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Abstract Accurate estimates of canopy structure like canopy cover (CC), Leaf Area 
Index (LAI), crown volume (Vcr), as well as tree and stand structure like stem 
volume (V_st) and basal area (G), are considered essential measures to manage 
poplar plantations effectively as they are correlated with the growth rate and the 
detection of possible stress. This research exploits the possibility of developing a 
precision forestry application using an unmanned aerial vehicle (UAV), terrestrial 
digital camera and traditional field measurements to monitor poplar plantation 
variables. We set up the procedure using explanatory variables from the Grey 
Level Co-occurrence Matrix textural metrics (Entropy, Variance, Dissimilarity 
and Contrast) calculated based on UAV multispectral imagery. Our results show 
that the GCLM texture derived by multispectral ortomosaic provides adequate 
explanatory variables to predict poplar plantation characteristics related to plants' 
canopy and stand structure. The evaluation of the models targeting the different 
poplar plantation variables (i.e. Vcr, G_ha, Vst_ha, CC and LAI) with the four 
GLCM explanatory variables (i.e. Entropy, Variance, Dissimilarity and Contrast) 
consistently higher or equal resulted to R2 ≥0.86.
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Introduction

In Europe, poplar plantations are strategically 
important for wood production (FAO 2016) 
due to poplar plywood's lightweight nature and 
excellent mechanical properties, which is in high 
demand across various industries (European 
Panel Federation 2021). In Europe, wood panel 
production from poplar plantations is estimated 
at 627.000 m3 year-1 (European Panel Federation 
2021). Furthermore, poplar plantations have 
been recognized as essential natural-based 
solutions to mitigate climate change. In fact, 
poplar trees have a fast-growth rate, enabling 
them to stock a large amount of CO2 within a 
short time (Chen et al. 2019, European Panel 
Federation 2021, Liu et al. 2022),  In addition, 
poplar plantations are an important asset to 
conserving and creating ecological networks, 
which is also pivotal to reducing soil erosions 
(Zhang et al. 2020, Cantamessa et al. 2022, 
Vaglio Laurin et al. 2022).
 At the European level, Italy has one of the 
largest areas of produced-oriented poplar 
plantation, estimated to be 48.639 ha in 2017 and 
51.846 ha in 2018 (Zanuttini et al. 2021), with 
an annual volume of timber given to the supply 
chain of 2.25 million m3 whose derived products 
represent 45% of Italian wood market (D’Amico 
et al. 2021). Most of the Italian poplar plantations 
are in the northern part of the Po Valley and are 
predominantly monospecific. Such plantations 
have a fast growth rate and a short rotation period 
of 9-12 years (Zhang et al. 2020, Cantamessa et 
al. 2022, Vaglio Laurin et al. 2022).
 Compared to other EU countries, poplar 
plantations in Italy are irrigated, as the Italian 
regulation categorized them as croplands, 
allowing for pesticides and fertilizers. However, 
in the last years, due to the increasing drought 
events in the Po Valley (Baronetti et al. 2022, 
Romano et al. 2022), and growing concerns 
about reducing agriculture pollution (Raffaelli 
et al. 2020) the need to decrease the input for 
poplar cultivation has emerged. In this context, 

