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Abstract Soil shear strength (SSS) is an important soil attribute that is influenced 
by vegetation. If aboveground biomass estimates can be used to predict soil 
shear strength, it would greatly enhance our ability to estimate SSS across large 
areas. Using data collected from 24 plots in Alaska, we analyzed the relationship 
between soil shear strength and ground-collected vegetation attributes and remotely 
sensed (RS) variables. We constructed both univariate and multivariate models to 
assess the predictive capabilities of the vegetation and RS variables. Total trees 
and total conifers were significant predictors of SSS, with a negative relationship 
existing between total trees/total conifers and SSS. Graminoid cover (%) was 
positively correlated with soil shear strength and was also a significant predictor 
of SSS. Of the RS variables, the bands B1 (0.443 µm), B2 (0.490 µm), and B3 
(0.560 µm) from the Sentinel 2 satellite system were all significant predictors 
of SSS. A multivariate model improved model fit over the simple univariate 
models, with an R2 = 0.46. We have both demonstrated a connection between 
SSS and aboveground vegetation attributes for areas within interior Alaska 
and that it is possible to link SSS to RS variables using a multivariate model. 
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Introduction

Vegetation-soil relationships have global 
implications and affect numerous ecosystem 
processes. For example, soil spatial 
heterogeneity has long been recognized as 
a key driver of plant species distributions 
(Figueiredo et al. 2018). Soil physical and 

chemical properties influence not only 
distribution patterns but plant speciation as 
well (Anacker et al. 2011). In turn, vegetation 
can affect ecosystem processes. Nutrient 
cycling (Hobbie 1992), hydrology (Arora 
2002), and carbon storage (Gu et al. 2019) 
are all known to be affected by vegetation. 
Understanding the complex interactions 
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between vegetation and soil, especially under 
changing global climate patterns, is critical for 
increasing our understanding of ecosystems 
in flux and to better predict the effects of 
these vegetation-soil interactions. In addition, 
increased understanding of vegetation-soil 
relationships should lead to better predictive 
models and a better understanding of the 
impact of anthropogenic activities (e.g. logging 
(Pohjankukka et al. 2016), agriculture (Raper 
2005), recreational activities (Sutherland et al. 
2001)) on the environment.
 Soil shear strength, defined as the shear 
stress a soil can withstand before failure, is 
an important soil property affecting multiple 
environmental processes. For example, erosion 
processes are influenced by soil shear strength 
(Watson & Laflen 1986), even on low slopes 
(Léonard & Richard 2004). Soil shear strength 
is also a major determinant of soil failure, 
especially during large rainfall events (Yalcin 
2007), which can ultimately lead to catastrophic 
landslides. Soil shear strength’s impacts 
on environmental processes can, in turn, 
influence, and be influenced by anthropogenic 
activities. Both intrinsic and extrinsic factors 
can influence soil shear strength. 
 Mineralogy of a given soil greatly impacts 
soil shear strength (Wu 1996), with quartz 
and feldspar (large particles) and halloysite, 
kaolinite, mica, and smectite (clay minerals) 
being positively correlated with slope stability 
(Tiwari & Marui 2005). Particle size distribution 
is also known to have an influence on soil shear 
strength (Wang et al. 2013). In general, smaller 
particle sizes lead to increased soil shear strength 
through particle cohesion. Another intrinsic factor 
affecting soil shear strength is the angularity of the 
soil particles (Suh et al. 2017), with well-rounded 
particles having reduced soil shear strength 
relative to particles with sharper angles. The main 
extrinsic factors influencing soil shear strength 
are soil moisture (Gerard 1965), compaction, and 
vegetation (Operstein & Frydman 2000).
 Vegetation increases soil shear strength through 
increasing the cohesion strength of soils (De 

