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Abstract Terrestrial laser scanning (TLS) has emerged as a powerful tool for 
acquiring detailed three-dimensional information about tree species. This 
study focuses on the development of models for tree volume estimation using 
TLS data for even aged Fagus sylvatica L. stands located in the western part 
of the Southern Carpathians, Romania. Both parametric and non-parametric 
modeling approaches were explored, leveraging variables extracted from TLS 
point clouds such as diameter at breast height (DBH), height, crown radius, 
and other relevant crown and height parameters. Reference data were collected 
through high-precision field measurements across 76 circular Permanent Sample 
Areas (PSA) spanning 500 m2 each.  A multi-scan approach was implemented 
for TLS data collection, involving four scanning stations within each PSA. 
Concurrently, parametric (regression equations) and non-parametric (Random 
Forest - RF) models were applied, leveraging all TLS-derived variables to 
explore potential enhancements in volume estimation accuracy. Among the 
parametric models, the most effective performer was the one featuring solely 
DBH as an input variable. The RF non-parametric model yielded more accurate 
stem volume estimates (RMSE = 1.52 m3*0.1ha-1; RRMSE = 3.62%; MAE = 
1.22m3*0.1ha-1) compared to the best-performing regression model (RMSE = 
5.24 m3*0.1ha-1; RRMSE = 12.48%; MAE = 4.28 m3*0.1ha-1). Both types of 
models identified DBH as the most important predictive variable, while the RF 
model also included height and crown related parameters among the variables 
of importance. Results demonstrate the effectiveness of the non-parametric 
RF model in providing accurate and robust estimates of tree stem volume 
within even aged European beech stands. The integration of these models in 
operational forestry can enhance precision in biomass estimation and forest 
resource management. Future studies should aim to validate these models across 
diverse forest ecosystems to further refine and enhance their applicability.
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Introduction

Various remote sensing technologies and field 
survey instruments are currently being used for 
forest assessment at a fine scale so as the term 
precision forestry has emerged which can be 
defined as a method to accurately determine 
characteristics of forests and treatments at stand, 
sub-stand or individual tree level (Holopainen 
et al. 2014). The remote sensing technologies 
used in precision forestry generally refers 
to: high and very high multispectral satellite 
imagery, airborne and terrestrial laser scanning 
and unmanned aerial vehicles (UAVs) (Fardusi 
et al. 2017). Very high (< 1 m) and high (< 10 
m) spatial resolution optical satellite imagery
supports forest inventories tasks such as
identifying dominant species, determination of
stand height, volume and biomass estimation
or basal area and crown closure (White et al.
2016). New digital aerial photogrammetry
systems, used either with manned or unmanned
aerial vehicles, have enabled the production
of image-based point clouds (similar to the
LiDAR points). The UAVs usage in collecting
forest inventory attributes exploded in recent
years, however, the UAVs derived point cloud
are limited to characterizing the outer canopy
envelope since the canopy penetration rate is
limited (White et al. 2016) or it can be used
in conjunction with airborne laser scanning
data which will delivers accurate digital terrain
models for the surveyed area.

The use of high-resolution three-dimensional 
(3D) point clouds derived from airborne laser 
scanning (ALS) as well as terrestrial laser 
scanning (TLS) is an area of intense research 
for characterizing forest ecosystems (Shang 
et al. 2019, Calders et al. 2020, Dobre et al. 
2021). Despite advancements in remote 
sensing, gaps remain in integrating TLS data 
for comprehensive forest inventory (Disney et 
al. 2019, Niță et al. 2021, Wardius et al. 2024). 
This study addresses these gaps by comparing 
parametric and non-parametric models, thus 
contributing to more accurate forest biomass 
estimation and management practices.

