes estimated by 

compared methods.

Method
Tree attribute

DBH H Stem 
volume

Aboveground tree 
volume

CloudCompare reconstruction methods
Poisson no no yes no
RANSAC no no yes no

QSM algorithms
TreeQSM 
MATLAB yes yes yes yes
3D Forest yes yes no yes

CloudCompare reconstruction methods
To approximate the tree surface, we used 
triangulation techniques. These methods 
ensure consistent orientation of normals across 
the point cloud, which improves the model’s 

Figure 1 Location of the sample plots.

Figure 2 Process workflow.
Figure 3 Individual trees view from CloudCompare 

(a-profile, b-bottom, c-top).
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surface accuracy. The minimum spanning 
tree function further stabilizes the model, 
aligning points within each tree to reduce 
spatial inconsistencies. Users need to define 
the maximum number of neighbors at each 
node, balancing accuracy with computational 
resources. In this study, we employed the 
maximum value for computing the normals to 
ensure a comprehensive analysis.
 We applied the Poisson surface 
reconstruction algorithm plugin from 
CloudCompare to generate a triangle mesh 
and estimate tree volume by solving a Poisson 
system, considering all points simultaneously, 
and minimising the impact of noise for the 
complete tree pointcloud. However, because of 
the complex branching system, this algorithm 
produced high deviation for total volume, 
leading us to eliminate branches and calculate 
only trunk volume. To address the fitting errors 
and volume distortion caused by gaps in the 
trunk, we iteratively cut the trunk until accurate 
estimations were achieved. In addition, in 
CloudCompare, we employed the random 
sample consensus (RANSAC) algorithm to fit 
the tree shape into a cone, simulating classical 
tree measurements (a caliper like approach) 
and allometric relationships. Although 
RANSAC provides a single-cone trunk and 
may not estimate well, it aligns with traditional 
methods and compensates for positive values 
with negative values in a neoid form.
QSM algorithms
a. TreeQSM in MATLAB
TreeQSM utilises point clouds to reconstruct 
quantitative structure models (QSMs) of trees, 
employing cylinders to estimate the topological, 
geometrical, and volumetric aspects of the 
woody structure. Utilising the "cover sets" 
function, the algorithm divides the point cloud 
into small sets representing the trunk and each 
branch, where identified branches serve as 
starting points for segmentation, identifying 
trunk and initial branches, pinpointing potential 
bifurcations, and iteratively segmenting up to 
the last branching order, aligning with the tree's 

natural growth pattern. This precision allows 
for volume reconstruction and quantification 
of parameters, such as total volume, height, 
length, basal area, and DBH.
b. 3D Forest
3D Forest is an open-source software designed 
for the segmentation, analysis, measurement, 
and export of data derived from terrestrial 
laser scanning. It extracts by extracting key 
parameters related to forest structure, such 
as stem positions (X, Y, Z), tree height, and 
diameter at breast height (DBH). Within the 
Tree menu, the 'Position RHT' (Randomized 
Hough Transform) function was used to identify 
a circular structure within the tree points at a 
specified height. The tree position, representing 
the center of the tree base, is established, and 
the software adds a dot to the lowest point on 
the tree point cloud to demonstrate the fitting 
of a circle. Two methods, DBH RHT and Least 
Square Regression (DBH LSR), compute tree 
diameters at breast height, and the DBH cloud 
is a subset using a horizontal slice above the 
lowest point of the tree cloud.
 This study employs DBH RHT for circle 
detection, comparing its results with caliper 
measurements and evaluating sensitivity and 
computational time. The Tree Height parameter 
was calculated as the difference between the 
lowest and highest points of the point cloud, 
with the green circle line representing the breast 
height and the number indicating the resultant 
diameter. Trochta et al. (2017) conducted 
several precision tests with 3D Forest to 
compare its accuracy with that of other classic 
forest measurement tools. The Haglöf caliper 
provided 1 cm precision in DBHs, and the 
TruPulse laser rangefinder provided 0.1 m 
precision for tree heights compared to the 3d 
Forest software, for a sample of 181 trees.
 The quantitative structure models (QSM) tree 
reconstruction function provides information 
about branches and stems by employing known 
tree positions and heights. After dividing 
the tree into voxels, stem reconstruction 
involves searching for neighbors, categorizing 
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connected neighbors as segments and non-
connected groups as branches of different 
orders. Parametric tree reconstruction yields 
connected cylinders for each branch, with 
an attribute table containing information 
regarding volume, length, and order.

