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Abstract The technological innovation of terrestrial LIDAR systems has recently 
given forest planners greater access to key features on forest structure. The Hand 
Held Mobile Laser Scanner (HMLS) is a recently developed LIDAR tool that is 
particularly user-friendly and reliable. It is especially useful in the mapping of forest 
stands, thanks to its implementation of the Simultaneous Location and Mapping 
Algorithms (SLAM) algorithm. Thus, the present study investigates the ideal 
walking path to follow during HMLS scanning to survey trees and estimates the 
biometric parameters of forest stands by testing three distinct schemes. Specifically, 
two different forest ecosystems are considered in experimental HMLS LIDAR 
surveys, a beech-dominated deciduous forest and an oak-dominated deciduous 
forest. Finally, a cost/benefit analysis of each laser survey is analysed according 
to three walking path models (STAR, GRID, BORDER). A control analysis is also 
performed of the traditional method without LIDAR. This study contributes to the 
advancement of a growing body of research on Precision Forestry by considering 
different characteristics of the forest environment. Regarding practical application, 
the resulting evaluation of field survey technology can help foresters integrate these 
techniques into their basic tool kit for forest planning and management processes. 
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Introduction

Local forest inventories are considered the 
main way of deriving information for forest 
management plans since they provide stand 

characteristics using forest variables derived 
by simple measures. In fact, the measures 
that allow to acquire biometric data can be 
used to evaluate different types of indicators 
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(Goodbody et al. 2021) dealing with different 
forest ecosystem services (Raši et al. 2020). 
 The possibilities to derive different 
Sustainable Forest Management (SFM) 
indicators related with different ecosystem 
services are considered pivotal to develop 
multi-objectives forest management plans 
(Raihan 2023). In this sense, for forest 
management plans at local level, generally 
many forest inventories plots are measured 
in the field using traditional instruments (i.e., 
hypsometer and callipers) (Åkerblom & 
Kaitaniemi 2021, Vandendaele et al. 2022), 
especially in EU Mediterranean and Apennine 
forests where the forest structure is complex 
(Giannetti et al. 2018). 
 As European and Italian Forest Strategies 
have pointed out (Raši et al. 2020, MIPAF 
2021), the forest sector is dealing with 
sustainable forest management and is planning 
need to push up the adaptations of new digital 
and technological solutions that can help 
forest technicians, forest engineering and 
forest managers in acquiring precise data of 
forest stands (Puletti et al. 2021, Suarez et 
al. 2005, Shiba et al. 2006, Holopainen et al. 
2014, Fardusi et al. 2017, Wulder et al. 2012, 
Fu et al. 2021, Sferlazza et al. 2022, Giannetti 
et al. 2023). In this sense, new cutting-edge 
solutions and tools have arisen to meet the 
demands of forestry companies to improve 
productivity and support decision-making in 
forest planning. 
 Nowadays the literature review deal with 
Precision Forestry and Forestry 4.0 (Corona 
et al. 2017, Singh et al. 2022, 2023) suggest 
that many digital and technology innovations 
are being adopted to measures forest plots that 
can support the developing of multi-objectives 
forest management plans (Nitoslawski et al. 
2021, Giannetti et al. 2023). In this sense, it 
is mandatory that complex forest data need to 
be carried out with simply and cost-effectively 
instruments that will ensure the transparency 
of forest management operations (Corona et 
al. 2017), and replicability of data collections 

(Calders et al. 2020, Campos et al. 2021). 
 During the last decade, terrestrial and mobile 
laser scanning for forest inventories have been 
extensively studied to collect data, thereby 
replacing laborious manual field measurements 
using traditional instruments (Åkerblom & 
Kaitaniemi 2021, Vandendaele et al. 2022). 
 The use of such instruments can produce 
accurate measures of traditional forest inventory 
variables (e.g. diameter and height) (Ducey et 
al. 2013, Holopainen et al. 2014, Pierzchała 
et al. 2018, Liang et al. 2018, Giannetti et 
al. 2018, Sofia et al. 2021, 2022), but also to 
estimate  valuable data regarding stem (Puletti 
et al. 2019), crown area (Giannetti et al. 2018, 
Bogdanovich et al. 2021, Chianucci et al. 
2021), branch architecture (Wang et al. 2022, 
Donata Sarti et al. 2022), habitat assessment 
(Hasan et al. 2019, Puletti et al. 2021, Galluzzi 
et al. 2022), and fuel types (Forbes et al. 2022).
 However, from a technical point of view, to 
guarantee a real adaptation of such instruments 
it is important to provide to forest stakeholders 
(e.g. forest engineering, managers, and 
technicians) concrete experiments on how such 
instruments can quickly provide forest data in 
response to their needs. In fact, providing such 
information is considered mandatory when 
digital/technological changes are applied in 
daily work. If this information is not provided, 
technicians can see such instruments as an 
increase complexity of the works, additional 
working time, and additional costs, so that such 
innovations are not embraced and just remain 
at research level (Weiss et al. 2021, Giannetti 
et al. 2022). These happen especially in those 
countries, such as Italy, where forests are 
complex biomes and the forest planning sector 
needs to be overcame the problems related 
with fragmentation of forest proprieties and 
value chains are not well developed (Giannetti 
et al. 2023, Cadez et al. 2023). 
 Belanda et al. (2019) have already showed 
the dual advantages that terrestrial laser 
scanning platforms can offers for the forest 
management plans: firstly, they furnish 
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valuable information unattainable through 
traditional field surveys, such as stem maps, 
stem density, basal area, vertical profiles, Leaf 
Area Index, and crown roughness. Secondly, 
these platforms efficiently acquire data with 
highly accurate laser pulse returns. On the 
variety of Terrestrial LiDAR platforms, the 
most promising is the Handheld Mobile Laser 
Scanner (HMLS) showing a good potential to 
get precise forest variables measures within 
plots (Giannetti et al. 2018, Del Perugia et al. 
2019, Belanda et al. 2019, Jurjević et al. 2020, 
Tockner et al. 2021, Proudman et al. 2021, Sofia 
et al. 2022, Vatandaşlar et al. 2022, Chiappini 
et al. 2022,  Qi et al. 2022, Vandendaele et al. 
2022), surpassing occluded areas commonly 
encountered in traditional fixed terrestrial laser 
scanning (TLS) methods (Chen et al. 2019). 
Moreover, recent advancements in experimental 
technological research significantly improved 
HMLS systems. Specifically, the development 
of lightweight, structured miniaturized 
HMLS instruments utilizing Simultaneous 
Localization and Mapping (SLAM) 
revolutionized data acquisition in forest 
environments. These advancements eliminate 
the reliance on GNSS navigation (Hyyppä et 
al. 2013, Liang et al. 2014, Kukko et al. 2017), 
allowing HLMS surveys even in under-canopy 
forest environments where GNSS signals 
weaken. 
 However, when utilizing HLMS, the 
complexity of forest structures significantly 
impacts the time needed to automatically 
analyse the point cloud for deriving forest 
inventory variables (Giannetti et al. 2018). 
This aspect could pose a challenge when 
integrating this technology into the daily work 
of forest managers or engineers involved in 
forest planning activities. Moreover, the path 
that is followed to acquire HLMS can impact 
the timing of data acquisition, analysis, and the 
accuracy of data obtained (Del Perugia et al. 
2019, Chirici et al. 2023). In fact, some authors 
(Del Perugia et al. 2019, Chirici et al. 2023), 
emphasize the importance of conducting 