 ALS is an active remote sensing technology 
that measures the three-dimensional distribution 
of forest vegetation, suitable for describing the 
vertical structure of the forest (Smreček et al. 
2018), capable of covering large areas in short 
periods of time and at relatively reduced costs 
(Shang et al. 2019). Although ALS systems 
are efficient in covering extensive areas, they 
encounter difficulties in accurately detecting 
ground-level forest vegetation. Even though 
it has a greater canopy penetration rate than 
the UAVs point cloud, the ALS point cloud 
cannot be used to directly measure the tree 
DBH.  In this context, TLS stands out as a 
technology capable of obtaining detailed three-
dimensional point clouds representation of the 
canopy as well as of the overstory (i.e. shrubs 
and low trees) and the near-ground vegetation 
(White et al. 2016), thus providing detailed 
information about forest structure (Pascual et 
al. 2019, Wang et al. 2021), particularly in the 
canopy gap zone (Zhou et al. 2023b).
 The potential of TLS for forest monitoring 
was first highlighted in the early 2000s. Initially, 
applications were focused on measuring trees 
and their components, such as diameter at 
breast height (DBH) (Wezyk et al. 2007) and 
height (García et al. 2011), eventually evolving 
towards estimating tree volume (Pitkänen et al. 
2021, Abegg et al. 2023), aiming to improve 
above-ground biomass (AGB) determination 
(Liang et al. 2016, Demol et al. 2021, Demol 
et al. 2022). Thus, TLS-derived data are used 
to obtain information about dendrometric 
characteristics of trees and stands (Zhong et 
al. 2017, Cabo et al. 2018), as well as detailed 
data on stand structure (Lim et al. 2003, Burt 
et al. 2013, Åkerblom & Kaitaniemi 2021), 
thereby contributing to efficient forest resource 
management (Moskal & Zheng 2012, Rehush 
et al. 2018, Oruç & Öztürk 2021, Wilson et al. 
2021).
 TLS can be used as a complementary system 
to ALS, considering its ability to observe 
the canopy structure from below the canopy 
upwards from a radial perspective, while ALS 
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observes the canopy from top, down, almost 
exclusively at close to nadir view (White et al. 
2016).
 In previous research, TLS has been used to 
estimate dendrometric characteristics of trees, 
focusing particularly on estimating DBH, 
tree height, crown dimensions, as well as tree 
positioning (Maas et al. 2008, Olofsson et al. 
2014, Srinivasan et al. 2015, Bienert et al. 2018, 
Bogdanovich et al. 2021). This information 
has been utilized in both trunk segmentation 
(Li et al. 2020), volume estimation (Saarinen 
et al. 2017), and determination of the three-
dimensional crown structure (Zhu et al. 2020, 
Han & Sánchez-Azofeifa 2022).
 Thus, the use of TLS has shown great 
potential for estimating the volume of trees 
and stands, with two approaches to accomplish 
this. In the first approach, volume is determined 
using TLS data obtained through geometric 
reconstruction of trees (Abegg et al. 2023). 
Another approach for tree volume estimation 
involves applying regression equations based 
on dendrometric characteristics of single 
trees extracted from point cloud segmentation 
(Mayamanikandan et al. 2019, Pitkänen et al. 
2021).
 In this context, the selection and optimization 
of models, as well as considering a larger 
number of factorial variables (such as crown 
dimensions, knot-free height, stand structure, 
age, site conditions, etc.) in the process of 
estimating tree and stand volume, represent 
important steps in the foundation of these 
models. For instance, the study conducted by 
Popescu et al. 2003 highlighted the importance 
of crown diameter, determined from point 
clouds, in estimating tree volume, while 
(Iizuka et al. 2020) found that the best result 
in estimating the stem volume from remote 
sensing data was obtained using canopy 
height, canopy size and canopy cover as input 
variables. 
 In the context of tree volume estimation, 
traditional models are generally linear, non-
linear, or mixed-effects models. These models 

often require meeting statistical assumptions 
such as data independence, normal distribution, 
and equal variance to be properly applied. 
However, an alternative approach to tree 
volume estimation involves using models based 
on the Random Forest (RF) algorithm. Indeed, 
these models enable a more efficient estimation 
of nonlinear relationships without imposing a 
specific data structure, in contrast to parametric 
models that assume certain distributions or 
functional relationships between variables. 
This provides increased flexibility in adapting 
the models to observed data, RF models being 
capable of capturing complex and non-linear 
relationships between input variables and 
their outcomes, in particular, it can deal with 
clustered data, as well as missing data (Auret 
& Aldrich, 2012). Additionally, RF models are 
not limited by issues associated with covariance 
and unequal data variability, making them an 
attractive option in tree volume estimation.
 Previous studies have demonstrated that RF 
models have a higher potential for estimating 
tree volume compared to traditional models, 
primarily being applied for estimating stand 
volume and biomass on a large scale (Silva et 
al. 2017, Esteban et al. 2019).
 The selection and optimization of models 
for estimating tree volume are crucial aspects 
in improving these estimations. Models based 
on the RF algorithm have demonstrated better 
potential in estimating tree volume compared 
to traditional models, providing flexibility in 
adapting to observed data and avoiding issues 
associated with unequal data variability (Wang 
et al. 2023).
 The RF algorithm is known for its ability to 
efficiently handle data with unequal variability, 
as well as for its capability to provide robust 
estimates. This is because RF is a combination 
of multiple individual decision trees, and the 
final result is obtained as an average of their 
predictions.
 In the context of estimating tree volume, 
the use of the RF algorithm allows for the 
exploration and integration of a large number 
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of features and variables. This facilitates 
obtaining precise and robust volume estimates, 
considering the diversity and complexity of 
the data involved in the estimation process.
 Within this context, the aim of this study is 
to investigate the potential of employing TLS 
data for developing volume models tailored 
to individual trees. The main objective was 
to conduct a comparative analysis between 
individual tree volumes calculated from field 
data and those estimated from TLS point cloud 
processing, using specific parametric and non-
parametric models.

