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Abstract The distribution pattern of different plant functional traits in arid and semi-
arid areas and their environmental impact mechanism are still unclear. The aim of 
this study is to elucidate the spatial distribution patterns of four key plant functional 
traits and the effects of environmental factors on their variation in inland arid and 
semi-arid areas and thus provide a reference for the prediction of species distribution 
and biodiversity conservation in this region. We focused on wild seed plants naturally 
distributed in Xinjiang, and by reviewing floras and data sharing platforms, we sorted 
and compiled the species list and distribution, plant functional traits and environmental 
data, including 3,953 species information, 44,302 county-level distribution records, 
3,892 plant functional traits information and 29 environmental variables. Spatial and 
statistical analyses were utilized to detect the spatial distribution patterns of four key 
plant traits in 50 × 50 km grid cells. The spatial variation in different functional traits 
was explored and environmental drivers were identified. The results showed that 
there were significant latitudinal and altitudinal gradient patterns of plant functional 
traits, and there were significant spatial correlations between different traits. Among 
the three types of environmental factors (climate, soil and habitat heterogeneity), 
climate factors played the most pronounced role in explaining functional traits. 
Mean annual temperature (MAT) was the most important driver of the spatial 
distribution patterns of each trait. Overall, vegetative and reproductive growth of 
plants is more favorable in areas with higher temperatures, abundant precipitation, 
fertile soils and high habitat heterogeneity, which is mainly reflected in higher 
plant height, larger leaves, earlier flowering time and longer flowering duration.
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Introduction

Plant functional traits refer to a series of plant 
attributes that have potentially significant 
effects on plant colonization, survival, growth 
and death, and reflect the mechanisms by 
which species respond to environmental 
changes and significantly affect ecosystem 
function (Weiher et al. 1999, Violle et al. 2007, 
Chacón-Labella et al. 2023, Hagan et al. 2023). 
Therefore, the study of plant functional traits is 
often used as an essential way to explore the 
mechanisms of local community construction 
(Diaz et al. 1998, Funk et al. 2017, Jeliazkov & 
Chase 2024). In the context of global change, 
how important functional traits respond to 
environment change at larger scales and how 
they affect ecosystem function has become 
one of the central issues that ecologists and 
biogeographers have focused on extensively 
(McFadden et al. 2022, Maitner et al. 2023).
 The combination of functional traits at large 
spatial scales provides a new idea to explore 
biogeographical pattern of biodiversity and 
ecosystem function (Lamanna et al. 2014, 
Šímová et al. 2018, Midolo 2024). There 
are universal and complex associations 
between plant traits (Westoby 1998, Weiher 
et al. 1999), and species can weigh these 
associations to achieve a balance of ecological 
strategies. Several global-scale studies have 
confirmed the broad and consistent influence 
of plant phenotypic traits and their trade-offs 
on physiological and ecological functions of 
individual plants (Wright et al. 2004, Kunstler 
et al. 2016). Furthermore, trade-offs between 
plant traits reflect the adaptation of plant 
ecological strategies to different environmental 
changes (Macek & Lepš 2008, Madsen-Hepp 
et al. 2023). Studies based on trait-environment 
relationships have been widely used to explore 
the mechanisms of plant resource economy and 
stress tolerance (Diaz et al. 1998, Kunstler et al. 
2016, Heilmeier 2019). Although some studies 
have explored environmental mechanisms of 
functional plant traits at large-scale (Wright et 

al. 2004, Swenson et al. 2012, Medeiros et al. 
2023), no generally accepted universal laws 
have been derived, which poses a challenge 
to the development of predictable trait-
environment hypotheses (Shipley et al. 2016).
 There is sufficient evidence that spatial 
patterns of plant traits are closely related to 
environmental gradients at large-scale (Joswig 
et al. 2022, Lynn et al. 2023), but studies 
on trait-environment relationships remain 
controversial. The main influencing factors 
of distribution patterns of different plant 
functional traits are different at different scales. 
 Almost all studies show that climate is 
the main factor affecting the distribution 
pattern of plant traits, and in particular there 
is widespread controversy as to which is the 
best predictor of plant traits, temperature or 
precipitation (Moles et al. 2014). For example, 
as for plant height, some studies have shown 
that precipitation is the best explanation 
factor (Swenson et al. 2012, Liu H et al. 
2019), whereas other studies have shown that 
temperature is the dominant factor (Markku 
2014, Yu et al. 2018). As for leaf size, a few 
studies from the tropics of South and North 
America have shown that it is more sensitive 
to precipitation than temperature (Dolph & 
Dilcher 1980, Ordoñez et al. 2009), whereas 
a global study confirms that it is more closely 
related to temperature than precipitation (Moles 
et al. 2014). As for flowering phenology, in 
temperate and northern regions, temperature 
has been considered the main driver (Song 
et al. 2020), whereas precipitation, rather 
than temperature, is the main climatic factor 
in areas with limited precipitation (Peñuelas 
et al. 2004, Crimmins et al. 2011). Thus it 
can be seen that these inconsistencies of the 
dominant affecting the spatial distribution of 
traits may be caused by a variety of factors, 
such as spatial scale bias, trait selection and 
differences in research methods (Borgy et al. 
2017). Therefore, exploring the geographic 
patterns and potential driving mechanisms of 
plant traits along environmental gradients is a 