Compared parameters

We compared the performance of the 
algorithms based on Bland and Altman’s limits 
of agreement (LoA), evaluating differences 
across parameters such as DBH, H, and 
Volume. This approach assesses the algorithms' 
consistency and highlights which algorithms 
are best suited for specific tree traits such as 
diameter at breast height, tree height, stem 
volume and total tree volume.
Diameter at breast height (DBH)
A total of five DBH versions were compared, 
two derived from TreeQSM algorithm in 
MATLAB, and three from 3DForest.
• DBH1 – is the DBH resulted from 
3DForest, derived using the Randomized 
Hough Transformation (RHT), fitting a circle 
to the tree's DBH subset by searching for the 
most frequent circle center in the projected 
horizontal plane at a height between 1.25 m 
and 1.35 m above the tree base (“3d-forest-
classic/3DF_wiki_guide.pdf at master · 
VUKOZ-OEL/3d-forest-classic · GitHub,” 
n.d.).
• DBH2 - is the DBH resulted from 3DForest, 
calculated through Least Squares Regression 
(LSR) by fitting a circle to the DBH subset, 
minimising the mean square distance between 
the fitted circle and data points, sensitive to 
outliers, at a height between 1.25 m and 1.35 m 
above the tree base (“3d-forest-classic/3DF_
wiki_guide.pdf at master · VUKOZ-OEL/3d-
forest-classic · GitHub,” n.d.)
• DBH3 – is the DBH resulted from 3DForest 
determined from a specific subset of points 
within the tree cloud, referred to as the DBH 
cloud, derived at a height between 1.25 m 
and 1.35 m above the tree base (“3d-forest-

classic/3DF_wiki_guide.pdf at master · 
VUKOZ-OEL/3d-forest-classic · GitHub,” 
n.d.).
• DBH4 – is the DBH resulted from TreeQSM 
algorithm, that was calculated as a mean of 
stem diameters between 1.1 and 1.5 m from 
the ground (“TreeQSM/Manual/TreeQSM_
documentation.pdf at master · InverseTampere/
TreeQSM · GitHub,” n.d.).
• DBH5 – is the DBH resulted from TreeQSM 
algorithm in MATLAB that corresponds to the 
diameter of the section of the stem at 1.3 m, using 
fitted cylinders, from the ground (“TreeQSM/
Manual/TreeQSM_documentation.pdf at master 
· InverseTampere/TreeQSM · GitHub,” n.d.).
Tree height
• H1 – is the tree height as resulted from 
3DForest, calculated by measuring the vertical 
distance between the tree base position and the 
highest point of the tree. This process involves 
identifying the tree base and then finding the 
maximum Z coordinate value within the tree 
cloud (“3d-forest-classic/3DF_wiki_guide.pdf 
at master · VUKOZ-OEL/3d-forest-classic · 
GitHub,” n.d.).
• H2 – is the tree height as resulted from 
TreeQSM algorithm in MATLAB, calculated 
as the difference between from the base of the 
tree to the highest point of the tree represented 
in the QSM (“TreeQSM/Manual/TreeQSM_
documentation.pdf at master · InverseTampere/
TreeQSM · GitHub,” n.d.).
Stem volume
For stem volume we compared three 
algorithms:
• Vst1 – is the stem volume in TreeQSM, 
calculated by fitting cylinders to the point 
cloud data of the tree. The total stem volume 
is then obtained by summing the volumes 
of these individual cylinders (“TreeQSM/
Manual/TreeQSM_documentation.pdf at 
master · InverseTampere/TreeQSM · GitHub,” 
n.d.).
• Vst2 – is the stem volume calculated with 
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RANSAC in CloudCompare, which calculates 
stem volume by detecting and fitting cylindrical 
segments in the point cloud through random 
sampling. Cylinders are generated, scored 
by inlier points, and the best fit is iteratively 
selected. Volumes of detected cylinders 
are calculated and summed for total stem 
volume, handling noise and outliers efficiently 
(Schnabel et al. 1981).
• Vst3 – is the stem volume calculation in 
CloudCompare using Poisson reconstruction, 
which involves defining a gradient field 
from surface normals, handling non-uniform 
sampling and using an adaptive octree for 
efficient, detailed 3D surface reconstruction 
and volume calculation (Kazhdan et al. 2006).
Total tree volume
Two algorithms were used to derive the total 
aboveground tree volume:
• Vtot1 - is the tree total volume calculated 
using 3DForest, which involves reconstructing 
the tree into segments using voxel segmentation 
and fitting cylinders to these segments. Each 
segment's volume is calculated based on its 
geometric properties, and the total volume is 
obtained by summing the volumes of all the 
segments (“3d-forest-classic/3DF_wiki_guide.
pdf at master · VUKOZ-OEL/3d-forest-classic 
· GitHub,” n.d.).
• Vtot2 - is the tree total volume calculated using 
TreeQSM, where the algorithm fits cylinders to 
the entire point cloud. Each cylinder's volume 
is calculated, and the tree total volume is then 
determined by summing the volumes of all the 
cylinders in the QSM, which includes both 
the trunk and branches (“TreeQSM/Manual/
TreeQSM_documentation.pdf at master · 
InverseTampere/TreeQSM · GitHub,” n.d.).
• Error (Point-model distance structure) - 
represents the point-model distance structure 
in TreeQSM, which evaluates the accuracy 
(expressed in millimeters) of the model by 
comparing the 3D point cloud data with the 
reconstructed Quantitative Structure Model 
(QSM).