studies to test the performance of various 
survey paths to collect data on increasingly 
complex forest types. 
 To the best of our knowledge, some recent 
studies have shown that the walking scan 
path of an HMLS system influences the time 
required to acquire data and the cost of forest 
field operations. However, previous studies 
have not explored the accuracy of these walking 
scan paths within complex forest ecosystems 
that differ in slopes, tree density, and tree 
dimensions. Our study aims to investigate the 
influence of walking scan paths on deriving 
single-tree attributes using HMLS within the 
framework of forest management plans and 
to assess the associated costs to evaluate the 
efficiency. The research was conducted in 
two distinct forest types, typical of the Italian 
landscape: a pure even aged high beech forest 
and a natural Mediterranean holm oak forest.

Materials and Methods

Study area

The study was carried out in two distinct study 
areas in Italy that well represent the Apennine 
and Mediterranean Italian context (Figure 1 - 
Panel A).
 The first study area namely “Camaldoli” is a 
beech forests (Lon. 11.831969, Lat. 43.811521; 
WGS84 EPSG:4326) located at 1270 m a.s.l. 
in Tuscany in the Foreste Casentinesi, Monte 
Falterona, and Campigna National Park. The 
beech forests (Fagus sylvatica) cover 95% 
of the wall area. Beside beech, other species 
include rowan (Sorbus aucuparia), common 
whitebeam (Aria edulis), sycamore maple 
(Acer pseudoplatanus), goat willow (Salix 
caprea), and silver fir (Abies alba), with a 
sparse shrub layer of 5% cover are present 
(Ubaldi 1988, Arrigoni et al. 1998, Casini et 
al. 1999). According to the European Forest 
Types (EFTs) classification the area is a “Beech 
Mountain Forests – Apennine and Corsican 
mountainous beech Forest” (Barbati et al. 2014, 
Giannetti et al. 2018) (Figure 1 - Panel B(a)). 
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Climatic data from the nearby ‘Camaldoli’ 
station shows an average annual temperature 
of 8.7°C and annual precipitation of 1641.6 
mm. Temperature peaks in July while rainfall 
peaks in October (179.0 mm), with the least 
in July (60.0 mm), but no pronounced dry 
summer period on average (https://www.cfr.
toscana.it/index.php).
 The second study area namely “Ficuzza” 
(Lon. 13.370163, Lat. 37.867241, WGS84 
EPSG:4326), is a holm oak natural 
Mediterranean forest located at 681 m a.s.l. 
in Sicily in the nature reserve of “Bosco 
della Ficuzza, Rocca Busambra, Bosco del 
Cappelliere, and Gorgo del Drago”. In this area, 
oaks dominates (holm oak, Quercus ilex, 60%, 
and downy oak, Quercus pubescens, 35%) 
covering 95% of the wall area, accompanied 
by occasional manna ash (Fraxinus ornus, 
0.5%) and hedge maple (Acer campestre, 
0,5%), and a sparse shrub layer (4%) (Figure 
1 - Panel A). Following the EFTs the area is 
classified as “Broadleaved evergreen oak- 
Mediterranean evergreen oak forest” (Barbati 
et al. 2014, Giannetti et al. 2018) (Figure 
1-Panel B(b)). Climate data from ‘Ficuzza’ 

station (681m) reported an annual 
temperature of 15.1°C, peaking in 
July (20.5°C) and lowest in January 
(9.8°C), with annual precipitation at 
752 mm. Rainfall peaks in December 
(130 mm) and dips in July (4.8 mm) 
(http://www.sias.regione.sicilia.it/). 

Field plots 

To perform the analysis and to 
compare traditional and HLMS 
measures, 4 fixed area square plots 
of 2500 m2 were identified in each 
study area, differentiated by slope 
(%) and trees density. The plots were 
distributed according to the systematic 
aligned sampling scheme to optimize 
sampling efficiency (Figure 2). For 
each plot, two types of measures 
were carried out: a traditional 
measure (conducted using traditional 
instruments such as tree calliper and 

hypsometer) and the HMLS scans. The details 
description of measures done in each plot will 
be described in the next sections. 
 For the analysis in the Camaldoli forests, we 
selected an area at an altitude of 1250 m a.s.l., 
primarily characterized by pure beech stands 
(Figure 2, Panel A). In Ficuzza, the chosen area 
is located to the southwest of Rocca Busambra, 
at an altitude of 950 m a.s.l., featuring a Holm 
oak deciduous forest.
 The latitude and longitude of the centre 
of each square plot (Figure 2) and the four 
angles of the square were recorded by a GNSS 
receiver Trimble R8s GNSS System, which 
lasted for approximately 2 h with a 2 s logging 
rate. The post-processed centre coordinates 
revealed standard deviations of 0.9, 0.6 and 1.8 
cm, respectively, for x, y and z.

Traditional field measures 

Since the aim of the work is to compare 
traditional and HMLS measures in the context 
of sustainable forest management planning, we 
utilized the same approach for the traditional 
field measures as done by Italian forest 

Figure 1 Location of study areas and field plot (Panel A), and overview 
of the forest stands in the two study areas (Panel B) – (a) beech 
forest in Camaldoli; (b) Holm oaks forest in Fairuza.
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managers and engineers. This approach can 
be divided in four main phases, which can be 
summarized as follow:
1) Preliminary site analysis – this phase 
involves identifying the forest area to be 
surveyed, choosing the size of the survey 
area, and organizing the necessary means, 
instruments, and personal for the survey. 
2) Collection of forest plot qualitative data – in 
this step quantitative data related to forest plots 
are gathered. This may include information 
about species composition, forest structure, 
ecological features, and others relevant factors.
3) Forest inventory measures in the field 
– this phase involves conducting forestry 
inventory measurements on-site. It includes 
the delimitation of the plot area and the 
measurement of all the tree within a plot, 

in accordance with 
the field protocol of 
a sustainable forest 
management plan. The 
plot measurements 
were done by the 
D.R.E.Am, an Italian 
company, through the 
Life GOPROFOR 
project. Only trees 
with a diameter at 
breast height (DBH) ≥ 
9.5 cm were measured 
and for each tree the 
following data were 
collect: species, DBH 
and tree height (H). 
DBH was measured 
with a calliper 
from two directions 
perpendicular to each 
other at approximately 
1.3 m, while TH were 
measured with a 