53

Menglin et al. Mean annual temperature mainly drives spatial pattern of ...

highly complex and significant challenge. 
 Most recent studies on the geographical 
distribution pattern and environmental 
influence mechanism of traits have been 
carried out based on the single trait-climate 
relationships (Šímová et al. 2018). Indeed, 
not only climate but also soil and habitat 
heterogeneity also play an important role 
in the distribution of species composition 
and functional traits (Joswig et al. 2022). 
Soil nutrient availability is one of the main 
factors determining the species composition 
of plant community (Ordoñez et al. 2009). 
Plant economic traits are driven mainly by 
soil factors (Joswig et al. 2022). Furthermore, 
higher habitat heterogeneity provides species 
with a greater variety of habitat types and 
available resources, thus accommodating the 
coexistence of species with a wider range of 
ecological niches (Rosenzweig 1995). Habitat 
changes can indirectly affect plant traits by 
affecting species composition. However, there 
are still limited studies that quantify the spatial 
variation of multiple functional traits at different 
spatial scales, and analyze the adaptation of 
trait combinations to changes in soil nutrients 
and regional habitat heterogeneity. There is 
an urgent need to quantify and grasp these 
relationships to facilitate understanding of 
ecosystem function and to predict mechanisms 
of species composition and distribution under 
global environmental change (McGill et al. 
2006, Hagan et al. 2023).
 Among many plant functional traits, plant 
height and leaf size, representing vegetative 
traits, and flowering time, representing 
regenerative traits, have been widely studied as 
important traits that respond to environmental 
changes (Matthews & Mazer 2016, Wright et 
al. 2017), and their important roles are mainly 
reflected in the following aspects: 
 (1) Plant height have strong influence 
on water balance (Liu et al. 2019), light 
interception capacity and carbon sequestration 
strategy (Moles et al. 2009), which are key 
functional traits to evaluate the ecosystem 

functions such as site quality, aboveground 
biomass, leaf photosynthesis and species 
diversity (Wang et al. 2019). 
 (2) Leaf size directly reflects the light 
interception capacity of plants (Lusk et al. 
2019), significantly affects the energy balance 
of leaves  and water use efficiency of plants 
(Conesa et al. 2020), and then affects the 
physiological and biochemical processes of 
leaves to adapt to external climate changes 
(Peppe et al. 2011, Wright et al. 2017). 
 (3) Plants allocate survival resources by 
strictly controlling flowering time (Song et 
al. 2020). Flowering phenology is directly 
related to species fitness (Pfeifer et al. 2006) 
and is widely considered to be one of the most 
sensitive traits reflecting plant response to 
climate change (Chmielewski & Rötzer 2001, 
Song et al. 2020). 
 Moreover, plant height, leaf size, flowering 
phenology and other traits are coordinated 
with each other, reflecting plant growth, 
development and reproduction (Westoby 1998, 
Bucher & Römermann 2021), as well as plant 
survival strategies and ecosystem functional 
relationships. However, the relationships 
and differences between vegetative and 
regenerative traits adapted to environmental 
changes are still unclear.
 In summary, the study of plant functional 
traits is important for revealing biogeographic 
distribution patterns and predicting species 
composition and distribution mechanisms 
under global environmental changes. However, 
trait-trait relationships and trait-environment 
relationships at different spatial scales are still 
controversial, and there is limited research 
on spatial relationships and environmental 
mechanisms based on multiple traits. To further 
reveal the above problems, this study focuses 
on four key functional traits of wild seed plants 
from Xinjiang, China. They are maximum 
plant height, leaf size, first flowering time and 
flowering duration. By quantifying the spatial 
distribution data of traits and environmental 
factors in this region, we analyze the 
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geographical distribution pattern of key plant 
functional traits, understand the relationship 
and differences of spatial changes of different 
traits, identify the dominant environmental 
factors affecting the distribution changes 
of traits, and further reveal the adaptation 
mechanism of plant traits to environmental 
changes in arid areas. This study aims to solve 
the following questions:
 (1) How are the different plant functional 
traits distributed? Do different traits have the 
consistent spatial distribution patterns? 
 (2) What are the dominant environmental 
factors affecting spatial distribution of plant 
functional traits? Do different environmental 
factors have consistent effects on the spatial 
distribution of different traits?

Materials and Methods

Overview of the study area

Xinjiang is the largest provincial administrative 
region in China (34°25'~ 49°10'N, 73°40'~ 
96°18'E), with a total area of about 1.6 
×106 km2. It is located in the center of 
Eurasia, far from the sea, and is a typical 
semi-arid and arid region (Figure 1).  