Baets et al. 2008). Soils without roots have a 
lower cohesion force relative to soils with roots 
(Hu & Zhu 2009), with vegetation increasing 
slope stabilization and thus preventing erosion 
(Löbmann et al. 2020), even for slopes with 
reduced vegetation due to fire or grazing (De Baets 
et al. 2006). This becomes especially important in 
saturated soils, as saturated soils, especially on 
slopes, are more prone to failure. Failure can result 
in increased erosion, formation of gullies, and in 
extreme cases, possibly catastrophic landslides 
(Hoffman et al. 2018). 
 Multiple studies have investigated 
predicting soil strength from vegetation (root) 
characteristics. For example, slope stabilization 
has been shown to be positively impacted 
by forest age and composition, with older 
stands of mixed composition demonstrating 
increased soil strength (Schmidt et al. 2001). 
In some areas, grasslands have been shown 
to have a reduced capacity to resist slippage 
relative to slopes with shrubs (Terwilliger & 
Waldron 1991). Related to slope stabilization, 
the effects of vegetation on erosion control 
have been investigated and several factors 
have been identified. Deeper root systems are 
more effective for controlling erosion relative 
to more shallow root systems (Brown et al. 
2010). Results such as these have been used 
to incorporate root characteristics into soil 
strength models (Waldron 1977, Waldron & 
Dakessian 1981), essentially by adding the 
combined contribution of roots to soil strength. 
 Models that attempt to encapsulate the 
contribution of roots to soil strength contain 
varying levels of complexity. Early, simpler 
models only required the tensile strength of 
root fibers per unit area (Wu et al., 1979), 
but several studies found that the model 
overestimated the root contribution (Preti & 
Giadrossich 2009), leading to increasingly 
complex models that require measurements or 
estimates of root area, diameter, cross sectional 
area, number of roots, root length, etc. (Ji et 
al. 2020). Most of these experiments have 
been performed in the laboratory. Field tests 
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have identified the variability of lab-produced 
results and generally corroborate laboratory-
based models (Shoop et al. 2015). 
 Unfortunately, for most of these studies, it is 
unclear how to increase the spatial extent of the 
results without extensive field data collection. 
For example, even using the simplest soil 
strength model presented by Wu et al. 
(1979) would require estimating root tensile 
strength, which likely varies widely across 
vegetation communities with differing species 
composition. While physics-based models can 
extend our mechanical understanding of soil 
strength and the relationships between above- 
and below-ground vegetation with soil strength, 
a bridge between soil strength and observable 
dependent variables is required to extend the 
applicability of soil strength knowledge. 
 In the current study, our objectives are to 
identify if aboveground vegetation measurements 
and satellite imagery can effectively be utilized 
to predict soil shear strength variation in boreal 
forests. Across two summers (2021-2022), 
we measured soil shear strength using a shear 
vane across 24 plots in Alaska and compared 
the results to both ground-based vegetation 
measurements and remotely sensed (RS) satellite 
imagery. We performed a series of univariate 
and multivariate spatial regression analyses 
on assembled variables and report the results. 
Finally, we interpret the results in relation to 
processed-based soil shear strength models that 
include vegetation and identify paths forward for 
model improvement.

Materials and Methods

Site characteristics

Forested areas were selected across interior 
Alaska to represent a diversity of boreal forest 
types (Fig. 1). Forest types were classified as 
either hardwood, mixed, black spruce, white 
spruce, and mixed spruce dependent on the 
dominance of tree species in each plot. We 
did not use the forest classifications in any 
formal analyses; plots were simply classified to 

obtain a diversity of boreal forest types. In 
total, 24 plots were measured at five sites 
(Farmer’s Loop, Creamer’s Field, Horseshoe 
Lake, Johnson Road, and Donnelly Training 
Area), comprised of seven hardwood, five 
mixed, two black spruce, six white spruce, and 
four mixed spruce plots.

Field and remote sensing data collection

At each plot, a center point was marked and 
GPS coordinate were obtained. From each 
center point, a circle with a 14.6 m diameter 
was created by marking 7.3 m from the center 
point in each cardinal direction, following 
United States Forest Service Forest Inventory 
and Analysis (FIA) Guidelines (USFS 2020). 
In each quadrant of the circle, 35 random 
shear vane samples were collected to a depth 
of 10 cm using an H-227 Field Shear Vane 
(Humboldt Manufacturing, Elgin, IL, USA) 
using a 25.4 x 50.8 mm tip. 
 In 2021, vegetation data collection followed 
USFS (2020) guidelines and included 
measurement of diameter at breast height 
(DBH) and height and identification of all trees 
with DBH > 12.45 cm, a microplot with 2.07 
m radius was established and all saplings were 
identified with DBH and height measured. 
All vascular plant species occurring at > 1% 
cover were identified and assigned a FIA cover 
classification. All non-vascular plants within 
subplots were grouped as either feathermoss or 