Haglöf Vertex laser 
hypsometer (Vertex 
IV Hypsometer/
Transponder 360 
Package; Haglöf 
Sweden AB, 

Långsele, Sweden). The Vertex Laser Geo 
360 has a precision of 0.01 m, with a nominal 
accuracy of 0.04 m over a range of 700 m.
4) Data plot analysis – the collected data from 
the forest plots were analyzed to estimate 
key forest variables such as basal area (G, m² 
ha⁻¹), number of trees (N, ha⁻¹), and growing 
stock volume (V, m³ ha⁻¹). These variables are 
commonly used to assess the overall condition 
of the forest and are essential for sustainable 
forest management planning (Giannetti et al. 
2020). V of each callipered tree was calculated 
based on the equations developed by Tabacchi 
et al. (2011) in the framework of the 2nd 
Italian National Forest Inventory based on tree 
DBH and height. The results of the plot level 
variables are summarized in Figure 2.

Figure 2 Main characteristics of Camaldoli (Panel A) and Ficuzza (Panel B) forest plots.  
Mean slope: medium value of field plot’s slope, n. of tree: the number of trees per 
ha, V/ha: growing stock volume (m3 ha-1), G/ha: basal area (m2 ha-1), Dm: the m G/
ha: basal area (m2 ha-1), Dm: the medium value of DBH measured in the field, Hm: 
represents the medium value of Height measured in the field.
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 The time needed for each phase was 
collected to compare it with HLMS derived 
measures. Moreover, the data derived by the 
traditional field measures at plot and tree levels 
were assumed to be error free, since they were 
used as benchmark to perform the comparison 
with the data derived by HMLS. 

HMLS measures

The work related to HLMS measurements 
in forest management plans, can also be also 
divided into four main phases. The first two 
phases are the same as the ones in traditional 
field measures and cannot be performed using 
HLMS. These phases involve the preliminary 
analysis of the site and the collection of 
qualitative data from forest plots. However, 
HLMS completely transforms the other 
two phases, which are the forest inventory 
measures and the data plot analysis. In the 
following sections, the HLMS platform used 
in this study and the process of acquiring 
field forest inventory scan and automatically 
extracting of single tree and plot data will be 
described in detail.
HMLS platform 
The scans were carried out using the HMLS 
GEOSLAM ZEB HORIZON ™ (GEOSLAM 
ltd., UK) (Figure 3). The main characteristics 
of the HMLS are reported in Table 1. This 
instrument uses Simultaneous Localization 
and Mapping (SLAM) technology developed 
by the robotics and machine vision community 
to perform cloud-to-cloud registration. 
It solves the problem of missing or poor 
GNSS signals under the forest canopy.  

(Giannetti et al. 2017, Gollob et al. 2020, Sofia 
et al. 2022). In addition, this technology allows 
a union of multiple lidar scans to be performed 
automatically, thus allowing artificial reference 
targets not to be used.
Forest inventory scan 
●HMLS walking paths
To address the aim of providing forest 
managers with technical insights on the use 
of HLMS, a preliminary literature review was 
conducted. The purpose of this review was to 
identify the types of walking paths to follow in 
data acquisition for forest plot using HLMS.  
According to previous studies, three walk paths 
(i.e. Star, Grid, Border) were chosen (Figure 4) 
to be tested in the field to compare their 
operability for forest management purposes 

(Gollob et al. 2020, Bauwens et 
al. 2016, Del Perugia et al. 2019, 
Liang et al. 2018, Sofia et al. 
2021, Tupinambá-Simões et al. 
2023). Two walking paths (i.e. 
Star walking path (STAR) and 
Grid walking path (GRID)) were 
chosen according to a literature 
review of previous studies, while 
one was designed for the present 

Figure 3 GEOSLAM ZEB HORIZON™ Hand Held 
Mobile Laser Scanner (HMLS)

Table 1 Characteristics of GEOSLAM ZEB HORIZON™ Handheld 
Mobile Laser Scanner (HMLS).

Characteristic Description
Data acquisition speed 300,000 measurements per second
3-D measurement accuracy 1-3 cm
Maximum range 100 m
Laser safety class Class 1 / λ 903nm
Angular field of view 360◦ × 270◦
Weight of scanner head 3.7 kg 
Dimension of scanner head weight 100mm x 200mm x 240mm
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study (i.e. Border walking path (BORDER)) 
(Figure 4). The STAR walking scan path begins 
at the centre of the plot and is based on the 
concept of walking along paths that radiate 
outward from the centre, like the rays of a star, 
ensuring a complete and detailed scan of the 
area. At the end of each ray, the operator returns 
to the centre by following an adjacent ray path 
before starting the next outward scan (Figure 4). 
 The STAR (Figure 4) has been widely used 
in recent studies, including those that utilized 
the GEOSLAM ZEB HORIZON ™ (Gollob 
et al. 2020, Hyyppä et al. 2020, Sofia et al. 
2021, Tockner et al. 2021, Vatandaşlar et al. 
2021). STAR is considered an effective method 
for acquiring HLMS data due to its ability to 
reduce noise in point clouds and minimizing 
the number of missing trees by enabling the 
acquisition of dense LiDAR point clouds. 
 The GRID walking scan path, like the STAR 
path, begins at the centre of the plot. However, 
in this case, the operator moves to one corner of 
the plot and scans the area by following parallel 
lines that are equally spaced. At the end of the 
acquisition from the opposite corner, compared 
to the starting point, the operator returns to the 
centre of the plot to conclude the scan (Figure 
4). The GRID (Figure 4) was chosen because 
previous studies using the first generation of 
ZEB (ZEB 1 GEOSLAM with a laser range of 
15-30 m and data acquisition speed of 43200 
point/sec) with lower accuracy have suggested 
that walking along straight lines yields accurate 
results in measuring DBH and H (Ryding et 
al. 2015, Giannetti et al. 2018, Oveland et al. 