it has become imperative to develop new easy-
to-use continuous monitoring systems that 
assist poplar owners in detecting the onset 
of potential plant stress and monitoring the 
growth rate of the trees and stands.  
 In today’s context, adopting precision 
forestry tools for managing poplar plantations 
is highly desirable (Kovacsova & Antalova 
2010, Fardusi et al. 2017, Hamrouni et al. 
2022). These new instruments offer the 
potential to update and develop advanced 
monitoring systems, providing precise 
estimation of various poplar variables at both 
stand and tree levels (Dash et al. 2016, Sun et al. 
2016, Fardusi et al. 2017, Menéndez-Miguélez 
et al. 2023). Timely and accurate monitoring 
of poplar plantations is essential (Meroni et al. 
2004, Pu et al. 2021, Cantamessa et al. 2022).
 Among the various poplar plantation 
variables, precise estimates of canopy 
characteristics such as canopy cover (CC), Leaf 
Area Index (LAI), Crown Volume (Vcr), as well 
as tree and stand structure like stem volume 
(V_st) and basal area (G), are of fundamental 
importance for effective poplar plantation 
management. These variables directly impact 
the growth rate and the occurrence of poplar 
stress (Gago et al. 2015, Li et al. 2023). Recent 
studies have highlighted a strong correlation 
between tree growth and both stem and canopy 
structures (Wang et al. 2023, Li et al. 2023). 
For instance, LAI significantly correlates with 
biomass production, making it a crucial variable 
for monitoring poplar tree growth under varying 
water conditions. However, traditional field 
methods for measuring these variables suffer 
from limited repeatability due to their cost and 
time-consuming nature (Peña et al. 2018).
 Remote sensing imagery is crucial in scaling 
up the in situ approach. Satellite remote sensing 
imagery offers the advantage of broader 
geographical coverage. However, its spatial 
and temporal resolution is often inadequate 
for applications focusing on individual tree or 
stand. In such cases, digital cameras can prove 
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invaluable in creating innovative monitoring 
systems. They have the capacity to provide 
highly detailed information about tree and stand 
structures, capturing images from the ground 
(terrestrial photography) and the top canopy 
using unmanned aerial vehicles (UAVs). 
 Peña et al. (2018) demonstrated that by using a 
conventional RGB and a multispectral camera, it 
was possible to accurately obtain the tree height 
(RSME=0.21 m) and biomass (RMSE=0.23 kg/
m3). Pu et al. (2021), combining hemispherical 
photography and UAV-LiDAR data, achieved 
highly precise results (RMSE=0.053) for 
canopy closure estimation. Hosingholizade et al. 
(2023) used slope corrected shadow length and 
canopy maximum (CM) filtering to determine 
the heights of pine trees in a forest plantation on 
RGB UAV imagery and reached solid results, 
especially with the CM algorithm. 
 The affordability and ease of managing 
photogrammetric images with standard 
software workflows have made consumer-grade 
RGB and professional multispectral cameras 
the most commonly used devices among the 
various payloads that can be installed on UAVs 
(Ecke et al. 2022, Nex et al. 2022).
 Furthermore, photogrammetric data provide 
the opportunity to extract a large number 
of explanatory variables from both 3D data 
(high point clouds metrics and Digital Surface 
Model (DSM) metrics) and 2D data (including 
RGB and multispectral orthomosaic values, 
specific bands values, and vegetation indices, 
as well as texture features) (Giannetti et al. 
2020). Texture features are highly valuable 
among the numerous explanatory variables 
derived from photogrammetric data (Nex 
& Remondino 2014, Bourgoin et al. 2020). 
Among the multitude of image textures, the 
Grey Level Co-occurrence Matrix (GLCM) 
(Dmitriev et al. 2021) is the most used, as it 
allow the extraction of features that analysed 
the distribution of grey levels across adjacent 
pixels, taking into account the spatial position 
of these pixels within an image or a portion 
(Humeau-Heurtier 2019). Several studies have 

demonstrated the utility of GLCM in tasks 
such as segmenting individual trees (Samal 
et al. 2006; Bohlin et al. 2012; Onishi and Ise 
2021; Khorrami et al. 2022), predicting and 
estimating forest growing stock volume and 
structure indices (Bohlin et al. 2012, Giannetti 
et al. 2020), and identifying leafless poplar 
plantations (Onishi and Ise 2021).
 In this study, we examined the use of 
multispectral photogrammetric data collected 
via UAVs to retrieve canopy and stand attributes 
at plot-level within hybrid poplar plantations. 
We developed a methodology that integrates 
field data and terrestrial digital photos to predict 
variables related to poplar plantations. Instead 
of relying on 3D photogrammetric data (such 
as point clouds and Digital Surface Models), 
our methodology is designed to utilise only 
multispectral orthomosaics and Grey Level 
Co-occurrence Matrix (GLCM) features, which 
are easily manageable by poplar plantation 
managers. In this approach, in-situ canopy and 
stand measurements were employed to calibrate 
the aerial data, making it applicable at broader 
spatial and temporal scales.