Figure 1 Map of five sampling sites in interior Alaska 
(inset). 
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Spaghnum. A habitat type was assigned to each 
subplot to Level IV of the Alaska Vegetation 
Classification (Viereck et al. 1992). 
 Forest density, slope, and aspect were recorded 
and additional data describing disturbance, 
permafrost, and soil properties were collected. 
As most of these variables exhibited no 
relationship with soil shear strength after the first 
year of data collection, the sampling protocol 
was simplified so that only those variables 
exhibiting relationships were retained for the 
2022 data collection efforts to increase sampling 
efficiency. In 2022, the number of trees greater 
than 10 cm DBH were recorded by species in 
each plot. A 0.25 m2 quadrat was used to measure 
grass, graminoid, and moss percent cover to the 
nearest 5% with five random locations per circle 
quadrant. Depth to mineral soil was measured at 
a single point in each quadrant and frost depth 
was measured using a frost probe in five random 
locations per quadrant. 
 Sentinel 2A satellite imagery (Drusch et al. 
2012) was downloaded for each of the 24 plots 
using Google Earth Engine (Gorelick et al. 
2017). Sentinel 2A is part of the Copernicus 
program that collects imagery, for most bands, 
at the 10-meter scale roughly every 5 days. We 
selected cloud-free images based on proximity 
to the field data collection date. For each of the 
downloaded satellite images, we calculated 
the normalized Difference Vegetation Index 
(NDVI) using the formula NIR-Red ⁄ NIR+Red 
where NIR is the near infrared band and Red 
is the red band. In addition, we calculated the 
tasseled cap indices brightness, greenness, 
and wetness for each image (Kauth & Thomas 
1976). The tasseled cap indices are generated 
by multiplying the individual satellite bands by 
sensor-specific coefficients. For the Sentinel 
2A images, we used the coefficients generated 
by Shi and Xu (2019). The resulting image thus 
consisted of the original Sentinel 2A bands, as 
well as the additional bands NDVI, greenness, 
wetness, and brightness (Table 1). For each 
of the 24 plots, we calculated the mean value 
for each of the satellite variables, as plot size 
overlapped multiple pixels.

Data analysis

For summary statistics, we generated 
histograms for each dependent variable to 
assess the dependent variable distribution. 
To assess the relationships between ground-
collected and RS variable, we generated a 
correlation matrix (Pearson 1900) for all the 
dependent variables (Table 1). For all the 
ground-collected and RS variables, we fit a 
simple non-spatial univariate linear regression 
model regressed on the shear vane values. 
As standard, we set the significance level 
(α) at 0.05; p-values less than 0.05 indicated 
significant differences between models with 
independent variables and without (null 
models). Next, we tested for spatial correlation 
among plots using Moran’s I (Gittleman 
& Kot 1990) for each dependent variable. 
Moran’s I measures spatial autocorrelation and 
provides a metric from which a p-value can be 
generated. P-values < 0.05 indicate significant 
spatial autocorrelation. The null hypothesis is 
that there is no spatial correlation; test statistics 
with p-values < 0.05 are considered evidence 
of spatial correlation.
 For predictor variables that did not exhibit 
spatial correlation (i.e. p-values for Moran’s I 
were > 0.05), we used the non-spatial simple 

Table 1 RS variables included in data analysis and their 
abbreviations.

Predictor Abbreviation
Coastal Aerosol (0.443 nm) B1
Blue (0.490 nm) B2
Green (0.560 nm) B3
Red (0.665 nm) B4
Vegetation red edge (0.705 nm) B5
Vegetation red edge (0.740 nm) B6
Vegetation red edge (0.783 nm) B7
Near infrared (0.842 nm) B8
Narrow near infrared (0.865 nm) B8A
Shortwave infrared (1.610 nm) B11
Shortwave infrared (2.190 nm) B12
Normalized Difference Vegetation 
Index NDVI
Brightness Brightness
Greenness Greenness
Wetness Wetness
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linear regression previously referenced and 
tested against a null model that did not include 
the dependent variable using the ANOVA 
function in R (R Development Core Team, 
2021) package car (Fox 2019). If Moran’s I 
detected evidence of spatial correlation, we 
used a spatial regression model that accounts 
for spatial autocorrelation as implemented in 
the R package spaMM (Rousset & Ferdy 2014). 
We included the spatial coordinates in a Matérn 
covariance function (Stein 1999). We used 
a likelihood ratio test to compare the spatial 
model fit against a null model that only included 
the spatial coordinates as random effects using 
the LRT function in the R package spaMM. 
 For the ground-collected dependent variables 
that were significant, we constructed bivariate 
models that included two of the dependent 
variables (e.g. total trees and graminoid cover) 
in addition to an interaction term. Despite 
our low sample sizes, we decided to include 
the analyses for exploratory purposes. We 
tested for inclusion of an interaction term 
and a second variable using the ANOVA 
function in the base package within R. Finally, 
we included five of the RS variables into a 
final model for predicting soil strength. RS 
variables were selected based on whether the 
variable was (a) identified as significant in a 
univariate model and (b) not highly (> 0.8) 
correlated with another included RS variables, 
or (c) a calculated index (e.g. NDVI) that 
was subjectively identified as likely being 
important to include in a predictive model. 
We used a ridge regression model (Hoerl & 
Kennard 1970) available in the R package 
Glmnet (Friedman et al. 2010) to reduce 
overfitting, as many of the RS variables 
suffered from multicollinearity. We first scaled 
the variables, centered on 0 with a standard 
deviation of 1, and selected the best lambda 
using cross validation.