Materials and methods

The study site is situated in Romania, within 
the western region of the Southern Carpathians, 
specifically within the northwestern section 
of the Retezat-Godeanu mountain range, 
notably within the Tarcu Mountains in the 
Muntele Mic district. It spans the upper 
basin of the Sebeș River, encompassing the 
main valleys of Cuntu and Valea Craiului, 
with peak elevations surpassing 2100 meters 
(Figure 1).
 In the year 2020, according to a specific 
methodology (Badea 2013), a total of 38 
Permanent Plots (PP) were inventoried in a 
systematic network, sized according to the 
dominant tree species (i.e. Fagus sylvatica 

L.) and stands age. Each PP comprises two 
circular Permanent Sample Areas (PSA), 
each with a radius of 12.62 meters, covering 
an area of 500 m2. Thus, in total there were 
inventoried trees within 76 PSAs.These PSAs 
are positioned at a distance of 30 meters from 
the center of the PP (Figure 2). On flat terrain, 
the PSAs are oriented towards each other in the 
east-west direction, while on inclined terrain, 
they are aligned along the contour line. The 
sizing of the network, including determining 
the number of plots and the distance between 
them, was carried out using information 
regarding the coefficients of variation of 
volume calculated based on data from U.P. VI 
- Cuntu management plan of B.E. Caransebeș, 
2016 edition (Cojoacă 2016).

 The coordinates of the centers of the PPs and 
PSAs were recorded using a Trimble GeoXH 
device equipped with a Zephir II antenna 
and were marked using metal stakes (20 cm) 
completely buried in the ground, as well as 
wooden markers (stakes) with the upper end 

approximately 30 cm above 
the ground, highlighted 
with white paint. Within the 
PSA, all trees with a DBH 
equal, or greater than 6 cm 
were inventoried, and their 
descriptive information was 
recorded using the FieldMap 
equipment (Petrila et al. 2012). 
The characteristics determined, 
measured, or estimated during 
the inventory included: tree 
position, DBH, species, tree 
height (h), pruned height, 
crown projection, Kraft class, 
and descriptive information Figure 1 Research area location map (base map – digital elevation model 

from Shuttle Radar Topography Mission (SRTM).

Figure 2 The positioning of the permanent sample area (PSA) 
in relation to the center of the permanent plots (PP).
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such as tree vitality. The DBHs were measured 
using a forest caliper, while heights were 
measured using the Vertex IV instrument.
 To compute the reference aboveground 
volume of each tree, we utilized a specific 
equation (Giurgiu et al. 2004) (Eq. 1), 
commonly applied for forest tree species in 
Romania:

where d represents the tree’s diameter at 
breast height, in cm; h – tree height, in 
m; v – volume of the tree, in m3; a0 - a4 
– regression coefficients, established by 
species (Giurgiu et al. 2004).   
 Within the PSAs specific measurements 
were conducted using a static terrestrial laser 
scanner, namely the FARO 3D X130 HDR 
model (Figure 3). This high-precision device 
has a distance estimation error of ±2 mm at 25 
m and a laser wavelength of 1550 nm (FARO 
Technologies Inc 2019).
 To ensure data accuracy and a high level of 
detail, a multiple scan approach of each PSA 
was conducted. Additionally, to ensure precise 
co-registration of the point clouds resulting 

from the terrestrial scanning, seven spherical 
markers were uniformly placed in each PSA.
 The main advantage of using multiple scans 
from different directions compared to a single 
scan placed at the center of the PSA lies in 
identifying a higher number of trees. This 
aspect has a direct impact on the precision of 
estimating dendrometric parameters of trees 

(Apostol et al. 2018) because 
it allows covering a larger area 

and obtaining a more complete representation 
of the forest environment. Consequently, 
multiple scans provide a more detailed 3D 
representation of the trees in the PSA, including 
their crowns and branches, facilitating a more 
precise estimation of DBH. Thus, within each 
PSA, TLS measurements were conducted by 
establishing four stations. The first station was 
placed at the center of the PSA, the second 
towards the north direction, the third at 120⁰ 
from the north direction, and the last one at 
240⁰. The TLS stations, except for the one 
placed at the center of the PSA, were positioned 
at a distance of 15 meters from the center of 
the PSA (Figure 4). While the systematic 
network of PSAs ensures broad coverage, 
potential biases due to site accessibility and 

forest structure variability must 
be considered. Additionally, the 
precision of TLS equipment and 
the complexity of data processing 
may limit the generalizability of 
findings.
 To achieve automatic co-
registration of the TLS point 
clouds it was necessary to place 
spherical targets uniformly 
within the PSA. Subsequently, 
the obtained data were input 
into the TLS dedicated software 
(FARO Technologies Inc, 2019) 
for primary processing and to 
generate a single point cloud 
corresponding to each PSA, and 
exported in .LAS file format, 

which allows further processing. 

log v = a0 + a1 log d + a2 log2 d + a3 log h + a4 log2 h,   (Eq. 1)

Figure 3  The terrestrial laser scanning device positioned at the center 
of a permanent sample area (PSA): (1) PSA center; (2) TLS 
position; (3) Spherical reference point; (a) photo captured in the 
field; (b) TLS point cloud co-registered using Scene software.
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The dimensional characteristics of the crown, 
such as the maximum crown radius (Cr), crown 
length (CL), as well as its volume, were derived 
from the point cloud using the TreeLS (de 
Conto et al. 2017, R Core Team 2021) and VoxR 
packages implemented in R software (Lecigne 
et al. 2018; R Core Team 2021). The DBH was 
extracted using the IRLS algorithm (Liang et 
al. 2012) implemented in the TreeLS package 
(de Conto et al. 2017), as well as through 
the use of the FORTLS package (Molina-
Valero et al. 2022), developed to automate 
the processing of TLS point cloud data and to 
estimate forest variables. Tree heights were 
determined through semantic segmentation 
of the point cloud, identifying the tree crown 
top, which corresponds to the maximum 
height recorded within the point cloud at that 
position (de Conto et al. 2017, Molina-Valero 
et al. 2022). However, due to the significant 
errors associated with determining tree height 
using TLS, often resulting in underestimation 
(Apostol et al. 2018, Pascu et al. 2020, Wardius 
& Hein 2024), the heights derived from TLS 
were not utilized in the development of tree 
stem volume models, except for the pruned 
height (Hrv). Instead, height metrics (i.e. 
Hp50, Hiq, Hstd, Hp01) were calculated at the 
level of PSA from the heights of segmented 
semantic tree cylinders. 