Materials and Methods

Study area

Data were collected in three poplar plantation 
farms in the Lombardy Region, Northern 
Italy: Boretto, Torre d'Oglio, and Pomponesco 
(Figure 1). A total of 51 square plots, 2500 m2 
ha in size each, were selected in hybrid poplar 
plantations, ranging between 4 to 12 years 
in age. The tree spacing in the plots varied 
between 36 m2 (6x6 m) to 49 m2 (7x7 m). 
The location of each plot was georeferenced 
using a GNSS receiver, and the recorded 
GNSS data underwent post-processing up to 
centimetre precision with correction data from 
a base station. All the data, including forest 
inventory, terrestrial digital photography and 
UAV photogrammetric data, were collected 
simultaneously (i.e. the same day) to prevent 
potential incongruences. 
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Forest inventory data

In each plot, the diameter at breast height (D, m) 
of all poplar trees was measured using a calliper, 
while the tree height (H, m) was derived from 
D using poplar plantation allometric equations 
derived in an independent study (Chianucci et 
al. 2020). For each callipered tree, the mentioned 
allometric models allowed the estimate of the stem 
volume (Vst, m3 ha-1), the crown volume (Vcr, m3) 
and the calculation of basal area (G, m2 ha-1).

Terrestrial Digital Cover Photography data 
In each plot, 12-20 digital cover photography 
(DCP) images (Macfarlane et al. 2007) were 
acquired under overcast sky conditions along a 
grid of 16 sampling points using a digital single-
lens reflex camera (Nikon D90) fitted with an AF 
Nikkor 50mm 1:1.8 D fixed lens, which yields 
a field of view of about 30°. The camera was 

placed at about 1.3 m height and oriented 
upward. The camera was set in aperture-priority 
mode, with the aperture set to F8.0; the exposure 
was set to underexpose the image by one stop 
(REV -1) to improve the contrast between sky 
and canopy pixels (Macfarlane et al. 2014). 
 Images were then analysed using the R 
package coveR (Chianucci et al. 2022). The 
blue channel of the image was imported, and 
a binary classification was performed using 
Otsu's method (Otsu et al. 1979). Gaps were 
further classified into large between-crowns 
gaps, and small within-crown gaps, using a gap 
size method that identified as “large” those gaps 
larger than 1.3% image area, as proposed in 
another study (Pekin & Macfarlane 2009). From 
the classified total gap fraction (gT; number of 
pixels classified as sky over the number of total 
image pixels) and large gap fraction (gL; number 
of pixels classified as large gaps over the number 

Study area and location of plots.Figure 1



147

Romano et al. Estimating canopy and stand structure...

of total image pixels), it is possible to estimate 
canopy cover attributes like foliage cover (FC), 
which is the complement of gap fraction (GF), 
and crown cover (CC), which is the fraction of 
the pixels that complement the between-crowns 
gaps. Equations 1, 2 and 3 calculated crown 
porosity (CP) as the fraction of gaps within the 
crown tree boundaries:

FC=1-gT               (1)
     CC=1-gL                          (2)
     CP=1-FC/CC                           (3) 
 Finally, LAI, defined as half of the total 
leaf area per horizontal ground area [44], was 
calculated from a modified Beer-Lamber law:

where k is the extinction coefficient, set to 0.85, 
assuming a planophile distribution of foliage. 
The canopy attributes calculated for each image 
were then averaged at the plot level.

UAV acquisition

A Micasense RedEdge multispectral camera 
sensor (three visible bands (RGB), and two 
not-visible spectral bands (red-edge and near-
infrared (NIR)) was equipped to an octocopter 
with eight co-axial propellers "STC_X8_U5" 
UAV: the total payload of the UAV was 4 kg. The 
study by Chianucci et al. (2021) provides further 
details regarding the used UAV and the camera.  