Results

Most of the field collected and remotely sensed 
(RS) variables exhibited a relatively uniform 

distribution of values. The only exception 
to this was average hardwood DBH: the 
values were either 0 or large, with very few 
measurements in the middle sizes (data not 
shown). While the non-spatial regression 
model indicated a significant fit, the results are 
spurious, and we removed the variable from 
further consideration. 
 Many of the ground-collected and RS 
variables were significantly correlated (Table 
A1). For the ground-collected variables, there 
were several expected correlations. The highest 
identified correlation was 0.6 for total trees and 
total conifers. Average conifer DBH was 0.59. 
There was a negative correlation between total 
trees and graminoid cover (-0.67). There was 
a negative correlation between total conifers 
and several of the RS variables. Many of the 
RS variables were highly correlated, with most 
of the Sentinel 2A bands and the calculated 
indices mostly having positive correlation 
values > 0.5. The outlier was the tasselled cap 
derived index wetness, which was negatively 
correlated with all the RS bands except for the 
Sentinel 2A bands B1 (coastal aerosol) and B2 
(blue).
 Several ground-based vegetation variables 
were correlated with soil strength (Figure 2). 
Since every ground-based vegetation variable 
exhibited spatial autocorrelation based on 
Moran’s I, we only used the regression model 
that accounted for spatial correlation. The total 
number of trees was negatively correlated 
with shear vane values (Table 2), as was the 
total number of conifers in a plot. Conversely, 
graminoid cover was positively correlated with 
shear vane values, meaning that soil strength 
increased as graminoid cover increased. As 
expected, total trees and total conifers variables 
were negatively correlated with graminoid 
cover (Table A1). However, when total trees, 
graminoid cover, and their interaction were 
included in a simple linear regression model, 
a comparison of nested models indicated 
that neither interaction term was necessary 
(P = 0.31) nor graminoid cover (P = 0.15). 
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Figure 2 Relationship between soil 
shear strength (as measured 
with a shear vane) and total 
trees (A), total conifers (B), 
and graminoid cover (C) for 
24 plots in interior Alaska, 
USA.

Figure 3 Relationship between 
soil shear strength (as 
measured with a shear 
vane) and Sentinel 
2A bands B1(aerosol)  
(A), B2 (blue) (B), and 
B3 (green) (C) for 24 
plots in interior Alaska, 
USA.
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A univariate model with only total trees was 
sufficient and had an adjusted R2 of 0.40 
(versus an adjusted R2 of 0.43 for the full 
model with an interaction term and an adjusted 
R2 of 0.43 for the bivariate model with total 
trees and graminoid cover).

 As with the ground-based vegetation 
variables, RS variables exhibited significant 
spatial autocorrelation. Inclusion of several RS 
bands improved soil strength estimate model 
fit (Table 2). Sentinel 2A bands B1 (coastal 
aerosol; 443 nm), B2 (blue; 490 nm), and B3 
(green; 560 nm) specifically were positively 
correlated with soil strength (Figure 3). These 
three RS variables were positively correlated, 
with B1 and B2 having a Pearson correlation 
value of 0.8 and B2 and B3 having a correlation 
value of 0.79. Inclusion of B1 significantly 
increased model fit (X1

2 = 5.8;  P = 0.016), 
as did B2 (X1

2 = 7.17; P = 0.007), and B3 

(X1
2 = 6.4; P = 0.011). All other RS variables, 

including the calculated indices, did not 
significantly improve soil shear strength model 
fit.
 The final ridge regression model included 
the Sentinel 2A bands B1 and B3, as well 
as the calculated bands wetness and NDVI. 
Model results indicated an adjusted R2 of 0.46 
(Figure 4).