2018, Del Perugia et al. 2019) which are the 
focus of our work.
 However, in comparison to the previous 
studies, we decided to include perpendicular 
straight lines rather than solely using parallel 
lines (Del Perugia et al 2019). This choice was 
made because capturing the same object from 
multiple directions allow for obtaining more 
precise and less noisy point clouds (Chiappini 
et al. 2022).
 The BORDER (Figure 4) was designed 
specifically for this study. In this case, the scan 
was performed starting from one corner of the 
plot, and the acquisition was conducted by 
walking along the border of the plot. The scan 
concludes at the starting corner of the plot. 
 Considering the instrument we used, the 
GOSLAM ZEB HORIZON ™, which has a 
maximum laser range of 100 m, we aimed to 
test it efficiency by walking along the border of 
the plots without entering them. The BORDER 
was chosen because it may allow to reduce the 
time of acquisition.
●HMLS scan
To perform the scans, the plot area and the 
walking path were marked on the ground. 
Subsequently, when acquiring data with the 
HLMS GEOSLAM ZEB HORIZON™, it 
is mandatory that the start and end points of 
the acquisition are identical. This point also 
corresponds to the switching on and off the 
instrument. 
 For the STAR and GRID, the scans were 
initiated and concluded in the centre of the plot 
(Figure 4) while for BORDER in the upper-left 
corner of the plot (Figure 4). Once the HLMS 
was ready, the operators performing the scan 
held the laser in his hand and waited 10s to 
ensure the stability for the IMU system. The 
operator then proceeded with the acquisition 
following the designated and maintaining 
a slow walking speed (2 km/h). Moreover, 
as it mandatory to record the coordinates of 
field plot for forest management plans, the 
operators made a stop of 15s at the four corners 
of the plots for the paths. This allowed for the 

Grid
Starting 
point: at the 
top left of the 
survey area

Star
Starting 
point:in the 
center of the 
survey area

Border
Starting 
point:at the 
top left of the 
survey area

Tops of the survey area

Figure 4 Schemes of walking path during HMLS scanning.
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automatic acquisition of a reference point in the 
point cloud, which was used to georeferenced 
the 3D point cloud into a geographic system 
(Figure 4). 
 In this study, all scans were conducted by a 
single operator to maintain consistency in data 
acquisition. The operator, approximately 1.70 
m tall, held the scanner at a height of about 
1.20-1.30 m, similar to that of a traditional 
calliper. This consistent positioning ensured 
uniformity in the measurements taken across 
different walking paths and plots.
 The scanner was held at elbow height 
throughout the acquisition process, which 
helped maintain a stable scanning angle. By 
keeping these parameters constant, we aimed 
to minimize variability in measurements 
related to scanner positioning and operator 
differences, focusing instead on the variance 
in accuracy associated with the walking paths 
followed and the occlusion caused by the 
differing structures of the plots.
 As previously mentioned, walking speed was 
also kept constant, although it may have varied 
slightly in more challenging plots characterized 
by steeper slopes or dense shrubbery. 
 The time required to perform the acquisition 
of each plot using the different paths was 
recorded for the purpose of comparing it with 
the traditional measures. 

HLMS point cloud forest inventory plot data 
processing

A total of 24 HLMS scans were acquired (i.e. 
3 scan x 8 plots). The data of each one of the 
scans were processed using the GeoSLAM 
Hub 6.1 (GeoSLAM Hub 6.1 Development 
Team 2021) to obtain a 3D point cloud 
(Figure 5). This software allows to create 
the 3D point cloud and georeferencing it in 
a geographic system though the “Adjust to 
Control” tools that identified the reference 
points. Subsequently, the georeferenced point 
clouds were exported in “.las” format using 
the following parameters : 100% of points, 
“point color”=time, “timestamp”= None and 

“Smooth”=accepted”. 
 The point clouds were then processed with 
LiDAR360 desktop software (LiDAR360 
Development Team, 2020) with semi-automatic 
data extrapolation algorithms, following the 
methodology presented in Sofia et al. (2022). 
A standalone software with a user-friendly 
interface was chosen to eliminate the need for 
programming skills (e.g., R or Python). This 
choice makes the tool more accessible and 
convenient for forest managers, who typically 
do not have experience in coding.
 To obtain the tree level and plot level data 
the point clouds were processed in the LIDAR 
360 software following these steps:
 1) Each point cloud was cropped on the area 
of the field plots using the referenced points 
(i.e., 4 corners). 
 2) The point cloud was cleaned for the 
outliers using the specific function of the 
software “remove outliers” setting it to remove 
low and high-level outliers. 
 3) The point cloud was classified in ground 

(b)

(a)

Figure 5 Camaldoli survey area Point Cloud from the 
graphical user interface of LIDAR360; (b) Ficuzza 
survey area Point Cloud from the graphical user 
interface of LIDAR360.
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and non-ground point using the function 
“Filter Ground Points” and normalized using 
the function “Normalize by Ground Points” 
(LIDAR360 Development Team 2020, Chen et 
al. 2019). 
 4) The normalized point cloud was then 
used to segment each tree within the plot 
and extract automatically the tree level data 
(i.e. position, DBH and H). To segment 
each tree, the LIDAR360 software permits, 
through the implemented algorithm, to fit 
a circle on the tree stem and classify it into 
three levels: Low, Medium, and High. Based 
on the fitted circle, it is possible to proceed 
with the point cloud segmentation using the 
method proposed and developed by Tao et al. 
(2015), that allow to identified single trees, 
using a bottom-up approach that is preferred 
with HLMS data, since the stems can be 
easily identified below canopy. At the end 
of the single tree segmentation, the software 
allows to automatically extract the tree 
inventory parameters: the position, DBH and 
H of each tree of the plot and export the data 
into a spreadsheet-based CSV (LIDAR360 
Development Team 2020, Tao et al. 2015). 
 5) The tree level data (DBH, H) automatically 
obtained, were used to estimate the forest 
variables at plot level such basal area (G m2 

ha-1), number of trees (N ha-1) and V (m3 ha-1). 
V was estimated using Tabacchi et al. (2011) 
equations, following the same approach as 
traditional measures, to ensure comparability 
of the data. 

Accuracy assessment of forest inventory 
data

The single-tree attributes (i.e. DBH and H) 
estimated with the three HLMS walking paths 
scans were compared with single-tree attribute 
obtained with traditional field measures at plot 
level.  To calculate accuracy, the coefficient of 
determination (R2), the root-mean-square error 
(RMSE), the percentage RMSE, and the bias 
were calculated according to the following 
formulas: 

where n represents the number of trees 
resulting from the traditional measures (TS), 
XTS is the value of the tree attribute measured in 
the field (DBH, H) and XHMLS is the estimated 
value of the attribute of each i-th tree derived 
by the processed of HLMS scans, while X is 
the mean value of the tree attribute computed 
in traditional measures. Furthermore, we 
compared the number of trees detected in the 
different scans with those recorded in the field, 
expressed as a percentage as follows: 

where Nt is the number of trees measured in 
the field with traditional methods, and Ns is the 
number of trees detected in the scan. 
 The accuracy was calculated for each field 
plots and for each one of the study area, in 
order to compare the results not only among 
different walking path schemes but also taking 
in consideration the varying characteristics of 
the field plots and study areas (i.e. slope, forest 
types, number of trees, and shrubs layers).