The acquisition of the images over the 51 
poplar plantations took place at noon with a 
clear sky and calm atmospheric conditions to 
reduce and minimise the wind and shadow 
noise effects. The UAV photogrammetric 
images were collected in the three study sites 
on the same days of field data and terrestrial 
digital photography acquisitions to obtain 
consistent data.

Before the UAV acquisition, in each site, a 
minimum of 8 ground control points (GCPs) were 
marked using 50x50 cm targets and measured 
with a high-performing topographic GNSS 
receiver. Each GCP lasted for approximately 
15 minutes with a 2-s logging rate. The post-

processing revealed small deviations in vertical 
(1.8 cm) and horizontal (0.8 cm) accuracies. 
The UAV flew at the set altitude of 120 m 
above ground level, corresponding to a Ground 
Sampling Distance of 8 cm. The overlap was 
set to 85% along the tracks and 82% between 
the tracks: 4 flights covered the whole area. 
Before each take-off and landing, images of 
a calibrated reflectance panel were acquired 
to allow, in the post-processing phase, the 
conversion of the digital number to reflectance 
for the abovementioned five bands.
 The photogrammetric images acquired with 
UAV were post-processed using Metashape 
Agisoft Photoscan. Firstly, the calibration 
certificate of the reflectance panels was used to 
convert each band pixel into reflectance for all 
the images. Then the processing foresaw: (a) 
image alignment, (b) mesh building, (c) guided 
marker positioning and optimisation of camera 
alignment using GCPs (georeferencing of the 
created scene), (d) dense cloud generation, 
(e) raster grid DSM generation with a ground 
resolution of 0.5 m× 0.5 m, and (f) ortomosaic 
generation at 0.08 m resolution.

Methodology of extraction of explanatory 
variables from UAV

The high resolution of multispectral ortomosaic 
acquisitions from UAV imagery data allowed 
to efficiently perform a Simple Linear Iterative 
Clustering (SLIC) algorithm for generating 
superpixels. The SLIC aimed to delineate the 
individual tree poplar crowns automatically. 
The use of the SLIC algorithm resulted from its 
ability to detect poplar plantations accurately 
(Dmitriev et al. 2021). The SLIC relied on 
using the Red-Edge multispectral channel 
since it was the most accurate in defining the 
tree crowns. 
 The segmented images were then processed 
using the Gray-Level Co-occurrence Matrix 
(GLCM) to calculate four texture metrics (i.e., 
entropy, variance, dissimilarity, and contrast) 
for each segmented tree crown using two 
different image sizes: 80 and 300 MP. 

(4)
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  The resulting texture metrics derived for 
each tree were afterwards used as explanatory 
variables in the model calibration. Figure 2 
reports the methodology used with the explained 
steps. All the methodology was set up using the 
R software OpenImageR (Mouselimis 2022) 
package for image management. The superpixels 
function with the slic method allowed the 
superpixel preparation; the R glcm package 
(Haralick et al. 1973, Zvoleff 2020) allowed the 
research of the statistics using the glcm function.

Liner regression model

A univariate linear regression model was fit 
between each target poplar plantation variables 
i.e. forest inventory variables (G_ha, Vcr, Vst_ha) 
and digital photos variables (CC and LAI) with 
the GLCM features derived by multispectral UAV 
ortomosaic. We choose to use linear regression 
models since they are considered adequate to 
predict the target poplar plantation variables from 
UAV photogrammetric data (Brosofske et al. 
2014, Puliti et al. 2015, Giannetti et al. 2020) and 
easier to use than non-parametric methods such as 
the K-NN and Random Forest. 
 The 51 square plots measured in the field 
were randomly divided into calibration and 
validation datasets (29 for calibration and 22 
plots for validation).
 In fitting the univariate linear model, the 
age of the plantation was considered a dummy 
variable that could assume two values: 1 if the 
age of the plantations was smaller or equal to 6 
years and 0 for plants older than 6 years.