Comparison of reconstruction methods

We used Bland-Altman plots and the limits of 
agreement (Bland & Altman 1983) to compare 
each set of two reconstruction methods. 
For each tree we calculated the mean and 
the relative difference of the two compared 
methods:

             (1)

             (2)

where X1i is the measurement of ith tree 
using reconstruction method 1; X2i is the 
measurement of ith tree using method 2. The 
mean difference ((Dif)) between estimates of 
each set of two methods was calculated as:

              (3)

where n is the total number of trees; we further 
calculated the limits of agreement (LoA) as:

      (4)

Results
DBH reconstruction algorithms

The Bland-Altman plots comparing the 
algorithms for DBH reconstruction are 
presented in Figure 4. The largest mean 
differences between two algorithms used for 

Table 2 The identification of abbreviations with their 
respective algorithms and traits.

Abbrev. Algorithm Trait Assessed
DBH1 3D Forest Diameter at Breast Height
DBH2 3D Forest Diameter at Breast Height
DBH3 3D Forest Diameter at Breast Height
DBH4 TreeQSM Diameter at Breast Height
DBH5 TreeQSM Diameter at Breast Height
H1 3D Forest Tree Height
H2 TreeQSM Tree Height
Vst1 TreeQSM Stem Volume
Vst2 CloudCompare 

RANSAC Stem Volume

Vst3 CloudCompare 
Poisson Stem Volume

Vtot1 3D Forest Total Tree Volume
Vtot2 TreeQSM Total Tree Volume
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DBH reconstruction were observed for DBH3 
vs. DBH4 (+8.4%), DBH3 vs. DBH5 (+7.8%), 
DBH1 vs. DBH3 (-7.6%) and DBH2 vs. DBH3 
(-7.5%), whereas the smallest mean differences 
were recorded for DBH1 vs. DBH2 (-0.1%), 

DBH1 vs. DBH5 (+0.2%) and DBH2 vs DBH5 
(+0.3%).
 The LoA roughly followed the results 
observed for the mean difference. The widest 
LoA were observed for DBH3 vs DBH4 

(-12.2% to 29.1%), DBH3 vs 
DBH5 (-13.5% to +29.1%), DBH1 
vs DBH3 (-29.5% to 14.3%) 
and DBH2 vs DBH3 (-28.6% to 
13.7%). What all these pairs have 
in common is the algorithm DBH3. 
Therefore, it seems that algorithm 
used for DBH3 was in strong 
disagreement with all the other 
compared algorithms. The smallest 
LoA, and, therefore, the greatest 
agreement between any two 
compared algorithms was observed 
for DBH1 vs. DBH2 (-4.2% to 
+3.9%).