This area has a complex terrain, which is 
gradually raised from north to south, and mostly 
surrounded by high mountains and plateaus 
(Xinjiang Investigation Group of Chinese 
Academy of Sciences 1978). It has a typical 

geomorphic pattern of "three mountains and 
two basins". From north to south, they are Altai 
Mountains, Junggar Basin, Tianshan Mountains, 
Tarim Basin and Kunlun Mountains. The 
Tianshan Mountains lie in the middle of Xinjiang 
and divide it into two halves. It is customary 
to call the south of the Tianshan Mountains as 
southern Xinjiang and the north of the Tianshan 
Mountains as Northern Xinjiang. Xinjiang has 
a typical temperate continental climate, with 
large temperature difference between day and 
night, sufficient sunshine, dry and little rain. The 
average annual temperature in this area is 4-14℃. 
Generally, it is low in northern Xinjiang and in 
plain areas and high in southern Xinjiang and in 
mountainous areas. The annual precipitation is 
less than 150 mm. The precipitation distributed 
uneven and showed more in northern Xinjiang 
and less in southern Xinjiang, more in mountains 
and less in basin (Xinjiang Investigation Group 
of Chinese Academy of Sciences 1978). The 
complex topography and variable climate 
conditions have resulted in a rich species 
composition and vegetation landscape types in 
this region, which provides an ideal place to detect 
the spatial distribution patterns of plant traits.

Species distribution data

Seed plant list as well as distribution data in the study 
were mainly consulted from Flora Xinjiangensis 
(Editorial Committee of Flora Xinjiangensis 
1992-2011) and Brief Flora Xinjiangensis 
(Editorial Committee of Flora Xinjiangensis 
2014). We compiled information on Latin name, 
Chinese name, family, genus, distribution county 
and elevational range, etc. Furthermore, we 
supplemented, checked and corrected the species 
list and distribution information by using literature 
sources and network data sharing platform. The 
literature included List of Vascular Plants in 
Tianshan Mountains (Pan 2021) and A Guide 
to Wild Vascular Plants in Northern Xinjiang 
(Yang et al. 2021). The data sharing platforms 
included iPlant plant species information system 
(http://www.iplant.cn) and NSII-China National 
Specimen Resources Platform (http://nsii.org.cn). 
We excluded all cultivated and introduced species. 

Figure 1 Overview of the study area
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Finally, we identified 3,953 wild seed plant species 
44,302 records with county-level distribution in 
Xinjiang.

Trait data

We collected datasets for four plant functional 
traits: maximum plant height (unit: cm), leaf 
size (unit: cm2), first flowering time (unit: 
month) and flowering duration (unit: months). 
These trait data were consistent with the sources 
of species distribution data, and we collated 
functional trait data for these species alongside 
the species distribution data. Maximum plant 
height refers to the maximum known potential 
height of a species, rather than the average 
height to avoid plant growth uncertainties and 
seedling errors (Moles et al. 2009). Leaf size 
was expressed as the product of average leaf 
length and average leaf width of single leaf 
and leaflet (compound leaf species). Previous 
studies have indicated that the product of leaf 
length and width had a strong linear correlation 
with leaf area (Cristofori et al. 2007). First 
flowering time refers to the month when a plant 
first blooms. Flowering duration is the total 
span of months that the plant experiences to 
complete the entire flowering period. Finally, 
we collected the trait information of 3,892 
species (with at least one known trait value) 
for subsequent analysis.

Spatial data

The vector data of Chinese county-level 
administrative divisions and the Digital 
Elevation Model (DEM) of the study area used 
in this study are derived from data sharing 
platforms. The former was obtained from the 
National Geomatics Center of China - 1:1 
million public version of basic geographic 
information data (2021) (http://www.ngcc.cn), 
the latter was obtained from the Geospatial 
Data Cloud website (http://www.gscloud.cn), 
with a spatial resolution of 30 m.

Environmental data

We collected and sorted out a total of 29 
environmental factors in three categories: 

climate, soil and habitat heterogeneity (Table 
S1). They are: (1) Climate factors: mean 
annual temperature (MAT), mean diurnal range 
(MDR), isothermality, temperature seasonality 
(TS), maximum temperature of warmest month, 
minimum temperature of coldest month, 
temperature annual range, mean temperature 
of wettest quarter, mean temperature of 
driest quarter, mean temperature of warmest 
quarter, mean temperature of coldest quarter, 
annual precipitation (AP), precipitation of 
wettest month, precipitation of driest month, 
precipitation seasonality (PS), precipitation of 
wettest quarter, precipitation of driest quarter, 
precipitation of warmest quarter, precipitation 
of coldest quarter, potential evapotranspiration 
(PET) and aridity index (AI). (2) Soil factors: 
soil pH (pH), soil organic carbon content, soil 
cation exchange capacity (CEC), soil total 
nitrogen and soil total phosphorus. (3) Habitat 
heterogeneity factors: elevational range (ER), 
mean annual temperature range (TR) and 
annual precipitation range (PR).
 Among the above environmental data, 19 
climate factors including MAT were derived 
from the WorldClim database (http://www.
worldclim.org), PET and AI were obtained 
from CGIAR-CSI GeoPortal (https://cgiarcsi.
community). The soil data was obtained 
from the National Earth System Science 
Data Center, National Science & Technology 
Infrastructure of China (http://www.geodata.
cn). Elevation information was derived from 
DEM data. Habitat heterogeneity factors: 
ER, TR and PR were the range (maximum - 
minimum) of elevation, MAT and AP in each 
grid cell, respectively. They were often used 
to reflect topographic and climatic complexity 
of a region, and were important indicators of 
habitat heterogeneity (Stein et al. 2015).