Comparison of time and costs of 
traditional and HLMS measures 

To compare traditional and HLMS approaches, 
we conducted a comparative analysis 
specifically focusing on: (i) the forest inventory 
measurements phase (traditional) versus the 
forest scans phase (HLMS); and (ii) plot-
level analysis of the data (traditional) versus 
the processing of HLMS point cloud forest 
inventory plot data.
 For each of these phases, the time required to 
obtain results was recorded. Regarding costs, 
we referenced the personal cost per hour based 
on the Italian national tariff for forest workers, 
considering a rate of 20 €/h for a Junior 
Forest Engineer. In the field phases, both 

(1)

(2)

(3)

(4)
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HLMS and traditional methods necessitate the 
involvement of two Forest Engineers, whereas 
for data processing, we accounted for the work 
of one person. It is important to highlight 
that, in comparing costs between traditional 
methods and HLMS, we do not consider the 
cost of the HLMS equipment and training. 
The calculation involves two individuals for 
field data acquisition and one person for data 
processing in both HLMS and traditional 
methods.

Results

Based on the three identified walking paths 
(STAR, GRID, BORDER), we observed 
variations in the point cloud density, measured 
in terms of the number of points per square 
meter (pts/m²). The GRID path yielded the 
highest average point density (89,537 pts/m²), 
followed by the STAR (42,522 pts/m²), while 
the BORDER path had the lowest average 
point density (27,133 pts/m²).
 Table 2 presents accuracy data for DBH, and 

Table 2 Accuracy assessment of both HLMS and traditional methods concerning the number of detected trees (N%) and 
individual tree attributes such as Diameter at Breast Height (DBH) and Height (H).

ID PLOT Path 
type

Point 
cloud 

point/m3
N % 

DBH (cm) H (m)
RMSE 

(cm)
Bias 
(cm)

RMSE 
(%) R2 RMSE 

(m)
Bias 
(m)

RMSE 
(%) R2

Camaldoli 
tot 

Star 177980 93 2.99 1.71 10 0.88 2.07 -0.82 9.6 0.59
Grid 400936 94 2.58* 0.89* 9* 0.94* 2.08 -1.04 9.6 0.57
Border 111472 98 2.97 0.93 10 0.87 1.83* -0.62* 8.5* 0.62*

Ficuzza tot 
Star 162200 94 3.16* 0.56* 11* 0.75* 2.25 -0.06 16 0.26
Grid 315360 88 3.59 0.26 12 0.71 2.26* -0.07* 16* 0.34*
Border 105596 85 3.63 0.01 13 0.68 2.10 -0.28 15 0.29

Camaldoli 
C1 

Star 43820 95 3.87 2.32 13 0.8 2.22 -1.30 11 0.11
Grid 89480 99 3.35 1.81 12 0.72 1.90 -0.89 9 0.15
Border 28800 97 2.70* 1.12* 9* 0.86* 1.65* -0.6* 8* 0.21*

Camaldoli 
C2 

Star 42404 96 2.48 1.69 8 0.91 1.84* -0.88* 9* 0.69*
Grid 85592 100 1.77* 0.71* 6* 0.93* 1.91 -0.86 9 0.63
Border 25236 100 2.39 0.65 8 0.90 1.92 -0.39 9 0.57

Camaldoli 
C3 

Star 43764 92 1.97* 1.02* 6* 0.93* 2.14* -0.94* 10* 0.73*
Grid 121304 88 2.28 1.13 7 0.92 2.27 -0.99 10 0.72
Border 30664 100 2.95 0.92 10 0.90 2.20 -1.00 10 0.73

Camaldoli 
C4

Star 47992 88 2.96 1.69 10 0.88 1.69* -0.56* 8* 0.67*
Grid 104560 90 2.75* -0.24* 9* 0.88* 2.31 -1.56 10 0.57
Border 26772 93 4.10 0.82 14 0.75 1.75 -0.38 8 0.56

Ficuzza F1 
Star 46540 96 2.40* 0.60* 8.5* 0.80* 1.90 -0.6 14 0.34
Grid 74952 96 3.54 -0.10 12 0.64 1.89 -0.56 14 0.32
Border 24516 85 3.89 -0.21 14 0.66 1.84* -0.42* 14* 0.41*

Ficuzza F2 
Star 36984 91 3.62 0.50 12 0.68 2.36* 0.35* 17* 0.13*
Grid 80788 83 3.95 0.18 13 0.60 2.21 -0.50 16 0.08
Border 28304 87 3.70* 0.51* 13* 0.69* 2.07 0.19 15 0.20

Ficuzza F3 
Star 41204 87 2.88* 0.58* 10* 0.82* 2.25 -0.06 15 0.45
Grid 80120 88 3.00 0.45 10 0.80 2.01* -0.16* 14* 0.58*
Border 27528 70 4.02 -0.26 14 0.65 2.62 -0.53 18 0.11

Ficuzza F4 
Star 37472 100 3.61* 0.53* 13* 0.61* 2.49* 0.17* 19* 0.02*
Grid 79500 84 3.80 0.05 14 0.59 2.24 -0.15 17 0.02
Border 25248 96 3.11 0.11 11 0.73 1.89 -0.43 14 0.39

Note: RMSE: Root Mean Square Error. The most accurate results obtained are denoted by asterisks (*).
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H, for the two study areas and for each plot. 
Our tests revealed significant variability in 
results across different study areas and plots. 
Generally, it can be noted that HLMS tends 
to overestimate all forest variables (DBH 
and H) compared to traditional methods. In 
the Ficuzza plots, characterized by a more 
complex forest structure with holm oak and 
a significant presence of shrubs, the results - 
measured in terms of the number of detected 
trees (N%), RMSE, bias, RMSE%, and R² 
- are less accurate than those obtained in the 
less complex Camaldoli plots (C1, C2, C3). 
However, in Camaldoli, Plot C4, which has the 
highest number of trees and the steepest slope, 
produced results comparable to those obtained 
in the Ficuzza plots. 
 In terms of RMSE and RMSE% in the 
Camaldoli, the GRID path produced more 

accurate results for DBH, while BORDER 
was more accurate for H. In the Ficuzza study 
area, STAR yielded accurate results for DBH, 
while GRID for H (Table 2). However, for all 
the common trees detected in the point clouds 
obtained with different paths, the Kruskal-
Wallis test revealed no significant differences 
for DBH and H (p-value > 0.05) within each 
study area and within each plot. 
 BORDER method allowed to detect all the 
trees (100%) in C2 and C3 plots, while GRID 
in C2, and STAR in F4. However, on average 
the STAR allows to detect the large number 
of trees (93%) comparing the other two paths 
(91%). 
 In the plots, C4 and F3, characterized by 
high complexity in terms of number of trees, 
structure and slope, a smaller number of 
trees were detected (N%≤93 for C4; N%≤88) 