Height reconstruction 
algorithms

The compared H reconstruction 
algorithms, 3DForest (H1) and 
TreeQSM (H2), were in good 
agreement, with LoA within ± 1.11 
m, which relative to the mean was 
between -1.2% and +2.0% (Figure 5). 
However, the H estimated by 3D 
Forest was, on average, 0.31 m 
larger compared to H estimated by 
TreeQSM. The relative differences 
showed a decreasing trend, 
suggesting that for smaller trees 
the H1 algorithm produced higher 
heights compared to H2, and for 
taller trees, the opposite.
Stem volume reconstruction 
algorithms

The Bland-Altman plot comparing 
Vst1 and Vst2 shows a mean 
difference of -2.6%, with limits 
of agreement ranging from 
+60.4% to -65.5%. This indicates 
a slight negative bias, where Vst2 

Figure 4 The Bland Altman plots for the compared methods of retrieving 
DBH. The blue line represents the mean difference ((Dif), Eq. 3), the 
dotted lines represent the limits of agreement (LoA, Eq. 4) and the dash 
dot red line is through origin (Diff = 0).
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measurements tend to be slightly higher than 
those of Vst1.
 In the plot comparing Vst1 and Vst3, the mean 
difference is -6.6%, with limits of agreement 
ranging from +30.7% to -43.8%. This reveals 
a noticeable negative bias, indicating that 
Vst3 measurements are generally lower than 
those of Vst1 by an average of 6.6%. The 
limits of agreement, while not as wide as the 
previous comparison, still indicate a moderate 
level of variability between these two sets of 
measurements.
 The comparison between Vst2 and Vst3 
displays a mean difference of -4.1%, with limits 
of agreement ranging from +58.2% to -66.4%. 
This reveals a slight negative bias, where Vst3 
measurements tend to be lower than Vst2.
 Overall, all three Bland-Altman plots indicate 
some level of bias and variability among the stem 
volume measurements. Vst1, Vst2, and Vst3 
each show differing degrees of agreement with 
each other, with Vst3 consistently measuring 
lower than the other two.
 The Poisson-based method produced larger 
stem volume estimates compared to TreeQSM, 
and these differences increased with tree size. 
However, the RANSAC method was in better 
agreement with TreeQSM (LA = 0.561 m3), 
showing a smaller mean difference of only 
0.067 m3, with RANSAC producing larger 
stem volume estimates. When the RANSAC 
and Poisson-based methods were compared, 
the agreement was highest (LA = 0.537 m3). 
There was also a linear trend in the differences 
between these two methods, showing that 

Poisson tended to produce larger stem 
volume estimates for large trees compared to 
RANSAC.
 The positive correlation between stem volume 
and measurement error (r = 0.85, p < 0.05) 
indicates the accuracy of stem volume 
measurements decreases as the stem size 
increases (Figure 7). This could be due to several 
factors such as increased complexity in the 
stem's structure, higher occlusion rates in taller 
stems, or because taller trees are more prone to 
crown and branches movements caused by air 
movements (i.e., light wind). The presence of 
outliers suggests that there might be specific 
conditions or anomalies that cause exceptionally 
high errors in some large stems. Identifying 
and addressing these conditions could enhance 
reconstruction accuracy for larger trees.

Figure 5 The Bland-Altman plot of height estimation 
using two QSM methods: 3D Forest and TreeQSM.