Data analysis

Spatial analysis

We used ArcGIS to crop the Chinese county-
level administrative division vector data 
and retained the counties and cities under 
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the jurisdiction of Xinjiang, thus obtaining 
Xinjiang administrative division data, and 
superimposed the DEM data to draw an 
overview map of the study area. Due to the 
large differences in county areas in Xinjiang, 
in order to minimize the result deviation 
caused by unequal areas, we firstly utilized 
the R software to superimpose the county-
level distribution and elevation distribution 
of species, Xinjiang administrative division 
data and DEM data to obtain more accurate 
distribution information of each species 
in Xinjiang. Secondly, the above species 
distribution information was transformed into 
a grid distribution with a spatial resolution 
of 50 × 50 km, and the species richness 
information of each grid was further obtained. 
In order to eliminate the bias brought by the 
boundary grid to statistical results, subsequent 
analysis excluded incomplete grids where the 
actual area of the Xinjiang boundary region 
was less than 50% of the grid area. Finally, the 
study area was divided into 765 equal area grid 
cells with 50×50 km, and 115,732 distribution 
records were determined based on grid cells.
 Using ‘Latin name’ as the key field for 
spatial matching, we used ArcGIS to spatially 
correlate the species distribution data based 
on equal-area spatial analysis units with the 
plant functional trait data, and calculated the 
average values of plant functional traits of 
all distributed species in each spatial analysis 
unit, so as to obtain the spatial distribution data 
of different plant functional traits. 
 The Natural breaks (Jenks) segmentation 
method was used to classify the mean values 
of different traits, and the spatial distribution 
patterns of different traits were plotted to 
characterize the spatial distribution of different 
plant functional traits within the study area. 
Based on a 50×50 km equal area spatial 
unit, spatial data such as longitude, latitude, 
elevation, and environmental data such as 
climate, soil, and habitat heterogeneity were 
resampled separately using spatial analysis 
tools of ArcGIS. Among them, latitude and 

longitude are the center point coordinates of 
each spatial unit, and elevation is the average 
value of DEM data in each spatial unit. 
 Climate and soil factors were extracted from 
the acquired global data, respectively, and 
resampled using the spatial analysis tool in 
ArcGIS-Regional Analysis-Display Analysis 
in Tables to export climate and soil data 
based on spatial analysis units. The habitat 
heterogeneity factors, ER, TR, and PR, were 
extracted and data were exported according to 
the extreme values of elevation, MAT and AP 
for each spatial unit of analysis, respectively. 
All environmental and spatial data derived 
from resampling will be used for subsequent 
statistical analysis.

Statistical analysis

Due to the strong correlations between 
environmental variables, we first performed 
a preliminary screening of climate factors 
in order to avoid the bias of multivariate 
linearity on the statistical model. We retained 
two widely used climate variables, MAT and 
AP (Peppe et al. 2011, Moles et al. 2014, 
Šímová et al. 2018), and excluded variables 
with a correlation coefficient r > 0.8 with both 
based on the results of the Pearson correlation 
analysis (Table S2). This step filtered all 
climatic variables down to nine. Then, the 
full regression model was constructed for 
three types of environmental variables: 
climate, soil and habitat heterogeneity, and the 
variance inflation factor (VIF) was calculated 
using the R package ‘car’ to further filter the 
environmental variables until VIF < 6 for all 
environment variables (Table S3). The final 
environmental factors include: (1) climate 
factors: MAT, MDR, TS, AP and PS. (2) Soil 
factors: pH and CEC. (3) Habitat heterogeneity 
factors: ER and PR. 
 We log-transformed the values of maximum 
plant height and leaf size to correct for 
skewness in their distributions and to improve 
the normality of the residuals in the fitted 
regression model. We applied the unary 
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least squares regression model to analyze the 
geographic gradients patterns and pairwise 
correlations of the spatial variation of different 
plant traits, and selected the optimal model 
according to the weight of Akaike Information 
Criterion (AIC, Supporting Information 
Table S4). The model with the lowest AIC 
value was selected to fit the geographical 
distribution patterns of trait along the latitude, 
longitude and altitude gradients. Since large-
scale spatial data generally have significant 
spatial autocorrelation, this may lead to an 
overestimation of the degrees of freedom of the 
residuals, thus affecting the significance bias of 
the regression model. 
 To ameliorate the effect of spatial 
autocorrelation on significance test, modified 
t-test were performed using the R package 
‘SpatialPack’ to assess the significance of 
statistical models (Dutilleul et al. 1993). Use 
R package ‘vegan’ to carry out the Variance 
Partitioning Analysis (VPA), and calculate the 
proportion of variance explained by climatic, 
soil, habitat heterogeneity and their combined 
effects on trait variation. In order to explore the 
main environmental predictors of plant traits, 
multiple regression models were constructed 
for each trait and all screened environmental 
variables, all of which were standardized 
before regression analysis. 
 In order to reduce the complexity of the 
model and identify the most important 
environmental factors, the R package ‘MuMln’ 
for model selection, retained models with AIC 
< 2 as candidates, and selected the environment 
variables in the model with the minimum AIC 
value to establish the subsequent regression 
analysis. McFadden's R2 was used to evaluate 
the goodness of fit of each regression model, 
and standardized regression coefficients were 
calculated using the R package ‘apaTables’ 
to measure the relative influence of different 
environmental variables on trait variation.
 All spatial analyses were conducted in 
ArcGIS (10.8), and all statistical analyses were 
performed in R (4.0) (R Core Team 2021).