Discussion

Soil shear strength was correlated with several 
aboveground ground-collected vegetation 
and RS variables across 24 plots in interior 
Alaska (Figure 1). Inclusion of total trees 
(count), total conifers (count), and graminoid 
cover (%) improved model fit when trying 
to predict soil strength (Table 2), with soil 
strength negatively correlated with total 
trees/conifers and positively correlated with 
graminoid cover (Figure 2). The relationship 
between aboveground vegetation properties 
and soil strength has been observed across 
different areas of the world. Examples include 
plant cover (specifically graminoid) being 
correlated with scree stabilization in the Italian 
Alps (Giupponi et al. 2023), vegetation cover 
(and root density) correlated with vegetation 
and species richness in Korea (Ali et al. 2017), 
and plant species diversity correlated with soil 

Table 2 Simple linear (simple) or spatial regression (spatial) 
intercept, slope, and significance values for 23 
ground-based and remotely sensed variables 
regressed on shear vane soil strength estimates. 

Variable Model Intercept Slope Sign.
Total trees spatial 49.206 -1.265 <0.001
DBH (mean) simple <0.001 0.468 0.696
Total conifers spatial 42.67 -1.277 <0.001
Conifer DBH 
(mean) spatial 38.028 -0.906 0.103
Total hardwoods spatial 33.918 0.008 0.985
Hardwood DBH 
(mean) simple 28.203 1.489 0.019
Graminoid cover spatial 28.268 0.179 0.002
Moss cover simple 39.899 -0.120 0.053
B1 (mean) spatial -170.937 0.178 0.016
B2 (mean) spatial -221.032 0.311 0.007
B3 (mean) spatial -170.937 0.178 0.016
B4 (mean) spatial -21.746 0.146 0.082
B5 (mean) spatial 7.181 0.041 0.100
B6 (mean) spatial 11.927 0.010 0.244
B7 (mean) spatial 14.328 0.008 0.310
B8 (mean) spatial 28.296 0.003 0.434
B8A (mean) spatial 24.175 0.004 0.509
B11 (mean) spatial 27.443 0.006 0.370
B12 (mean) spatial 27.351 0.015 0.387
Brightness spatial 10.231 0.005 0.276
Greenness spatial 31.062 0.002 0.501
Wetness spatial 33.171 -0.003 0.591
NDVI spatial -13.664 65.763 0.279
 Note: Sing.: significance

Figure 4 Shear vane measured (actual) and predicted 
values based on a ridge regression model 
that included the remote sensing variables 
B1, B3, wetness, and NDVI for 24 plots in 
interior Alaska.
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stability in experimental plots in Germany 
(Pérès et al. 2013). However, most studies 
have focused on connecting belowground 
biomass (specifically root mass/density) 
with soil strength. This is understandable, as 
belowground biomass is the direct driver for 
increasing soil strength, with aboveground 
vegetation attributes (e.g., cover, functional 
diversity) being correlated with belowground 
biomass and not necessarily the direct 
driver of soil strength. The focus on the 
connections between belowground biomass 
and soil strength hamper the ability to extend 
inferences spatially, as belowground biomass 
estimates are more difficult to obtain relative 
to aboveground biomass.
 Fortunately, there are known relationships 
between aboveground and belowground 
biomass (Naesset 2004, Cheng & Niklas 
2007, Smyth et al. 2013) that point to the 
potential ability to use aboveground vegetation 
measurements as a surrogate for belowground 
biomass. Previous studies (Enquist & Niklas, 
2002, Niklas 2004) have shown aboveground 
biomass scales with belowground biomass 
across a wide range of plant sizes. However, 
there is some uncertainty as to whether the 
observed relationships continue to hold true 
in mixed forest stands and across forest types, 
with some authors finding some support for 
relationships across mixed forests (Zianis 
& Mencuccini 2004), while other authors 
questions the existence of “universal” scaling 
factors (Li et al. 2005). If the allometric 
relationships do span diverse taxonomic 
groups of plants and forest types, then it leads 
to a greater potential to use aboveground 
measurements, either ground-based or RS, 
for estimating soil strength. This increases 
the ability to extend the spatial extent of 
predictive models, as belowground biomass 
measurements are not as easily scalable as 
aboveground. However, a recent global study 
indicated that the belowground percentages of 
plant biomass differ by vegetation type (Ma et 
al. 2021). 