Figure 6 The Bland-Altman plots for comparing the 
methods of stem volume reconstruction.
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The relationship between branch volume and 
reconstruction error (Figure 8) indicates a weaker 
correlation (r = 0.38) although still significant  
(p < 0.05). Larger reconstruction errors are 
more likely for larger trees, although the 

greatest reconstruction error was recorded for a 
small tree (Figure 8). Nevertheless, the branch 
and stem reconstruction error were strongly 
correlated with the tree height (Figure 9). The 
correlation between branch reconstruction error 
and tree height was r = 0.76 (p < 0.05) and the 
correlation between stem reconstruction error 
and tree height was r = 0.66 (p < 0.05). This 
result suggests that taller trees are more prone to 
larger reconstruction errors. These errors may be 
caused by the increased likelihood of taller trees 
to move in the light wind or by their increased 
crown architecture complexity.

Total aboveground tree volume 
reconstruction algorithms

The two methods compared, Vtot1 (3DForest) 
and Vtot2 (TreeQSM), produced highly 
variable estimates of total tree volume.

In Figure 10, the 
estimates of tree total 
volume obtained 
from TreeQSM are 
compared against that 
obtained from 3DForest 
algorithms. For the 
smallest trees, the 
differences in absolute 
values were minimal. 
However, for large 
trees, these differences 
increased substantially. Figure 9 The Bland-Altman plots for branch (left) and stem measurement (right) errors 

vs. tree height.

Figure 8 The Bland-Altman plots for Measurement Error 
vs. Branch Volume.

Figure 10 The Bland-Altman plots for comparing the 
methods of stem volume reconstruction.

Figure 7 The stem reconstruction error vs. stem volume.



195

Florea et al. Tradeoffs and limitations in determining tree characteristics...

The largest absolute difference was 6.9 m3 

(~138%); it was observed for a tree for which the 
volume retrieved from TreeQSM was 1.55 m3 
while for the same tree the 3D Forest algorithm 
estimated a total of 8.44 m3 (Figure 10). 
 As a result, the limits of agreement for the total 
volume were large (LoA were between -62.4% 
and +138.5%). The average difference between 
the two methods was 1.25 m3, showing that 
3DForest systematically produced larger 
volume estimates (by +38.1%).

Discussion

DBH reconstruction

Minor differences were observed in diameter 
at breast height (DBH) measurements between 
DBH1 and DBH2, with errors increasing for 
larger diameters. Five DBH reconstruction 
methods were compared: i) DBH1 and 
DBH2, using 3DForest with Randomized 
Hough Transformation and Least Squares 
Regression; ii) DBH3, using 3DForest with 
the DBH cloud method; and iii) DBH4 and 
DBH5, using TreeQSM algorithms with mean 
stem diameters and fitted cylinders at 1.3 m, 
respectively.
 The results highlight that DBH measurements 
derived from 3DForest using the DBH cloud 
method (DBH3) tend to be less reliable than 
those obtained through other methods. Cylinder 
fitting methods (DBH4 and DBH5) provided 
more precise and consistent measurements, 
underlining the importance of method selection 
based on the tree size and point cloud quality.
 The DBH was reconstructed using two 
primary approaches: one based on fitting a 
cylinder and the other on triangulation. In 
the 3D Forest method, DBH is derived from 
fitting a circle to the tree's base; however, this 
method can fail if the point cloud data at the 
base is unclear. In contrast, methods that utilise 
cylinder fitting tend to produce more precise 
measurements due to their ability to generate 
surfaces from the point cloud data. Despite 
the higher error propensity of the circle-fitting 

method, both approaches are highly dependent 
on the accuracy of the underlying modeling 
process. Any failure in modeling can lead to 
significant measurement inaccuracies.
 Our comparison of DBH reconstruction 
methods highlights notable variations, 
especially for large-diameter trees. The 
differences between DBH1, DBH2 (3DForest), 
and DBH4, DBH5 (TreeQSM) align with 
findings from (Raumonen et al., 2013a), who 
observed that TreeQSM excels in estimating 
DBH due to its precise cylinder-fitting 
technique. However, the underperformance 
of DBH3 (DBH cloud) corroborates similar 
challenges reported in other studies where 
circle-based fitting methods struggled with 
irregular cross-sections and noise (Friedli et al. 
2016, Lau et al. 2018b).
 The increasing discrepancies for larger DBH 
values suggest that trees with pronounced 
taper or irregularity in trunk shape deviate 
from circular assumptions. This finding echoes 
results from (Liang et al. 2016b) who noted 
the importance of shape irregularities when 
reconstructing tree metrics. These results 
underscore the need to prioritize algorithms 
such as TreeQSM for larger trees and use 
caution with simpler methods like RHT-
based circle fitting when point cloud quality is 
insufficient.