Results

Spatial distribution pattern of plant 
functional traits

The spatial distribution patterns of the four 
traits showed differences. Maximum plant 
height was higher in low elevation plains such 
as Tarim Basin and Junggar Basin, while lower 
in Tianshan Mountains and Kunlun Mountains 
(Figure 2a). Leaf size was larger in northern 
Xinjiang and smaller in southern Xinjiang, 
especially in Tianshan Mountains and Altai 
Mountains (Figure 2b). First flowering time 
was the latest in Kunlun Mountains and earlier 
in the north and east of Tianshan Mountains 
(Figure 2c). Flowering duration was longer in 
Tarim Basin and Turpan Basin, while shorter in 
Kunlun Mountains (Figure 2d). 

 All traits showed significant patterns of 
latitudinal and altitudinal gradients (Figure 
3). Among them, the latitudinal gradient 
pattern of leaf size (R2 = 0.62) was the most 
obvious (Figure 3d), whereas altitudinal 
gradient patterns of maximum plant height 
(R2 = 0.75), first flowering time (R2 = 0.79) 

Figure 2 Spatial distribution patterns of plant functional 
traits in Xinjiang. (a) Maximum plant height, (b) leaf 
size, (c) first flowering time and (d) flowering duration 
was based on the spatial distribution patterns of 50×50 
km grid cells. The values of maximum plant height and 
leaf size were log-transformed. Natural breaks (Jenks) 
method was used to grade the mean values of different 
traits, which were divided into six grades. The color 
from red to blue indicated the trait value from high to 
low, and the white part represented incomplete grid 
with actual area less than 50% of grid area.
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and flowering duration (R2 = 0.64) were the 
most obvious (Figure 3c,i,l). Leaf size increased 
significantly with increasing latitude. Maximum 
plant height, first flowering time and flowering 
duration showed an unimodal trend along with 
latitudinal gradient, and the inflection points 
were about 42°N (Figure 3a,g,j). Maximum plant 
height and flowering duration first increased and 
then decreased with increasing latitude, while 
first flowering time showed the opposite trend. 
The altitudinal gradient patterns showed that 

maximum plant height decreased (Figure 3c), leaf 
size became smaller (Figure 3f), first flowering 
time delayed (Figure 3i) and flowering duration 
shortened (Figure 3l) with increasing elevation. 
There was no obvious trend in four plant traits 
with longitudinal gradient.

Correlations of spatial distribution of 
different plant functional traits 

Significant correlations were found 
between pairs of different traits (Figure 4).  

Figure 3 Geographic gradients distribution patterns of plant functional traits in Xinjiang. The variation trends of maximum 
plant height, leaf size, first flowering time and flowering duration along latitudinal gradient (first column), longitudinal 
gradient (second column) and elevational gradient (third column). The values of maximum plant height and leaf size 
were log-transformed. We selected the best models according to the AIC weight. The model fit was quadratic regression 
in latitudinal and elevational gradient, and linear in longitudinal gradient. The blue line represented regression fit line, 
and the gray part represented 95% confidence interval.
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Maximum plant height was positively 
correlated with leaf size and flowering duration 
(Figure 4a,c), and negatively correlated with 
first flowering time (Figure 4b). Leaf size was 
negatively correlated with first flowering time 
(Figure 4d) and positively correlated with 
flowering duration (Figure 4e). First flowering 
time was negatively correlated with flowering 
duration (Figure 4f). Among them, maximum 
plant height had the strongest correlation with 
first flowering time (R2 = 0.70), while leaf size 
had the weakest correlation with flowering 
duration (R2 = 0.11). The correlation between 
maximum plant height and flowering traits 
(mean R2 = 0.57) was significantly stronger 
than that between leaf size and flowering traits 
(mean R2 = 0.28).