 A further extension is linking aboveground 
vegetation and RS variables. This is a 
necessary step for increasing the spatial 
extent of soil strength modeling, as ground-
based vegetation measurements, while more 
cost effective than below-ground vegetation 
measurements, are still costly in terms of time 
and financial resources (Ali et al. 2016). In 
the current study, univariate spatial regression 
models that included Sentinel 2A bands B1, 
B2, and B3 improved soil strength estimates, 
relatively to null models that did not include 
these variables (Table 2). All three bands were 
positively correlated with soil strength, and 
negatively correlated with total trees and total 
conifers (Table A1). The negative correlation 
between B1 and total trees was quite high 
(-0.85). None of the Sentinel 2A bands were 
correlated very strongly with graminoid cover, 
through B3 had the highest positive correlation 
(0.64). Interestingly, none of the derived bands 
(brightness, greenness, wetness, NDVI) were 
highly correlated with the vegetation variables. 
We had initially expected that derived bands 
may perform better for both identifying total 
trees or grasslands, as derived bands have 
previously been used successfully to assess 
grasslands (Ali et al., 2016). The crosswalk 
from ground-based to RS variables requires 
the development of training sets. In our current 
study, the identified correlations between the 
vegetation and RS variables, and the ability 
of RS variables to be utilized to predict soil 
strength, allowed for the establishment of 
this linkage. We provide these connections 
for boreal forests and associated grasslands, 
but at the present time the applicability of the 
identified relationships between vegetation 
and RS variables to different biomes or outside 
our area of study is unclear. 
 While the use of univariate RS variables 
provided improved model fit relative to null 
models, the combination of multiple RS 
variables (specifically bands B1, B3, wetness, 
and NDVI) increased the ability of RS 
variables to predict soil strength (Figure 4). 
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The inclusion of the calculated bands NDVI 
and wetness, which when used in a univariate 
model did not significantly increase model fit 
(Table 2), increased the R2 by ~ 0.20 (data not 
shown). The multivariate model results should 
be treated as exploratory in nature, as the 
sample size of the data (24) is likely not robust 
enough. To conclude, the model results should 
be viewed as a path forward for additional 
study and expansion into additional biomes 
and ecosystems. Further, as soil properties 
were not investigated, including analysis of 
soil properties known to influence soil strength, 
such as mineralogy (Wu, 1996), particle size 
distribution (Wang et al., 2013), soil moisture 
(Gerard, 1965), etc. will only improve the 
accuracy of predictions. In 2021, all of our 
study sites were in areas where mineral soil 
was far below the level where shear strength 
sampling was conducted. In 2022, depth to 
mineral soil was much more variable and 
shear vane measurements at some sites were 
primarily conducted in mineral soils. However, 
as soil analyses were not conducted, these 
variables were not included in the analyses 
but inclusion of even basic soil data will likely 
improve the model considerably.
 There are both spatial and temporal 
limitations to our univariate and multivariate 
model results. As referenced above, different 
vegetation communities and biomes will have 
different remote sensing signatures (da Silva 
et al. 2022). Thus, it is likely that separate 
models would need to be constructed for 
different community types across geographical 
regions. At the present time, based on our 
limited sampling (Figure 1), it is unclear as to 
the spatial extent with which inferences can be 
drawn, both geographically and by community 
type. For example, would models constructed 
in riparian areas in Alaska be transferrable to 
the continental United States? It is also likely 
that our results are temporally constrained. 
Previous work looking at the transferability 
of soil strength models through time (years) 
indicated a loss of predictive power from one 

image to the next (Sopher et al. 2016). This area 
deserves more attention but requires multi-year 
studies with data collected at the same point 
through multiple time steps.
 Even with these caveats, our results have 
demonstrated that both ground-based vegetation 
data and RS bands can be used to construct 
predictive models of soil strength. While our 
results have spatial and temporal limitations, 
they do provide a roadmap for paths toward 
robust models of soil strength. To do this, it 
will be necessary to collect multi-temporal 
data points across a wide range of vegetation 
community types and include additional 
environmental variables. The most efficient 
methodological approach would be to identify 
broad vegetation community types (likely by 
biome), collect multi-temporal vegetation and 
soil data, and compare these data to similar 
biomes across different geographical areas. 
This would allow identifying which biomes 
(or other large vegetation community classes) 
may be adequate for modeling purposes and 
which ones are not, as well as the important 
underlying soil properties that should be 
included.

Conclusions

In this paper, we have demonstrated that remote 
sensing bands from the Sentinel 2 satellite 
system can be utilized to predict soil shear 
strength in artic soils. While we acknowledge 
that our sample size is relatively small, the 
present study presents a path forward toward 
a more cost-effective means of estimating soil 
shear strength that can be spatially extended to 
additional physiographic regions.
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