    In the development of models to 
estimate tree stem volume using TLS 
data, the selection of appropriate 
variables is crucial for achieving 
precise and dependable results. 
Within this context, the utilization 
of parametric and non-parametric 
models represents two distinct 
approaches, each offering unique 
advantages and applications.
   In this study, we examined both, 
parametric models - which depend 
on predefined functional relationships 
between independent variables and 
outcomes, and the Random Forest 
(RF) - non-parametric model that 

has the capability to capture complex and 
nonlinear relationships between variables. The 
variable selection for each model considered 
the significance and relevance of these factors 
in estimating tree stem volume. The chosen 
variables were selected for their significant 
impact on tree stem volume estimation and 
their potential to enhance the model’s accuracy 
(Giurgiu 1979).
 After the semantic segmentation of TLS 
point clouds, the following data were computed 
as independent variables: DBH, pruned height 
(Hrv), height at which 50% of the total trees 
are found (Hp50), height at which 1% of the 
total trees are found (Hp01), crown volume 
(Vc), crown length (CL), ratio of crown length 
to pruned height (CLr), standard deviation of 
height (Hstd), maximum crown radius (Cr), 
interquartile height range (Hiq) and maximum 
crown radius (Cr) . These variables were used 
in the development of four parametric models:
 -Model 1: includes DBH as the only 
independent variable.
 -Model 2: includes as independent variables: 
DBH, pruned height (Hrv), height at which 
50% of the total trees are found (Hp50) and 
interquartile height range (Hiq).
 -Model 3: includes as independent variables: 
DBH and crown length (CL), and the ratio of 
crown length to pruned height (CLr).

Figure 4  Data acquisition with terrestrial laser scanning within the 
permanent sample area (PSA)
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 -Model 4: includes as independent variables: 
DBH, crown volume (Vc), maximum crown 
radius (Cr), height at which 50% of the total 
trees are found (Hp50), height at which 1% of 
the total trees are found (Hp01) and standard 
deviation of height (Hstd).
 Within the non-parametric modeling 
approach for tree volume estimation, we 
investigated the utilization of Random Forest 
(RF) model.
 In the application of the RF algorithm, we 
explored the diverse effects of the number of 
decision trees and the selection of variables 
considered at each split. We examined a broad 
range, spanning from 50 to 250 decision 
trees, to evaluate how this aspect influences 
model performance. Additionally, we tested 
different numbers of variables for each split, 
ranging from 2 to 6, to discern how this factor 
contributes to model improvement.
 The RF algorithm allows determining this 
relative importance and generates a partial 
dependence plot for the dependent variable 
(Schonlau & Zou 2020), which is essential for 
improving RF results.
 To substantiate the methodology of 
estimating tree volume, the dataset containing 
the identified trees from point cloud processing 
(TLS) was randomly partitioned. Seventy-
five percent of the total 
identified trees were 
allocated for training the 
parametric models and 
RF algorithm, while the 
remaining 25% were 
reserved for validation 
(testing).
 The evaluation of the 
prediction abilities of both 
parametric models and the 
RF algorithm was carried 
out using the coefficient 
of determination (R2) (Eq. 
2), root mean square error 
(RMSE) (Eq. 3), relative 
root mean square error 

(RRMSE) (Eq. 4), and mean absolute error 
(MAE) (Eq. 5). These metrics were utilized 
to compare the predicted stem volume of each 
parametric and non-parametric approach with 
the field reference tree stem volume calculated 
using specific methods (Giurgiu et al. 2004). 
The same metrics were then determined at 
the plot (PP) level for the best performing 
parametric model and the RF non-parametric 
model. Plot level stem volumes were obtained 
by summing the individual stem volumes 
calculated through the parametric and non-
parametric methods, respectively

where n is the number of observations, yi is the 
observed value, ŷi is the predicted value, and ȳ 
is the arithmetic mean of observed values.
 The entire workflow adopted to estimate tree 
stem volume is organized into three distinct 
stages (Figure 5).