Table 3 Time required for HLMS and traditional data acquisition, data processing and total time.
HLMS Traditional Time difference

ID 
Plot

Path 
type

Field Scan 
hh.mm:ss

Data 
processing 
hh.mm:ss

Total 
hh.mm:ss

Field 
measures 
hh.mm:ss

Data 
processing 
hh.mm:ss

Total 
hh.mm:ss

Traditional - 
HLMS

hh.mm:ss

C1
Star 00:12:14 01:42:00 01:54:14

03:06:00 00:20:00 3:26:00
01:31:46

Grid 00:27:51 02:25:51 02:53:42 00:32:18
Border 00:08:22 01:13:00 01:21:22 02:04:38

C2
Star 00:12:09 01:42:00 01:54:09

02:45:13 00:19:00 3:04:13
01:10:04

Grid 00:23:33 02:25:00 02:48:33 00:15:40
Border 00:07:41 01:13:00 01:20:41 01:43:32

C3
Star 00:10:19 01:42:00 01:52:19

03:20:15 00:21:00 3:41:15
01:48:56

Grid 00:40:21 02:25:00 03:05:21 00:35:54
Border 00:08:55 01:13:00 01:21:55 02:19:20

C4
Star 00:15:32 01:42:00 01:57:32

03:15:12 00:19:00 3:34:12
01:36:40

Grid 00:33:07 02:25:00 02:58:07 00:36:05
Border 00:06:45 01:13:00 01:19:45 02:14:27

F1
Star 00:12:11 01:38:00 01:50:11

03:13:00 00:18:00 3:31:00
01:40:49

Grid 00:19:01 01:58:00 02:17:01 01:13:59
Border 00:06:45 01:03:00 01:09:45 02:21:15

F2
Star 00:07:26 01:38:00 01:45:26

03:12:15 00:21:00 3:33:15
01:47:49

Grid 00:20:38 01:58:00 02:18:38 01:14:37
Border 00:07:24 01:03:00 01:10:24 02:22:51

F3
Star 00:10:48 01:38:00 01:48:48

03:19:19 00:16:00 3:35:19
01:46:31

Grid 00:20:43 01:58:00 02:18:43 01:16:36
Border 00:07:19 01:03:00 01:10:19 02:25:00

F4
Star 00:10:05 01:38:00 01:48:05

03:25:00 00:25:00 3:50:00
02:01:55

Grid 00:12:09 01:58:00 02:10:09 01:39:51
Border 00:06:55 01:03:00 01:09:55 02:40:05
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compared to the others plots where at least one 
walking path produce more accurate results 
(N%≥99 for C1, C2, C3; N%≥91 for F1, F2, 
F4) (Table 2). When comparing the time and 
cost for data acquisition between traditional 
(field measures) and HLMS (field scan) per 
plot, our observations consistently show that 
the field scan method is both faster and more 
cost-effective than traditional measures, as 
reported in Tables 3 and 4. Conversely, the 
opposite trend is observed in data processing 
(Table 3 and 4).
 On average, the BORDER path demonstrates 
the quickest and most cost-effective scan 
acquisition time, averaging 9 minutes at a 
cost of 5.01 €, per plot. Following this, STAR 
requires 12 minutes and costs 7.56 €, while 
GRID takes 22 minutes and costs 16.45 €. 

Similarly, in HLMS data processing, the trend 
persists: BORDER demands 1 hour and 17 
minutes at a cost of 22.67 €, STAR takes 1 hour 
and 38 minutes costing 33.33 €, and GRID 
requires 2 hours and 1 minute, costing 43.87 €. 
 Specifically, BORDER saves an average 
of 2 hours and 7 minutes, resulting in a cost 
saving of approximately 100.34 € compared 
to traditional measures. Similarly, STAR saves 
1 hour and 41 minutes, equating to a cost 
saving of 87.13 €, while GRID saves 1 hour 
and 8 minutes whit a cost saving of 67.70 €. 
Considering all paths, on average, employing 
HLMS in Ficuzza results in time savings of 
approximately 1 hour and 47 minutes and a 
cost saving of 92.74 €.  In Camaldoli it results 
savings of about 1 hour and 22 minutes, with a 
cost reduction of 77.38 €.

Table 4 Costs associated with HLMS and traditional methods for data acquisition, data processing per plot, and the 
total cost.

Plot Path
type

HLMS (€) Traditional (€) Cost diff. (€)
Scan
acq.

Data
proc.

Total Field
acq.

Data
proc.

Total HLMS-
Traditional

C1
Star 8.16 34.00 42.16 124.00 6.67 130.67 -81.84
Grid 18.57 48.62 67.18    -56.82 
Border 5.58 24.33 29.91    -94.09 

C2
Star 8.10 34.00 42.10 110.14 6.33 116.48 -68.04 
Grid 15.70 48.33 64.03    -46.11 
Border 5.12 24.33 29.46    -80.69 

C3
Star 6.88 34.00 40.88 133.50 7.00 140.50 -92.62
Grid 26.90 48.33 75.23    -58.27 
Border 5.94 24.33 30.28    -103.22 

C4
Star 10.36 34.00 44.36 130.13 6.33 136.47 -85.78 
Grid 22.08 48.33 70.41    -59.72 
Border 4.50 24.33 28.83    -101.30 

F1
Star 8.12 32.67 40.79 128.67 6.00 134.67 -87.88 
Grid 12.68 39.33 52.01    -76.66 
Border 4.50 21.00 25.50    -103.17 

F2
Star 4.96 32.67 37.62 128.17 7.00 135.17 -90.54 
Grid 13.76 39.33 53.09    -75.08 
Border 4.93 21.00 25.93    -102.23 

F3
Star 7.20 32.67 39.87 132.88 5.33 138.21 -93.01 
Grid 13.81 39.33 53.14    -79.73 
Border 4.88 21.00 25.88    -107.00 

F4
Star 6.72 32.67 39.39 136.67 8.33 145.00 -97.28 
Grid 8.10 39.33 47.43    -89.23 
Border 4.61 21.00 25.61    -111.06 

Note:acq.: aquisition; proc.: processing; dif.: difference 
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Discussion

This study aims to evaluate the technical 
feasibility of HLMS in comparison to 
traditional field measures within sustainable 
forest management plans. It specifically 
assesses three commonly referenced walking 
paths (STAR, GRID, BORDER) to analyse 
differences in accuracy, time, and cost between 
HLMS scan acquisitions and traditional 
methods. To enhance usability, the research 
was conducted in two distinct broadleaf 
forests, known for their higher complexities 

in TLS/HLMS analysis (Giannetti et al. 
2018): a mountainous beech-dominated 
deciduous forest in Camaldoli and a Natural 
Mediterranean holm oak forest in Ficuzza.
 Our findings showed accurate results of 
HLMS in tree number detection, achieving 
detection rates between 83% and 100% in 
both forests (Table 2). This study observed 
significantly higher accuracy compared to 
the recent study of Kükenbrink et al. (2022) 
in Switzerland, where the ZEB REVO was 
employed on a GRID path in a mixed temperate 
forest. Their reported detection rates ranged 

Table 5 Findings from previous studies using ZEB HLMS across different forest types for DBH and H, in terms of 
RMSE, Bias.