Environmental factors affecting spatial 
distribution of plant functional traits

Effects of different types of environmental 
factors on spatial variation in plant 
functional traits
All three categories of environmental factors, 
climate, soil and habitat heterogeneity, had 

significant effects on variation in trait patterns 
(Figure 5). They had the highest total explanatory 
variance for first flowering time (Figure 
5c) and the lowest for leaf size (Figure 5b).  

The climate factor had the highest independent 
explanatory variance for all four traits, 
accounting for the proportion of total variance: 
maximum plant height 60.53%, leaf size 64.62%, 

Figure 4 Pairwise correlations between different plant functional traits in Xinjiang. The values of maximum plant height 
and leaf size were log-transformed. The blue line represented linear regression fit line, and the gray part represented 95% 
confidence interval.

Figure 5 Variance decomposition of climate, soil and 
habitat heterogeneity on (a) maximum plant height, 
(b) leaf size, (c) first flowering time and (d) flowering 
duration in Xinjiang. Residuals represent variance values 
that were not explained by the variance decomposition 
model. The numbers in the circles represented variances 
explained independently or jointly by climate, soil and 
habitat heterogeneity. 
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first flowering time 76.92% and flowering 
duration 56.52%. The combination of climate 
and soil, climate and habitat heterogeneity, and 
three types of environmental factors may also 
explain a certain proportion of trait variation. 
Overall, climate played an overwhelming role 
in explaining spatial variation in traits, while 
soil and habitat heterogeneity were only weakly 
explained. 

Dominant environmental factors affecting 
spatial variation in plant functional traits

Environmental factors had a significant and 
strong effect on spatial distribution of plant 
functional traits, with the regression model 
achieving a mean R2 of 0.72 for four traits 
(Figure 6). Overall, the first environmental 
predictor of different traits was MAT, which 
explained considerably more than other 
environmental variables, the second predictor 
was CEC. In addition, there were relatively 
strong effects of AP on leaf size and ER on first 
flowering time. All environmental factors with 
significant effects on maximum plant height 
except PS were positive (Figure 6a). Only 

MDR, PS and DR had negative effects on leaf 
size (Figure 6b). All environmental variables 
with significant effects on first flowering time 
except PS had negative effects (Figure 6c). 
All environmental variables that significantly 
affected flowering duration had positive effects 
(Figure 6d).
 The effects of environmental factors on the 
distribution of functional traits in different 
plants were different. Although MAT was 
found to be the dominant factor affecting all 
traits, the extent and effect of its influence on 
traits varied (Figure 6). MAT had the strongest 
effect on flowering duration (r = 1.09) and the 
weakest effect on leaf size (r = 0.70). MAT 
only had a negative explanatory effect on first 
flowering time, but a positive explanatory 
effect on other traits. MAT explained maximum 
plant height and flowering duration far more 
than other factors, but CEC was relatively 
prominent for leaf size and first flowering 
time. In addition, there were significant 
differences in the explanatory effects of 
environmental factors on different traits. For 
example, MDR and TS only had no effect on 

Figure 6 Explanatory effects of different environmental factors on spatial distribution of (a) maximum plant height, (b) leaf 
size, (c) first flowering time and (d) flowering duration. The best regression models were selected to explain maximum 
plant height, leaf size, first flowering time and flowering duration according to AIC weight. The effect coefficient for 
each explanatory variable had been normalized to indicate the relative contribution of that variable to each regression 
model. Different colored dots represented different impact effects, with red indicating significant impact, blue indicating 
insignificant impact and grey indicating no impact. The black line on the dot was the error bars. The dashed line was the 
zero-effect line, with the left side representing negative effect and the right side representing positive effect.
Abbreviations: MAT = mean annual temperature, MDR = mean diurnal range, TS = temperature seasonality, AP = annual 
precipitation, PS = precipitation seasonality, pH = soil pH, CEC = soil cation exchange capacity, ER = elevational range, 
PR = annual precipitation range. 
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flowering duration, or not significant effect, 
PR only significantly explained leaf size, 
while soil pH only had no effect on leaf size.

Discussion

Based on the spatial distribution patterns and 
environmental influence mechanisms of plant 
functional traits in Xinjiang, we found significant 
difference in the spatial distribution patterns of 
maximum plant height, leaf size, first flowering 
time and flowering duration. Although different 
traits showed significant distribution patterns 
along with latitudinal and altitudinal gradients, 
the patterns of between different traits were not 
consistent. We found that environmental factors 
have significant and strong effects on plant traits. 
Among them, the trait-climate relationships 
were the strongest. The first predictor of spatial 
variation in all traits was MAT, and the second 
predictor was CEC. However, trait-environment 
relationships differed overall between different 
plant traits, mainly in terms of different 
environmental predictors or different shapes of 
the trait-environment relationships.