Height reconstruction

The height estimation using the two 
methods, 3DForest (H1) and TreeQSM (H2), 
demonstrated relatively consistent results, with 
limits of agreement within 1.11 m. However, 
the heights estimated by 3DForest were, on 
average, 0.31 m larger compared to those 
estimated by TreeQSM. The discrepancies in 
height estimation were not uniform across the 
height range but tended to increase with the 
height, indicating heteroscedasticity. For trees 
shorter than 20 m, the agreement between the 
two methods was excellent. In contrast, for 
trees taller than 20 m, the height estimation 
became more challenging, resulting in larger 
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differences between the two methods. These 
findings suggest that the method of calculating 
normals in 3DForest and TreeQSM plays a 
significant role in the observed estimation 
errors.
 The height estimates from TreeQSM and 
3DForest showed good agreement for smaller 
trees but diverged for trees taller than 20 meters. 
This increasing discrepancy with tree height 
reflects findings from other studies (Dassot 
et al. 2011, Liang et al. 2016b, Niță 2021b), 
where occlusion and point cloud density limit 
reconstruction accuracy for tall or structurally 
complex trees.
 The trend of overestimation by 3DForest 
suggests its reliance on maximum Z-values 
within the point cloud, which can be skewed 
by canopy noise or data outliers. In contrast, 
TreeQSM's hierarchical segmentation reduces 
such errors, in line with results by (Lau et 
al., 2018b). These findings highlight the 
importance of integrating occlusion correction 
techniques for tall trees.

Stem volume reconstruction

In this study, stem volume was estimated using 
three methods: TreeQSM (Vst1), RANSAC 
in CloudCompare (Vst2), and Poisson 
reconstruction in CloudCompare (Vst3). 
The Bland-Altman plot comparing Vst1 and 
Vst2 shows a mean difference of -2.6%, with 
limits of agreement ranging from +60.4% 
to -65.5%, indicating a slight negative bias 
where Vst2 measurements are slightly higher 
than Vst1. The comparison between Vst1 and 
Vst3 reveals a mean difference of -6.6%, with 
limits of agreement from +30.7% to -43.8%, 
showing a noticeable negative bias where 
Vst3 measurements are generally lower than 
Vst1 by an average of 6.6%. Comparing Vst2 
and Vst3, the mean difference is -4.1%, with 
limits of agreement from +58.2% to -66.4%, 
indicating a slight negative bias where Vst3 
measurements tend to be lower than Vst2.
 The Poisson-based method (Vst3) 
consistently produced larger stem volume 

estimates compared to TreeQSM (Vst1), 
particularly as tree size increased. However, 
the RANSAC method (Vst2) showed better 
agreement with TreeQSM (Vst1), with a 
smaller mean difference of only 0.067 m³ and 
limits of agreement of 0.561 m³, suggesting it is 
more reliable. Despite this, the Poisson method 
displayed gaps in the trunk and incomplete 
volumes due to its sensitivity to the point cloud 
density and shape complexity, leading to less 
accurate estimations for larger trees.
 Stem volume reconstruction demonstrated 
significant variability, particularly for larger 
trees. TreeQSM and RANSAC exhibited 
better agreement, whereas Poisson-based 
reconstruction overestimated volumes, 
consistent with (Capalb et al. 2024), who 
reported Poisson's sensitivity to point cloud 
gaps and shape irregularities. The higher 
errors in Poisson and RANSAC algorithms for 
large stems align with findings by (Maas et al. 
2008, Raumonen et al. 2013a) emphasizing 
challenges in dense forest environments. 
These errors may arise from noise, occlusions, 
or incomplete scanning angles. Our results 
suggest that TreeQSM's stepwise segmentation 
delivers the most reliable volume estimates, as 
also reported by (Pascu et al. 2019).