Studies Species Test 
plot

N/
ha

Number 
of 

reference 
tree

Reference 
(ground-

truth) data

RMSE 
of 

DBH 
(cm)

Bias 
of 

DBH 
(cm)

DBH 
threshold 

(cm)

RMSE 
of H 
(m)

Bias 
of H 
(m)

H 
threshold 

(m)

Jurjević et 
al. 2021

deciduous 
forest 
(Quercus 
robur)

6 plots 
(r=15 

m)
305 130 Conventional 

field data - - - 1.11 0.45 9-33

Tockner et 
al. 2021 mixed forest

1 plot 
area of 
4.000 

m²
870 235 Conventional 

field data 3.94 -0.67 - 2.25 -0.92 -

Gollob et 
al. 2021

broadleaved, 
coniferous, 
and mixed 
forest

21 plot 
(r=7m) 424 20 Conventional 

field data 1.90 -0.04 >5 - - -

Ahola et al. 
2021

Scot spine 
forest

7 Scots 
pine 
trees

500 7 Conventional 
field data 0.94  − 0.47 >25 - - -

Sofia et al. 
2022

Turkey 
oak forest, 
Douglas fir 
forest, black 
pine forest, 
beech forest

20 plots
(r=20 

m)
500 200 Conventional 

field data 3.520 2.401 >5 4.026 0.192 5-34

Chiappini 
et al. 2022

coniferous 
forest (black 
pine)

One 
plot of 
0.5 ha 

800 50 Conventional 
field data - - - 10.8 -8.6 -

Vatandaşlar 
et al. 2023

mixed forest 
(Oriental 
spruce, 
Scot spine 
Caucasian 
fir)

39 plots 350 39 Conventional 
field data 1.3cm 4.5 - - - -

Winberg et 
al. 2023

mixed forest 
(Scots pine, 
silver birch, 
Eurasian 
aspen 

54 plots 550 230 Conventional 
field data 1.765 −3.650 - - - -

Tupinambá 
Simões et 
al. 2023

mixed forest 
(Pinus 
pinaster, 
Quercus 
pyrenaica, 
and Alnus 
glutinosa)

16 plots 
of 625 

m²
433 418

Conventional 
field data 

and Airborne 
LIDAR data

 5.42 0.09 - 3.50 0.23 -
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from 26% in plots with dense shrub layers, 
resembling Ficuzza plots where we achieved 
a rate ≥ 83%, and of 78% in plots with less 
understory vegetation, like our Camaldoli plots 
where we observed a rate ≥ 88%.
 In terms of average values for DBH and 
H, all the three paths in all the eight plots do 
not reveal significant differences (p<0.001). 
Moreover, for all the three paths in both study 
areas the results obtained for DBH and H in 
this study in terms of RMSE, and Bias are in 
line with previous studies as can be observed 
from Table 5, where the results employing 
ZEB-HORIZON HLMS in different forest 
types are reported. In terms of R2, the results 
showed in this study are congruent with those 
done by Jurjević et al. (2020), Vatandaslar & 
Zeybek (2021), Sofia et al. (2022), Giannetti et 
al. (2018), Del Perugia et al. (2019). 
 When considering the time and cost for data 
acquisition and processing, on average, the 
use of stand-alone software such as LIDAR 
360 it was useful, because allow to reduce 
the timing needed for data processing using 
ad hoc developed codes using programming 
languages (Giannetti et al. 2018). Usually 
developing code using programming languages 
is not part of the skill of old forest managers 
and forest engineers especially in Italy and in 
Mediterranean countries in general (Corona et 
al. 2022), and as highlighted by Cadez et al. 
(2023) and Giannetti et al. (2023), stakeholders 
prefer the use of user-friendly tools.
 For all the analysed plots, the point cloud 
density was consistently higher when using the 
GRID acquisition path (Table 2). Notably, we 
incorporated a perpendicular line, extending 
the walking path length compared to the 
approach used by Del Perugia et al. (2019). 
As a result, the GRID path was the longest 
route followed by the operators in the field, 
followed by the STAR and BORDER paths. 
This finding aligns with recent studies by 
Tiede et al. (2024) in Australia and Chirici et 
al. (2023) in Italy, which demonstrated that 
longer acquisition paths increase point cloud 

density. In general, our study found that more 
complex paths (i.e., STAR and GRID) resulted 
in denser point clouds and, on average, more 
accurate results for DBH and tree height (H). 
These paths help reduce occlusion in capturing 
3D forest structures by allowing objects to 
be viewed from multiple angles (Del Perugia 
et al. 2019, Chirici et al. 2023, Tiede et al. 
2024). However, it is important to note that 
no statistically significant differences were 
observed between the acquisition paths in 
the extraction of forest variables. This aligns 
with the findings of Tiede et al. (2024), who 
concluded that despite differences in point 
cloud data between acquisition paths, these 
did not significantly affect the final outputs 
(Table 2). However, in less complex forest 
structures such as C1 plot in Camaldoli, where 
less occlusion is produced by the vertical and 
horizontal structures, accurate results can be 
observed also with BORDER. Might be the 
accurate results can be also obtained thanks to 
the large laser range of ZEB HORIZON (100 
m), that allowed to overcome the limitation of 
the HLMS instrument with smaller laser range 
(Ryding et al. 2015, Giannetti et al. 2018, Del 
Perugia et al. 2019, Chirici et al. 2023). 
 In general, the STAR path scheme has 
proven highly effective in forest planning, 
demonstrating acceptable error for DBH and 
H (Table 2) that are considered accurate in 
forest management activities, and in line with 
the errors that can be assimilated also with 
traditional field measures.
 In Ficuzza forest, characterized by 
highly complex structure, accuracy varied 
significantly, comparing to Camaldoli, 
especially for H. The occlusion in observing 
the top-canopy in complex vertical forest can 
be a challenge for both traditional and HLMS 
measures (Jurjević et al. 2020). Specifically, 
determining the top-hight from the ground 
using the traditional hypsometers can be 
difficult, and subjective errors associate with 
the technical field experience of the operator 
can determinate inaccuracies in determining 
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H (Jurjević et al. 2020, Larjavaara & Muller-
Landau 2013). Also, in HLMS measures, the 
complexity of the forest structure can hinder the 
quality of the 3D reconstruction (Giannetti et 
al. 2018). Furthermore, the standard algorithms 
employed for post-processing HLMS data, 
usually developed for more uniform forests 
like even-aged stands of coniferous stands, can 
result in larger errors when applied to more 
complex forest environments. 
 Maybe in deciduous forests, the occlusion 
in observing the top-canopy with HLMS can 
be reduce using leaf-off point-cloud, as for 
example in Camaldoli beech forest, while it 
is not applicable in evergreen broadleaves 
forests such as the Holm oak Ficuzza forest. 
In Ficuzza, the error for H might be reduced 
through the fusion of two distinct point clouds 
i.e. HLMS and Airborne/UAV Laser Scanning 
as done for example by Giannetti et al. (2018), 
Panagiotidis et al. (2022), and Fekry et al. 
(2022). That enables a more comprehensive 
capture of the forest's 3D structure, thereby 
minimizing occlusions that hinder the accurate 
determination of the top canopy when solely 
relying on HLMS data.
 However, to the best of our knowledge, the 
fusion of data between two distinct LiDAR 
point clouds remains applicable at the research 
level and is still challenging to implement in the 
daily work of forest managers and engineers, 
because required high level of knowledge in 
computer vision and data fusion (Cucchiaro et 
al. 2020, Guo et al. 2023). 
 Moreover, stand-alone software could also 
serve as a strategy to promote the adoption 
of innovation in the sustainable forest 
management sector, that is a requirement of 
EU and Italian Forest Strategy (European 
Commission 2021, MIPAF 2021), because 
they are perceived as less complicated (Cadez 
et al. 2023, Corona et al. 2023, Giannetti et al. 
2023, Pavlíková et al. 2023, Weiss et al. 2021).
 The STAR path emerges as the most valuable. 
Despite being comparatively slightly higher 
time-consuming and costly than the BORDER 