Significant latitudinal and altitudinal 
gradient patterns of plant functional 
traits

We found significant latitudinal and altitudinal 
gradient patterns in different traits, and the 
overall trend of traits with altitudinal gradients 
was more pronounced than with latitudinal 
gradients. Latitude patterns of plant traits at 
large-scale, especially at global-scale, are not 
uncommon (Lamanna et al. 2014, Wright et al. 
2017). Although the latitude span in this study 
area is relatively limited, we can still find some 
interesting phenomena, such as maximum 
plant height, first flowering time and flowering 
duration show a single peak along latitude, with a 
turning point around 42°N, which is the location 
of the Central Tianshan Mountain range. 
 The Tianshan Mountain, which lies in the 
middle of Xinjiang, is an important dividing 
line for physical geography and vegetation 
level. There are clear differences in climate, 
soil, flora, and vegetation types on the north 

and south sides of the Tianshan Mountains 
(Xinjiang Investigation Group of Chinese 
Academy of Sciences 1978), which coincides 
with the latitudinal single-peak patterns of trait 
variation in this region. Moreover, due to the 
huge difference in altitude, vegetation in the 
mountainous areas of Xinjiang shows vertical 
zonation with altitude (Xinjiang Geography 
Institute of Chinese Academy of Sciences 
1987). This is also confirmed by our results. 
The argument that maximum plant height 
decreases, leaf size decreases and flowering 
phenology delays with increasing altitude has 
been generally confirmed in previous studies 
(Macek & Lepš 2008, Rafferty et al. 2020). 
Altitude is often highly complex indirect 
gradient that are closely related to climate, soil, 
solar radiation and many other environmental 
variables that are critical to plant growth 
and survival (Körner 2007). As the altitude 
increases, there are environment features 
such as lower temperature, less precipitation, 
and increased solar radiation. Such adverse 
conditions will filter out some species that are 
less competitive (Cornwell et al. 2006).

Significant and strong functional plant 
trait-environment relationships

Trait-environment relationships, a set of plant 
attributes that are closely related to specific 
environmental conditions, are a result of the 
filtering effects of climate, disturbance, land-
use change, and biological conditions (Diaz 
et al. 1998). Different plant traits showed 
significantly stronger environmental signals in 
Xinjiang, in line with expectation of a strong 
and predictable trait-environment relationships 
(Lavorel & Garnier 2002, Shipley et al. 2016).
The variability and plasticity of traits may help 
species to overcome rapidly changing and 
harsh environmental conditions (Heilmeier 
2019). As a result, plants adapt to different 
environmental changes by trade-offs in trait-
environment relationships (Macek & Lepš 
2008, Kunstler et al. 2016, Lynn et al. 2023). 
 We also found that the relationships 
between different plants functional traits 
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and environment was mainly represented by 
the traits-climate relationship, the variance 
explanation ratio of climate factors to plant 
traits was considerably higher than that of 
soil factors or habitat heterogeneity factors, 
and more than 50% of the spatial variation of 
the four traits was independently explained 
by climate. Previous studies have shown 
that climate change has a globally consistent 
and driving effect on natural ecosystems 
(Parmesan & Yohe 2003). In general, climate 
factors play a decisive role in the distribution 
of functional traits on global or larger scales, 
whereas at smaller scales, soil, topography or 
habitat heterogeneity may be more critical to 
the distribution of traits (Liu X & Ma 2015).

Effects of temperature on spatial 
variation in plant functional traits

Although different traits showed significant 
environmental effects, not all environmental 
indicators were good predictors of plant traits. 
We found that MAT was the best explanatory 
factor for all traits, and its explanatory role was 
significantly higher than other environmental 
variables. This likely indicates that temperature 
is the key dominant factor shaping the trait 
variation in Xinjiang. This result is consistent 
with plant traits showing significant latitudinal 
and altitudinal gradient patterns, as temperature 
usually shows highly similar trends with latitude 
and altitude (Halbritter et al. 2013). It is often 
assumed that moisture conditions should be the 
most important environmental factor limiting 
plant growth in arid and semi-arid regions 
(Moles et al. 2009), but our results confirm that 
temperature is considerably more important than 
precipitation in explaining plant functional traits 
in Xinjiang. This may be related to the complex 
topography and hydrothermal distribution of 
the study area. Located far from the sea and 
surrounded by high mountains, Xinjiang forms 
a typically arid climate region, characterized 
by minor and uneven distribution of water 
resources, undeveloped surface runoff, and large 
areas without water flow (Xinjiang Geography 
Institute of Chinese Academy of Sciences 1987). 

 Due to water constraints, extensive deserts 
and gravel deserts are found in the two basins 
of northern and southern Xinjiang, indicating 
that precipitation is generally less and at the 
same level in habitats where plants are widely 
distributed. Moreover, Xinjiang is rich in 
solar-thermal resources, which are highly 
beneficial for plant growth and development. 
Therefore, we suggest that when precipitation 
is highly scarce in arid regions and light and 
heat conditions are very favorable, changes in 
precipitation may no longer be the most critical 
limiting factor for plant growth and survival.