 For each of the plot variables using the 
calibration dataset, we calculate the model 
according to:
plot variable = a ∙ (Plant age ≤ 6) + b GLCM feature
where:
•	 a and b are the model coefficients;
•	 plant age as a dummy variable;
•	 GLCM feature (Entropy, Variance, 
Dissimilarity and Contrast) calculated at 80 
and 300 MP.
 The model was then applied to the validation 
dataset (using UAV GCLM metrics calculated 
on the segmented crown), and the results were 
compared against the measured variables in the 
field. The model performance was calculated 
using different performance indices such as 
coefficient of determination (R2), Mean Absolute 
Error (MAE), root mean square error (RMSE), 
Nash-Sutcliffe efficiency (NSE), Percent 
bias (PBIAS), RMSE-observations standard 
deviation ratio (RMSE-RSR), and Pearson's 
correlation coefficient (r) (Moriasi et al. 2007).

Results

The results showed a significant correlation 
between predicted and measured values of the 
considered poplar plantation variables (i.e. Vcr, 
G_ha, Vst_ha, CC and LAI) with R2 consistently 
higher or equal to 0.86 (R2 val.) for all the tested 
models in the validation dataset (Table 1).
 The most accurate predictions for LAI and 
CC were achieved using GLCM variance, 
while GLCM dissimilarity yielded better results 
for G_ha and Vst_ha, and GLCM entropy 

The steps of the used methodology.Figure 2
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performed for Vcr (Table 1). Figure 3 reports 
the scatterplot representing the accuracy of the 
most accurate models from which it is possible 
to observe a close alignment between predicted 
and observed values in the validation dataset. In 
fact, it can be noted that the slope of the model 
lines does not differ significantly from the 1.

 The MAE and the RMSE are generally 
consistent with the standard deviations of the 
observed values for all the variables (Vcr = 131.2; 
G_ha = 7.62; Vst_ha = 64.3; CC = 0.23; LAI = 
0.64). However, it is worth noting that for CC, the 
50% value is lower than the standard deviation 
of the observed values. The NSEs ranging from 

GLCM Tree Model Coef. R2 R2 MAE RMSE NSE PBIAS RSR- r
variables a b Cal. Val. RMSE

Variance

Vcr -208.8 3.81 0.92 0.93 71.48 86.96 0.54 11.16 16.44 0.77
G_ha -11.3 0.23 0.94 0.92 4.89 5.65 0.42 -13.29 4.44 0.72
Vst_ha -95.1 1.92 0.87 0.92 41.29 47.70 0.42 -13.55 12.89 0.72
CC* -0.44 0.01 0.96 0.98 0.07 0.10 0.81 0.26 0.45 0.90
LAI* -1.03 0.02 0.92 0.93 0.34 0.42 0.87 -0.19 0.89 0.84

Contrast

Vcr -200.4 4.15 0.92 0.92 75.05 91.68 0.49 -11.68 17.34 0.74
G_ha -10.8 0.25 0.94 0.91 5.09 5.89 0.37 -13.85 4.62 0.69
Vst_ha -90.93 2.09 0.94 0.91 42.90 49.65 0.37 -14.10 13.41 0.69
CC -0.42 0.01 0.96 0.98 0.08 0.11 0.74 -0.59 0.51 0.87
LAI -1.00 0.02 0.90 0.91 0.39 0.48 0.84 0.06 1.03 0.80

Dissimilarity

Vcr -179.5 7.30 0.92 0.92 74.52 89.36 0.51 -3.99 16.90 0.73
G_ha* -9.59 0.44 0.94 0.92 4.39 5.20 0.51 -6.26 4.08 0.73
Vst_ha* -80.7 3.69 0.94 0.92 37.0 43.84 0.51 -6.50 11.85 0.73
CC -0.36 0.02 0.96 0.94 0.13 0.17 0.40 7.36 0.79 0.71
LAI -0.86 0.04 0.90 0.86 0.64 0.59 0.69 9.37 1.27 0.60