Figure 5  The workflow of the study methodology.
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Results

Following the inventories conducted in 2020, 
38 PPs, corresponding to 76 PSAs, where 
a total of 2924 trees were identified and 
measured (Figure 6). Furthermore, in 2021, 
all plots underwent comprehensive surveying 
and scanning using terrestrial laser scanning, 
resulting in a total of 304 scans. Subsequent to 
processing the point clouds, statistical reports 
were generated for each permanent sampling 
plot, providing insights into the accuracy 
of co-registration. As a result, the collation 
of these reports revealed an average co-
registration error of 7.1 mm (Table 1). Among 
all permanent sampling plots, roughly 90% 
exhibit an average co-registration error of less 
than 10 mm. Furthermore, 97% of the plots 
meet the acceptable tolerances for determining 
dendrometric parameters (<20 mm), with the 

exceptions being PSAs 732 and 741.
 The result of semantic processing of point 
clouds obtained from terrestrial laser scanning 
is represented in the form of three-dimensional 
point clouds (Figure 7), with high density, 
having attributes such as spatial coordinates 
(X, Y, Z) of each point, as well as information 
regarding their classification into four classes: 
points classified as ground (Figure 8a), points 
classified as forest vegetation (tree crowns) 
(Figure 8b), points classified as tree trunks and 
thick branches (Figure 8c), and points classified 
as dead wood on the ground (Figure 8d).
Following the point cloud segmentation, 
variables such as tree DBH (d), height of 
segmented semantic tree cylinder (h), pruned 
height (Hrv), maximum crown radius (Cr), 
crown volume (Vc), and crown length 
(CL) variables were extracted (Figure 9). 
Additionally, height metrics, such as height 

at which 50% of the total trees are 
found (Hp50), interquartile height 
range (Hiq), standard deviation of 
height (Hstd) and height at which 
1% of the total trees are found 
(Hp01) were calculated from the 
heights of segmented semantic tree 
cylinders. Furthermore, the ratio 
between crown length (CL) and 
pruned height (Hrv) was calculated 
using the aforementioned data. These 
details allowed for a comprehensive 
characterization of individual trees and 

Figure 6  Distribution of mean diameter and mean height determined at PP level.

Figure 7 The three-dimensional point cloud resulting for a PSA.
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their crowns, providing a deeper understanding 
of their structure and dimensions.
 Following the processing of TLS point 
clouds a total of 2596 trees were identified from 
38 permanent plots (PP) based on the position 
of the trees. Thus, according to the confusion 
matrix (Table 2), a total of 1881 trees were 

accurately matched with the reference dataset. 
This yields an accuracy of 55.6% (the ratio of 
correctly correlated trees to the total number 
of trees) and a precision of 72.4% (the ratio of 
correctly correlated trees to the total number 
of trees identified from the processing of point 
clouds). 

Table 1 Co-registration accuracy determined for permanent sample area (PSA).
Permanent 

Sample 
Area

(PSA ID 
number)

Maximum 
Point Error

(mm)

Mean Point 
Error
(mm)

Minimum 
Overlap

(%)

Code of Permanent
Sample Area

(PSA ID number)

Maximum 
Point 
Error
(mm)

Mean 
Point 
Error
(mm)

Minimum 
Overlap

(%)

491 6.9 6.9 54.2 681 7.0 5.9 27.6
492 7.3 6.2 34.1 682 5.0 4.8 23.6
501 14 12.7 35.9 691 5.8 5.1 46.8
502 5.3 4.1 35.4 692 6.2 5.8 38.4
511 5.9 4.7 34.8 701 7.4 5.4 30.3
512 6.5 5.2 43.0 702 9.6 7.3 22.4
521 4.7 3.7 31.4 711 11.3 9.2 30.5
522 6.1 5.1 32.0 712 11.6 8.6 22.5
531 7.7 5.7 33.8 721 7.7 6.6 29.3
532 7.5 6.5 29.4 722 8.2 6.7 38.6
541 5.9 4.7 33.2 731 9.8 7.5 34.0
542 5.5 4.5 39.7 732 32.2 20.5 24.5
551 6.5 5.0 28.9 741 30.4 22.7 23.2
552 6.4 4.8 38.0 742 6.9 6.1 43.7
561 6.7 5.3 41.7 751 13.3 8.6 26.9
562 8.4 6.7 24.3 752 6.7 5.9 39.0
571 5.7 4.8 36.7 761 11.1 9.2 33.1
572 6.6 5.1 32.5 762 8.2 7.6 31.3
581 5.9 5.1 44.9 771 10.2 8.3 31.9
582 8.1 6.3 35.1 772 7.9 6.0 36.2
591 9.4 9.4 33.1 781 7.1 6.2 38.2
592 26.3 16 25.9 782 8.9 7.6 37.3
601 5.7 4.7 36.8 791 9.4 7.3 25.6
602 4.9 3.8 28.0 792 9.4 7.7 40.5
611 10.2 6.9 28.1 801 6.6 6.2 33.9
612 6.1 4.8 32.8 802 15.4 10.9 7.2
621 9.9 6.4 32.9 811 6.8 6.3 28.9
622 7.2 5.8 28.1 812 6.2 5.3 38
631 9.6 7.3 35.6 821 6.9 6.2 41.2
632 8.6 5.7 34.1 822 6.7 5.5 32.5
641 12.8 9.7 34.3 831 13.7 9.9 31
642 12.2 10.5 30.5 832 10.0 7.9 33
651 11.1 8.9 37.7 841 6.1 5.5 38.8
652 11.3 9.3 33.8 842 5.8 5.1 36.6
661 8.6 7.9 27.8 851 5.9 4.5 35.8
662 25 15 24.4 852 6.2 4.5 44.5
671 7.8 7.3 43.1 861 4.3 3.6 38.6
672 7.5 7.5 27.8 862 6.6 4.7 41.1

Mean of Maximum Point Error 
(mm)

Mean of Mean Point Error
(mm)

Mean of Minimum 
Overlap (%)

9.1 7.1 33.6
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However, 328 trees existing in the field were not 
identified in the TLS data. Furthermore, a total of 
715 trees were exclusively identified in the dataset 
resulting from terrestrial laser scanning and did 
not have a counterpart in the reference dataset. 