Contribution of soil to spatial distribution 
of plant functional traits

CEC is an important soil index to evaluate 
nutrient availability for plant growth, and a 
higher CEC generally represents a higher soil 
fertility level (Ross & Ketterings 1995). In this 
study, CEC was the second predictor explaining 
variation in all plant traits, especially for leaf 
size. It is obvious that plant traits such as plant 
height and leaf size that can use nutrients 
quickly have a growth advantage in habitats 
where soil nutrients are abundant (Ordoñez et 
al. 2009). This is because plants growing in 
fertile soil environments produce large amounts 
of litter, which produce macronutrient elements 
that are further returned to the soil, thus 
maintaining high soil fertility level. However, 
the relationships between plant traits and soil at 
large-scale are often easily overlooked. 
 Several studies based on global scales have 
confirmed that soil fertility indicators explain 
differences in leaf traits across sites even better 
than climate (Ordoñez et al. 2009), and that 
soils are more focused on explaining plant 
economic traits (Joswig et al. 2022). It has 
also been shown that predicting the effect of 
soil nutrient availability on plant productivity 
is one of the biggest uncertainties in future 
climate change predictions (Hungate et al. 
2003). Global climate change may affect soil 
nutrient availability on relatively shorter time 
scales, and plant species composition on longer 
time scales (Rustad et al. 2001). Therefore, 
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quantifying the effect of soil on variation in 
plant traits at different spatial scales needs to 
be further investigated (Lavorel & Garnier 
2002, McGill et al. 2006). 

Trade-off relationships between plant 
functional traits

This study found significant relationships 
between vegetative and regenerative traits, 
which showed that plants with higher height and 
larger leaves tended to bloom earlier, especially 
between maximum plant height and first 
flowering time, which was consistent with the 
conclusions of previous studies (Fitter & Fitter 
2002, Sun & Frelich 2011). In order to ensure 
sufficient time for accumulation to improve the 
survival rate of offspring, taller plants allocate 
resources by controlling the timing of early 
flowering to coordinate vegetative growth 
and reproductive growth replacement (Sun & 
Frelich 2011). The temporal trade-off between 
leaf growth and senescence is essential to 
minimize the risk of low temperature events 
and maximize carbon gain during the growing 
season (Bucher & Römermann 2021). Larger 
leaves favor the accumulation of abundant 
nutrients for reproduction and growth. The 
close relationships between leaf functional 
traits and flowering phenology have been 
widely confirmed (König et al. 2018, Bucher 
& Römermann 2021). Trade-off relationships 
between plant traits are the result of adaptation 
of their ecological strategies to environmental 
changes (Maitner et al. 2023). 
 In general, environmental variables played a 
more important role in explaining regenerative 
traits than vegetative traits in Xinjiang, 
especially the environmental explanation of 
the first flowering time reaches 79%, indicating 
that the flowering strategy of plants is highly 
sensitive to environmental changes (Song et 
al. 2020). Flowering marks the transition from 
vegetative growth to reproductive growth 
(Kushwaha et al. 2011), and the selection of the 
best flowering time plays a crucial role in the 
survival and reproduction of plants (Rafferty et 

al. 2020). We also find that the intensity and 
effect of different environmental factors on 
the interpretation of different traits differed, 
reflecting the uniformity and variability of 
the adaptation of plant traits to environmental 
changes. The intensity and direction of 
adaptation of species ecological strategies to 
environmental changes varies across regions 
and even within the same region (Parmesan 
& Yohe 2003). Therefore, we urgently need to 
master more trait-trait and trait-environment 
relationships to understand the ecological hot 
issues such as community species coexistence, 
ecosystem function, and species range 
formation (Midolo 2024, Wiethase et al. 2024). 

Conclusions

We analyzed the geographical distribution 
patterns and environmental drivers of four 
important plant functional traits: maximum 
plant height, leaf size, first flowering time and 
flowering duration of seed plant in Xinjiang. 
In general agreement with existing research 
findings and theoretical expectations, the main 
findings of this study are as follows:
 (1) Plant functional traits showed significant 
latitudinal and altitudinal gradient patterns 
in inland arid or semi-arid areas. There is a 
unimodal trend in maximum plant height and 
flowering traits along with latitudinal gradient. 
 (2) Different traits showed significant 
correlations and environmental signals. Of 
all four traits, maximum plant height is most 
closely related to first flowering time. Among 
the three types of environmental variables, the 
trait-climate relationships are the strongest.
 (3) MAT is the dominant environmental 
influencing factor for spatial variation in all 
four traits, and its explanatory contribution is 
significantly higher than other environmental 
factors, but the explanatory degree and effect 
of MAT on different traits are different. 
 (4) CEC is the second predictor for all traits, 
especially for leaf size. It is necessary to quantify 
the effect of soil conditions on distribution of 
plant traits at different spatial scales. 
 This study quantifies the geographical 
patterns and environmental mechanisms of key 
plant functional traits in a typical inland arid 
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and semi-arid area, with a focus on clarifying 
the associations and differences between 
trait-trait relationships and trait-environment 
relationships. Our results enrich the spatial 
pattern of plant functional trait at region level, 
and provide guidance for species composition 
and range prediction as well as biodiversity 
conservation in arid and semi-arid areas.
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