Total aboveground tree volume reconstruction

Total tree volume estimation was compared 
using 3DForest (Vtot1) and TreeQSM (Vtot2), 
revealing considerable variability between the 
two methods. For smaller trees, the absolute 
differences in volume estimates were minimal, 
but as tree size increased, these differences 
became more pronounced. The largest 
discrepancy observed was 6.9 m³, where 
TreeQSM estimated the volume at 1.55 m³ while 
3DForest estimated it at 8.44 m³. Consequently, 
the limits of agreement were broad (LA = 3.65 
m³), indicating substantial variability. The 
average difference between the methods was 
1.25 m³, with 3DForest consistently producing 
larger volume estimates.
 These findings underscore the systematic 
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overestimation by 3DForest compared to 
TreeQSM. The discrepancies highlight the 
challenges of accurately estimating total 
volume for larger trees, where the complexity 
of tree architecture and potential occlusions 
play significant roles. Accurate total volume 
estimation is crucial for applications in 
forestry, emphasizing the importance for 
selecting appropriate algorithms based on 
tree size and structural complexity to ensure 
reliable measurements.
 In the volume estimation process, the whole 
point cloud is divided into horizontal slices, 
and each of these slices is further divided into 
clusters based on user-defined parameters. 
Cluster size and distance between two points 
are defined by users, meaning each cluster is 
regarded as a potential tree. The closest clusters 
from other slices are merged vertically with 
the nearest clusters. However, this method of 
reconstruction is prone to errors when dealing 
with complex trees (Calders et al. 2020).
 TreeQSM, by using cover sets, segments 
the point cloud into the stem first and then the 
individual branches. The segmentation starts at 
the base of the trunk and proceeds step-by-step 
along the stem and later along the branches. As 
the algorithm segments the tree from bottom to 
top, potential bifurcations are identified, and if 
there is a branch, its base is preserved for later 
segmentation. After the stem is segmented, 
the process is repeated from the base of the 
first found branch, determining the first-order 
branches, then the second-order branches, and 
so forth. This method of reconstruction is more 
accurate, which is why TreeQSM results are 
more accurate and in better correlation with 
other methods.
 Results from the 3DForest QSM model did 
not agree well with others due to the fact that 
it does not account for tree architecture as 
effectively as the one in TreeQSM, resulting in 
the upper branches being reconstructed larger 
than in reality and causing data overestimation. 
The difference between the methods lies in the 
way TreeQSM's (MATLAB) segmentation 

algorithm works, which is based on the 
natural growth patterns of trees. TreeQSM 
begins with the reconstruction of the stem 
and then proceeds to branches in the first 
order, second order, and so on, not allowing 
the reconstruction of branches that cannot 
be supported gravitationally. In contrast, 3D 
Forest overestimates the upper branches.

Conclusions

The conclusions of this study can be 
summarized as: 

(i) Considerable differences were observed 
between tree measurements derived from 
different algorithms, emphasizing the need for 
careful algorithm selection based on specific 
measurement requirements. 

(ii) The differences between compared 
algorithms were primarily driven by anomalies 
in the reconstruction of branches and crowns, 
highlighting the importance of visual 
inspection of 3D models to detect and correct 
reconstruction errors. 

(iii) The highest agreement between 
algorithms, indicated by the lowest Limits 
of Agreement (LoA), was observed for tree 
height (H). 

(iv) Higher relative differences among 
reconstruction algorithms were noted for 
diameter at breast height (DBH) and stem 
volume, particularly for larger trees. 

(v) Among the evaluated algorithms, 
TreeQSM produced the fewest abnormalities 
in the crown reconstruction, this is why it 
is our recommendation as the most reliable 
algorithm.

(vi) Overall, this study highlights the 
importance of selecting appropriate tree 
reconstruction algorithms to ensure accurate 
and reliable tree characteristics. Future research 
should focus on improving the precision of 
algorithms and the quality of the point-cloud, 
particularly for complex tree structures, to 
enhance the accuracy of non-destructive tree 
measurement methods.
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