Figure 8 Semantic segmented point cloud: (a) points classified 
as ground; (b) points classified as forest vegetation; (c) 
points classified as tree trunks and thick branches; (d) 
points classified as dead wood on the ground.

Figure 9 The structure of the data extracted from semantic 
segmentation of TLS point clouds. d – DBH; h – height 
of segmented semantic tree cylinder; Cr – maximum 
crown radius; CL – crown length; Hrv – pruned height.
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Additionally, from the field data, a total of 1043 
trees could not be identified; however, 19% of 
these are trees that are forked at the base (54 
trees), dead (89 trees), and that are either bent 
or have a broken trunk (56 trees).
 The analysis of the four parametric models, 
developed based on the selection of TLS-based 
extracted variables, indicates that Model 1 
emerges as the optimal parametric model for 
estimating tree stem volume (Table 3). This 
determination is corroborated by the values of 
R2 = 0.92, RMSE = 0.26 m3, MAE = 0.16 m3, 
and RRMSE = 30%.

 When estimating tree stem volume using 
the RF algorithm, the relative importance 
of variables extracted from the semantic 
segmentation of TLS point clouds was 
assessed. It was observed that the DBH 
emerged as the most influential variable, with a 
relative importance (IncMSE%) (Figure 10) of 
approximately 60% in decreasing the root mean 
square error. This underscores the substantial 
impact that DBH has on the model’s accuracy. 
 Furthermore, through testing various 
configurations of variables and numbers of 
decision trees used by the RF algorithm, it 

Table 2 Confusion matrix for the TLS identified trees and 
field reference trees.

 TLS identified trees

Reference trees 

TN FP
328 715
FN TP

1043 1881
Note: TP - corresponding trees,identified both through 

field inventories and TLS point cloud processing; 
TN - trees existing in the field but not identified 
through TLS point cloud processing; FP - trees 
identified through TLS point cloud processing but 
not corresponding to field data; FN - trees existing 
in the field for which correspondence could be 
established with trees identified through TLS point 
cloud processing

Figure 10 Relative importance of the independent 
variables in the RF model.

Table 3 Tree volume assessment based on parametric models.

Variables Models
Train data Test data Total number of trees

R2 RMSE
(m3)

MAE
(m3)

RRMSE 
(%) R2 RMSE 

(m3)
MAE
(m3)

RRMSE 
(%) R2 RMSE 

(m3)
MAE
(m3)

RRMSE 
(%)

DBH (d) M1 v 0.90 0.27 0.17 30 0.88 0.21 0.14 29 0.92 0.26 0.16 30

DBH(d) 
and height 
variables

M2 v 0.70 0.45 0.42 35 0.65 0.48 0.31 39 0.77 0.42 0.28 44

DBH (d) 
and crown 
variables

M3 v 0.85 0.38 0.38 42 0.71 0.46 0.28 40 0.83 0.36 0.24 42

DBH (d), 
height 
and crown 
variables

M4 v 0.85 0.52 0.20 37 0.75 0.42 0.18 34 0.86 0.38 0.25 36

Note: v - tree stem volume, m3; d - DBH, cm; Hrv - pruned height, m; Hp50 - height at which 50% of total 
trees are located, m; Hp01 - height at which 1% of total trees are located, m; Hstd - standard deviation 
of height, m; CL - crown length, m; CLr - ratio of crown length to pruned height; Cr - maximum 
crown radius, m; Hiq - interquartile height range, m; Vc - crown volume, m3.  M1: v = 0,2653 – 
0,0292*d + 0,0017*d2; M2: v = 0,0720*d – 0,0044*Hrv – 0,0422*Hp5 - 0,0404*Hiq; M3: v = 0,0779*d 
+ 0,0101*CL – 0,0152*CLr – 1,3174; M4: v = –0,0421*d – 0,0198*Hp50 + 0,1494*Hp01 + 0,0649*Hstd 
+ 0,1634*Cr – 0,0001*Vc + 0,1376.
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was determined that employing 250 decision 
trees and considering 6 variables at each split 
led to a noteworthy reduction in estimation 
error and a substantial improvement in model 
performance. Hence, the results illustrated 
that augmenting the number of variables 
considered at each split and increasing the 
number of decision trees positively influenced 
the performance of the RF algorithm. For 
instance, when the RF algorithm was tested 
with only 2 variables, the mean squared error 
(MSE) was 0.084. However, for the model with 
6 variables, this error was 
reduced to below 0.018 
(Figure 11).
 Comparing the tree 
stem volume estimated 
by the best-performing 
parametric model (Model 
1) with that estimated by 
the non-parametric model 
using the RF algorithm 
reveals that the inclusion 
of supplementary 
variables and the adoption 
of a non-parametric 
approach enhance the 
accuracy of volume 
estimation. This is evidenced by an increase 
R2 by approximately 6%, indicating better 