path, it allows, as we already reported, for 
increased accuracy in tree measurements 
(Table 2). 
 On average, using HLMS it is possible to 
save on average 1 hour 37 minutes and 85 
€ per plot. If we considered that in a forest 
management plan on average at least 80 plots 
need to be measured in the field in an area 
of 1000 ha, with the HMLS it is possible to 
save on average approximately 10 hours of 
work, that means 2/3 working days and 6804 
€. Considering the cost of the instruments, 
approximately € 45,000 medium price of 
market, the cost can be amortized by a 
company after approximately 530 plots that 
means after at least 7 forest management plans.  
However, it is essential to recognize that the 
costs associated with these instruments extend 
beyond the initial acquisition price. Ongoing 
maintenance expenses, related to factors such 
as battery obsolescence and regular servicing, 
should also be taken into account. Based on 
our experience, these costs can be estimated at 
€1,000 every three years. Generally, it can be 
confidently stated that the lifespan of a HMLS 
typically ranges from 5 to 10 years, even as 
technology evolves rapidly. This evolution 
can present disadvantages, as the obsolescence 
of instruments may occur more quickly. 
However, it also offers advantages, as there are 
now more affordable versions of HMLS on the 
market compared to the one we tested, which 
may help reduce the amortization period of the 
instrument in the future.
 Moreover, another important factor to 
consider is the training of personnel for forest 
data acquisition and processing, which can 
be viewed as a cost for educating individuals 
who are not currently familiar with this type 
of technology. It is important to note that many 
forestry degree programs across Europe now 
include the use of these technologies in their 
curricula, leading to an increasing number of 
trained individuals in the future. However, for 
personnel who have not received university 
training in the use of this technology, it can be 
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stated that utilizing standalone software can 
reduce training costs and improve their ability 
to use HMLS for forest management plans. In 
our experience, training courses of this kind 
generally range from €1,000 to €1,500 per 
operator in Italy.
 The results, confirmed that the HLMS 
can be applied to develop sustainable forest 
management plans, also in Italian context 
confirming the findings of Sofia et al. (2021), 
were the HLMS was used to update the 2023-
2035 forest management plan for the complex 
"Alpe di Catenaia" forest. 
 Our study specifically focused on extracting 
traditional forest variables like DBH and H. 
Nonetheless, it's crucial to note that when 
acquiring a 3D point cloud, it can also be 
utilized to detect additional forest variables, 
facilitating the extraction of further sustainable 
forest indicators, that can help forest managers 
with the development of multi-objective 
forest management plans that deal not just 
with productive aspect of forests (Prins et 
al. 2023). Therefore, as new digital tools are 
developed to extract these additional forest 
variables, older point cloud data can also be 
processed accordingly. Additionally, Italian 
sustainable forest management plans typically 
maintain permanent sample plots. HLMS 
scan conducted at intervals, typically every 
10 years in Italy, aligning with plan durations, 
have the potential to generate growth models 
and comparative structural models (Campos 
et al. 2021). These models are valuable for 
comprehending the evolutionary dynamics 
of forest stands or monitoring the effects of 
proposed interventions in the management 
plans (Campos et al. 2021).

Conclusions

The study aimed to compare HLMS with 
traditional field measures within sustainable 
forest management plans, assessing three 
walking paths (STAR, GRID, BORDER) 
demonstrated high accuracy in tree detection, 
and DBH and H. The STAR paths yielded 
denser point clouds and generally more accurate 

results in DBH and H measurements compared 
to GRID and BORDER. The complexity of 
forests like Ficuzza posed challenges for HLMS 
measures due to occlusions in observing the top 
canopy, impacting accuracy especially in H 
determination. 
 Future studies should consider the extraction 
and comparison of more complex forest 
variables that allow to extract other forest 
indicators maybe linked with biodiversity, even 
in more complex forest structures like Italian 
coppice forests which are even more complex 
than the natural holm-oak stands in Ficuzza.
 Furthermore, future studies should consider 
not only the acquisition walking path but also, 
for example, the impact of different walking 
speeds and the positioning of scans (i.e., 
placing the mobile laser scanner at a higher 
elevation, such as on a backpack), which were 
kept constant in the present work. This could be 
useful for avoiding some occlusions caused by 
the presence of shrubs.
 However, it is important to point out that the 
use of a user-friendly tools and software were 
highlighted as preferred for stakeholders, so 
future studies need to be focus on continual 
technological advancements and user-friendly 
tools to extract even more complex forest 
variables using TLS/HLMS scans designed for 
sustainable forest management plans. 
 The HMLS has demonstrated significant 
time and cost savings, potentially reducing 
both fieldwork and office work hours, along 
with associated expenses. This efficiency is 
advantageous not only for developing forest 
management plans but also for monitoring plots 
in areas where resources are still limited, such 
as those located within protected areas.
 In this sense, in the future, at least two-time 
HLMS scans need to be tested, to produce 
double forest inventories, that can be used for 
modelling growth and dynamics of the stands, 
that are requirement of new multi-objective 
forest management plans that deal not just with 
productive aspect of the forests (Prins et al. 
2023). 
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