Entropy

Vcr* -218.8 5.77 0.92 0.94 68.74 84.27 0.57 -13.43 15.94 0.81
G_ha -11.7 0.35 0.94 0.93 4.59 5.59 0.44 -15.50 4.39 0.75
Vst_ha -98.0 2.90 0.94 0.92 38.71 47.23 0.43 -15.75 12.76 0.75
CC -0.45 0.01 0.96 0.98 0.08 0.11 0.74 -1.39 0.52 0.86
LAI -1.05 0.03 0.90 0.91 0.40 0.51 0.79 -3.25 1.08 0.73

Note: * Indicate the most accurate models. Coef: coefficients.

Summary of the model's validation indexes for all the considered poplar plantation variables and the four GLCM 
explanatory variables.

Table 1

Comparison between predicted and measured variables for the most accurate obtained model for each of the 
poplar plantation variables considered for the validation dataset.

Figure 3
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0.37 to 0.87 across all considered models indicate 
their adequacy for predictions. In fact, typically, 
NSE values between 0.0 and 1.0 are considered 
acceptable levels of performance, while on 
the contrary, negative indicates unacceptable 
performance (Nash & Sutcliffe 1970).
 The PBIA values consistently align with 
good performance across all generated 
models, falling within the acceptable range 
according to classification standards (±20% 
as good, <±40% as satisfactory, and >±40% 
as unsatisfactory) (Ougahi & Mahmood 2022) 
(Table 1). The Pearson coefficient r ranges from 
0.60 to 0.90, indicating a moderate to strong 
positive correlation between predicted and 
observed values. CC and LAI are the variables 
with the highest correlation values, albeit when 
estimated using contrast and dissimilarity, the 
relationship weakens. This discrepancy could 
stem from the mismatch between the GLCM 
features considered and the plant age groups. 
 For improved comparability of RMSE 
values, they were standardized following 
Loague and Green (Loague & Green 
1991) recommendations and evaluated in 
compliance with the findings of Westermeier 
and Maidl (Westermeier & Maidl 2019). The 
standardized RMSE were within the 10-20% 
for CC, indicating better performance, while 
for the other variables, the standardized RMSE 
were always slightly above 30%, indicating 
less favorable performance.

Discussion

Our results support the idea that GCLM texture 
features from multispectral ortomosaic are 
adequate explanatory variables for predicting 
poplar plantation variables related to crown and 
stand structure. All the models calibrated with 
the different target poplar plantation variables 
(i.e. Vcr, G_ha, Vst_ha, CC, and LAI) and the 
four GLCM features (i.e. Entropy, Variance, 
Dissimilarity, and Contrast) calculated based 
on multispectral UAV ortomosaic resulted in a 
R2 val. ≥0.86 (Table 1).
 This study confirms that GLCM texture 