explainability of the variation in the data; a 
decrease RMSE by approximately 37%, and 
RRMSE by 52 % reflecting higher precision in 
volume estimation; and a reduction in MAE by 
approximately 50% (Table 4). The RF model’s 
superior performance, indicated by a 52% 
reduction in RRMSE compared to the best 
parametric model, underscores its potential 
for improving operational forestry practices. 
These results highlight the importance of 
including crown parameters alongside DBH in 
volume estimation models.

 Comparing the tree stem volume estimated by the 
best-performing parametric model (Model 1) with 

the field reference tree stem volume, 
we achieved an RMSE value of 
0.26 m³. This value equates to 
approximately 30% of the average 
volume of the corresponding trees 
(RRMSE = 30%) (Figure 12a).
   When comparing the total tree 
volume calculated at the PP level 
using field measurement data to 
the volume determined by the 
best-performing parametric model 
(Model 1), a strong and significant 
correlation between the two 
sets of values (r = 0.932**) was 
observed. However, despite this 
strong correlation, the analysis 
yielded an RMSE value of 5.24 

Figure 11 Mean square error according to various configurations of variables 
and numbers of decision trees used by the RF algorithm.

Table 4  Evaluation of the prediction abilities of the tree stem volume estimation 
based on parametric model 1 and non-parametric RF model.

Model Data R2 RMSE 
(m3)

MAE
 (m3)

RRMSE 
(%)

Parametric model 
(M1)
(v ~ d)

Train data 0.90 0.27 0.17 30
Test data 0.88 0.22 0.14 29

Total number 
of trees 0.92 0.26 0.16 30

Non-parametric model 
RF (v ~ d, Hrv, Hp50, 
Hp01, Hstd, CL,CLr, Cr, 
Hiq, Vc )

Train data 0.98 0.12 0.06 17
Test data 0.90 0.20 0.13 19

Total number 
of trees 0.97 0.15 0.08 14

Note: v - tree stem volume, m3; d - DBH, cm; Hrv - pruned height, m; 
Hp50 - height at which 50% of total trees are located, m; Hp01 - 
height at which 1% of total trees are located, m; Hstd - standard 
deviation of height, m; CL - crown length, m; CLr - ratio of crown 
length to pruned height; Cr - maximum crown radius, m; Hiq - 
interquartile height range, m; Vc - crown volume, m3.
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m³*0.1ha-1, accompanied by an 
RRMSE of 12.5% and a MAE of 
4.28 m3*0.1ha-1 (Figure 13a).
 Furthermore, when comparing 
the tree stem volume estimated 
by the non-parametric model 
employing the RF algorithm 
with the field reference tree stem 
volume, we achieved an RMSE 
value of 0.147 m³. This value 
equates to approximately 14% 
of the average volume of the 
corresponding trees (RRMSE 
= 14%). These results suggest 
a strong alignment between 
the estimated and measured 
values of the tree stem volume, 
indicating a robust fit of the 
model (Figure 12b).  
When comparing the total tree 
volume calculated at the PP 
level using field measurement 
data to the volume determined 
by the non-parametric model, a 
strong and significant correlation 
between the two sets of values (r = 
0.994**) was observed. However, 
despite this strong correlation, the 
analysis yielded an RMSE value of 
1.52 m³*0.1ha-1, accompanied by 
an RRMSE of 3.62% and a MAE 
of 1.22 m³*0.1ha-1 (Figure 13b).

Figure 12 Tree volume of reference compared to the estimated tree volume resulting from the semantic segmentation of 
point clouds for (a) parametric model M1, (b) RF non-parametric model .

Figure 13 The total volume of trees at PP level calculated based on the 
processing of TLS point clouds in relation to the volume of trees 
determined based on field measurements for (a) parametric model M1, 
(b) RF non-parametric model.
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Discussion

The use of TLS data for estimating forest 
variables such as DBH, tree height, and tree 
volume is a subject of significant interest to 
both the forestry community and forestry 
practice. When estimating tree volume based 
on TLS data, various approaches have been 
explored (Momo Takoudjou et al. 2018, 
Mayamanikandan et al. 2019, Brede et al. 
2022, Singh et al. 2022). These include using 
allometric equations using tree DBH and 
height extracted from the TLS point cloud. 
Another approach involves using quantitative 
structure modeling technique (QSM), where 
volume is directly estimated from the TLS 
point cloud. In a study conducted by Momo 
Takoudjou et al. in 2018, they emphasized 
that tree volumes in semi-deciduous forests 
of eastern Cameroon, extracted from TLS 
data using the QSM technique, exhibit high 
precision (R² above 0.98 and RRMSE below 
2.81%). In our study, we achieved comparable 
accuracy in tree volume estimation (R²=0.98 
and RRMSE=3.62%) using the non-parametric 
RF-based model. Another study (Brede et al. 
2022), conducted across various test sites, 
including a beech forest in the Netherlands, 
highlights a lower coefficient of determination 
for tree volume estimation achieved through 
the QSM technique (R² =0.86) compared to the 
one obtained in our study (R² =0.98).
 Traditional linear regression models, 
and more recently, machine learning-
based methods applied to TLS data, have 
demonstrated their utility in modeling complex 
nonlinear allometric relationships between 
tree’s variables (Aguilar et al. 2021, Wagers 
et al. 2021, Yrttimaa et al. 2022, Stovall et al. 
2023).
Our findings underscore the efficacy of both 
parametric and non-parametric models in 
estimation tree stem volume using TLS 
data. Among the parametric approaches, 
Model 1, utilizing tree DBH as the sole 
independent variable extracted from TLS data, 
demonstrated the highest precision, with an 

RMSE of 5.24 m3*0.1ha-1 and an RRMSE of 
12.48% at PP level. Conversely, the parametric 
Model 2, which integrates 3 supplementary 
parameters among one extracted as individual 
tree variable (i.e.  Hrv) and two calculated at 
plot level (i.e. Hp50, Hiq) yielded the weakest 
performance. Notably, the RF non-parametric 
model, which integrates DBH with height (i.e. 
Hrv, Hp50, Hp01, Hiq, Hstd) and crown related 
variables (i.e. CL, CLr, Cr, Vc), outperformed 
the best performing parametric model in 
volume estimates both at tree level (RMSE = 
0.15 m3, RRMSE = 14%, MAE = 0.08m3) and 
at PP level (RMSE = 1.52 m3*0.1ha-1, RRMSE 
= 3.62%, MAE=1.22m3*0.1ha-1) compared to 
the best performing regression model (M1) 
(RMSE = 0.26 m3, RRMSE = 30%, MAE = 
0.16m3  at tree level; RMSE = 5.24 m3*0.1ha-1, 
RRMSE = 12.48%, MAE= 4.28 m3*0.1ha-1 at 
PP level), highlighting the effectiveness of RF 
non-parametric algorithm in the estimation of 
timber volume.
 A limitation of our study arose from the 
inability to accurately extract tree heights from 
the TLS point cloud. Despite implementing a 
multiscan approach, the tops of the dominant 
trees were not consistently captured, leading to 
the underestimation of heights. Additionally, in 
the case of understory trees, their tops were often 
obscured by the crowns of nearby dominant 
trees, further complicating height estimation. 
These difficulties are particularly pronounced 
with European beech trees, characterized by 
their ovoid crowns within stands and high 
frequency of windings (Sofletea & Curtu 
2007). Consequently, determining tree heights 
as local maxima from tree positions became 
unreliable when tree crowns interlocked. 
To address this, we opted to derive heights 
at the PSAlevel from the height of the tree 
bole (cylinder) calculated from TLS data. As 
such, we determined Hp50, Hstd, and Hp01, 
which we deemed suitable as input variables 
for the volume models. By utilizing the tree 
cylinder, which closely approximates actual 
tree height, we hypothesized that these may 
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effectively capture competitive relationships 
between trees. Future research should explore 
integrating TLS with UAV-derived canopy 
models to improve height estimation accuracy. 
Additionally, validating these models in 
different forest types will enhance their 
robustness and applicability.
 Other authors, like Yusup et al. (2023), 
tested 16 parametric (i.e. regression) models 
to estimate trunk volume (Vt) for Euphrates 
poplar trees using TLS data along the Tarim 
River, NW China. Sixteen regression models 
using the variables tree height, trunk height, 
under branch height, DBH, crown diameter, 
crown area, basal trunk diameter, were 
tested, one model performing best, accurately 
predicting Vt for irregularly shaped trees 
with 93.18% accuracy. All the trees were 
completely scanned with the TLS device 
and were generally distance to each other, 
thus the determination of their height from 
the point cloud point didn’t pose significant 
challenges. The study concluded that TLS can 
effectively measure irregular trunk shapes of 
Populus euphratica and developed accurate 
Vt prediction models, suggesting multivariate 
models as more effective in prediction.
 As previously mentioned, one of the main 
drawbacks in our study was the inability to 
directly measure the tree heights from the 
TLS data. This limitation may be alleviated by 
combining TLS data with other remote sensing 
technologies, complementary to each other. 
For instance, the tree heights may be obtained 
by combining a TLS derived terrain model 
with a canopy model extracted from UAV data, 
as performed by Iizuka et al. 2020. 

Conclusions

Considering the results obtained in the study 
regarding the application of parametric 
models to estimate tree stem volume, it was 
highlighted that DBH, when used as a single 
variable extracted from TLS data, accurately 
predicted the tree volumes. 
 A significant contribution of this study is the 

successful integration of variables extracted 
from TLS into a non-parametric model based 
on the RF algorithm. 
 This study demonstrates the efficacy of 
integrating TLS data with non-parametric 
models for accurate tree volume estimation. 
 The findings have significant implications 
for precision forestry, enabling better biomass 
estimation and forest management. 
 Further research should focus on extending 
these models to diverse forest ecosystems and 
integrating complementary remote sensing 
technologies.
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