features resulting from high-resolution images 
are suitable explanatory variables to obtain 
stem and crown tree variables, confirming the 
results of other studies (Ozdemir & Karnieli 
2011, Ozdemir & Donoghue 2013, Khorrami 
et al. 2022). In terms of R2, our results were 
more accurate than those obtained by Ozdemir 
and Donoghue (2013) in modelling tree 
diversity index and Giannetti et al. (2020) in 
modelling forest structure indices. Comparing 
the results obtained with other Italian studies 
conducted in forest environments using 
UAV photogrammetric data, we obtained a 
RMSE for V_st (RMSE=43.83 m3/ha), G 
(RMSE=5.2 m2/ha) in line with those obtained 
in Vallombrosa Forest (RMSE Vst = 96.1 
m3/ha and G =7.5 m2/ha) and more accurate 
results than those obtained in Rincine forest 
(RMSE Vst = 122.2 m3/ha and G =12.9 m2/ha) 
(Giannetti et al. 2020). These two studies used 
a larger number of explanatory variables and 
more complex multivariate linear regression 
models compared to the one we tested. 
However, it should be considered that poplar 
plantations are less complex than the two 
forests analysed by Giannetti et al. (2020). 
Comparing our results, with less complex 
Pinus forest, for crown variables (CC, Vcr, 
LAI R2 val ≥ 0.93), we obtained more accurate 
results in terms of R2 than those reported by 
Gülci et al. (2021) in a Turkish Pinus pinea 
forest (Crown Projection Area R2=0.89) using 
3D RGB photogrammetric UAV, and results in 
line with those from Lin et al. (2021) achieved 
in a Chinese Pinus massoniana forests using 
voxel approach calculated a 3D point cloud 
derived by oblique photogrammetic UAV 
flights (LAI, R2=0.91). Moreover, for G, our 
results were comparable to those reported for 
an oil palm plantation using high-resolution 
FORMOSAT-2 images (G: R2=0.89) (Migolet 
and Goïta 2020). In contrast, we obtained 
more accurate results for Vst compared 
to the ones reported for the above-ground 
biomass (R2=0.68) of a Chinese Pinus elliottii 
forest resulting from the processing of 3D 
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photogrammetric UAV data (Song et al. 2022). 
 Using the Red-Ege band as input, the SLIC 
method we used to segment the tree crown 
produced accurate results in detecting the 
poplar tree crown, even though some of our 
plots showed considerable under-canopy 
vegetation (e.g., grass vegetation). It is 
important to note that under-canopy vegetation 
may produce noises, affecting the SLIC 
algorithm and producing less accurate results.
 The proposed methodology could be 
easily applied to obtain wall-to-wall maps 
of the poplar plantation variables, which can 
support owners and managers in planning and 
monitoring the poplar plantations, especially 
during drought events. Wall-to-wall maps are 
considered important at the Italian level to 
develop decisional support systems or early 
warning systems and are crucial to support 
the digitalisation of the forest sectors (Fardusi 
2017, Giannetti et al. 2020, 2023, Bespalova 
et al. 2021, Singh et al. 2022). Furthermore, in 
the case of poplar plantations, these maps can 
potentially be upgraded with recursive UAV 
acquisitions, highlighting the importance of 
future multi-temporal studies. 
 In the present study, we aimed to develop 
an accessible methodology using data 
and models (i.e. ortomosaic and GLCM, 
univariate linear regression modelling) that 
poplar plantation owners can easily manage. 
However, integrating such models with 3D 
data and non-parametric methods would yield 
even more accurate results. Additionally, as 
pointed out by Chianucci et al. (2021) for the 
canopy variables, the proposed methods can 
upscale using Sentinel-2 Satellite images since 
canopy variables are also highly correlated 
with vegetation indexes calculated at a more 
coarse scale (i.e. 10 m) compared to UAV data 
resolution (i.e. 0.08 m). Therefore, canopy 
photography provides a cost-effective and 
rapid way to obtain reference canopy variables 
in situ, which can be used to calibrate metrics 
from UAV data, where the latter can be used for 
more routine measurements and monitoring of 

poplar plantation attributes.

Conclusions

This research highlights the relevance 
of GLCM textures metrics derived from 
multispectral UAV ortomosaic as significant 
explanatory variables for accurately predicting 
poplar plantation canopy characteristics and 
stand forest inventory variables using linear 
regression models. The findings from this 
study indicate that the proposed approach 
effectively offers a reliable and efficient 
alternative to traditional measurement 
techniques, requiring only a limited number 
of field plot acquisitions (traditional field and 
digital photography measures). This method 
enables comprehensive information gathering 
across all areas covered by UAV. However, 
it is important to note that this methodology 
must be suitable only for application at the 
farm scale due to the limited operation range 
of the UAVs. Future research should focus on 
assessing the accuracy of our methodology 
using multitemporal UAV acquisitions without 
the need for field data acquisition.
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