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Abstract Sustainable management of natural resources relies on accurate modelling 
of forest attributes to prevent degradation. This study explores advanced modelling 
techniques, including Artificial Neural Networks (ANN) and Support Vector 
Regression (SVR), for estimating the mean stem diameter reduction factor (taper) 
of standing fir trees (Abies x borisii-regis Matff.). These methods are compared 
against traditional non-linear regression model (NLR), developed using the 
Levenberg-Marquardt optimization algorithm. The ANN models employ cascade 
correlation, generalized regression, and Bayesian regularization back-propagation 
architectures, while the ε-SVR approach is assessed for its robustness. The results 
show that support vector regression (ε-SVR) achieved the lowest relative errors 
in model fitting, improving by 0.60% over cascade correlation and generalized 
regression and by 0.67% over Bayesian regularization. Regarding generalization 
ability, the ε-SVR model performed best, with a relative error of 4.90%, which 
was slightly lower than cascade correlation (by 0.1%), generalized regression (by 
0.01%), and Bayesian regularization (by 0.04%). A comparative analysis between 
machine learning approaches and standard regression revealed that the ε-SVR 
model had the lowest mean error (0.0715), while the non-linear regression (NLR) 
model showed a higher mean error of 0.0955, which means 1.35 times greater. 
These findings highlight the strong capability of machine learning methods 
in accurately estimating and predicting the diameter reduction factor of trees, 
effectively capturing its non-linear behaviour compared to traditional regression 
models. Overall, this study underscores the potential of advanced machine learning 
techniques to enhance accuracy and adaptability in sustainable forest management. 
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Introduction

A taper equation operates as a mathematical 
representation of the shape of a tree, allowing for 
the estimation of the volume of any height of the 
tree stem. This includes the total volume of the 

stem, and it can be applied with dimension limits 
of either height or diameter. The outer shape of 
a tree typically exhibits a clear curvature near 
its base, follows a linear track along the central 
section of the stem, and finally, shows variability 
along the upper stem (Shaw et al. 2003). Given 
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the challenges faced by the irregular shape of tree 
boles, there is a growing interest in achieving 
precise estimation and prediction of their volume 
and biomass production. The configuration of a 
tree bole resulted from the rotation of a generator 
curve, which is outwardly curved in the lower 
part of the tree stem and concave inward toward 
the upper section. Moreover, the shape of the tree 
stem falls between a cone and a parabolic form. 
Given the economic significance of accurate 
measurements in financial wood products, such as 
tree stem volume or its biomass, forest research is 
focused on exploring factors that could improve 
the precision of estimation in these products.
 To this direction, one significant factor is 
the tree stem mean diameter reduction factor, 
known as the taper factor. This factor represents 
the average by which the diameter of a tree 
bole decreases per meter of the tree's height. 
Understanding the configuration of the values 
of the mean diameter reduction factor in a 
standing trees which can be derived from a 
relative model, is of utmost importance. This 
knowledge significantly contributes to the 
precise estimation of the tree stem volume, 
in the sense that the stem volume calculation 
particularly relying on the availability of known 
diameters at various heights. Additionally, this 
knowledge contributes to characterizing the 
structure of forest clusters (West 2015). At the 
same time, it offers essential information for the 
effective management of forested areas. 
 For several decades, despite its limitations, 
regression modelling (Draper & Smith 1998) has 
been extensively employed in forest research to 
address challenges in both research and practical 
applications. In the past two-three decades, there 
has been an exploration of the effectiveness of 
artificial neural networks (ANNs) (Patterson 
1996, Swingler 1996, Gurney 1997) and 
support vector machines (Vapnik 1999, 2000, 
Montesinos López et al. 2022) in modelling 
regression tasks (ε-SVR), particularly within 
the realm of environmental modelling (Wang 
et al. 2009, Thomas et al. 2017). ANNs have 
gained significant attention primarily because 
the methodology bears similarities to statistical 
modelling. ANN models can be viewed as a 

complementary effort, avoiding the restrictive 
assumption of a specific statistical model, or as an 
alternative approach for fitting non-linear data. On 
the other hand, support vector regression (ε-SVR) 
algorithm is designed to address regression-type 
problems and has demonstrated the capability to 
mitigate both overfitting and local minima issues 
by minimizing the bound of generalization error, 
rather than focusing solely on the training error. 
These advantages position ε-SVR as a significant 
alternative algorithm in contrast to the commonly 
adopted non-linear regression (NLR) approach 
when constructing prediction models for trees 
attributes.
 Given their advantages over NLR modelling, 
both ANN and ε-SVR have been applied in 
forestry modelling research. The aim is to construct 
accurate and reliable models with minimal reliance 
on ground-truth data. These approaches not only 
ensure the development of robust models but also 
contribute to saving time and effort in the field. 
Specifically, different artificial neural network 
algorithms have been tested for estimating forest 
and trees attributes. Diamantopoulou (2005) 
employed the cascade correlation algorithm in 
feedforward artificial neural networks (ANNs) to 
estimate tree stem diameters. In contrast, Özçelik 
et al. (2017) utilized the Levenberg-Marquardt 
algorithm for predicting tree biomass, Özçelik 
et al. (2019) tested the same neural network 
algorithm for pine stem diameter prediction, and 
Vieira et al. (2018) employed the Levenberg-
Marquardt algorithm to estimate tree growth and 
height. Zhou et al. (2019) effectively estimated 
diameter at breast height using general regression 
neural networks. Furthermore, Ercanlı (2020) 
utilized deep learning to model the relationship 
between tree height and diameter at breast height, 
Sandoval & Acuña (2022) employed the Adam's 
optimization algorithm in back-propagation ANNs 
for stem taper estimations, while Heidarlou et al. 
(2023) explored forest cover changes in Iranian 
Zagros forests using ANNs for classification tasks. 
Owing to its capacity to effectively learn from 
data with noise by minimizing the generalization 
error, the support vector regression approach has 
been utilized in forest modelling, as well.  Monnet 
et al. (2011) showcased the capacity of ε-SVR 
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models in predicting forest stand parameters 
like dominant height, basal area, mean diameter, 
and stem density. Jiao et al. (2013) employed 
support vector regression to estimate the volume 
of live tree timber, Diamantopoulou et al. (2018) 
utilized ε-SVR models for the prediction of tree-
bark volume, Malek et al. (2019) estimated using 
ε-SVR models the stem diameter and biomass at 
the individual tree crown level, Hirigoyen et al. 
(2021) modelled leaf area index in Eucalyptus 
plantations using various machine learning 
methods, while Moradi et al. (2022) applied the 
support vector machines methodology to predict 
above-ground biomass of a oak forest.
 To this direction, this study focuses on 
constructing accurate and reliable models for 
estimating the stem mean diameter reduction 
factor (taper factor), employing nonlinear 
regression, artificial neural network, and support 
vector machine learning techniques. Ultimately, 
considering the advantages and drawbacks of 
each modeling approach, the performance of 
each model was assessed and evaluated.

Materials and Methods

Ground-truth data

The primary data used in this study originated 
from the Pertouli University Forest in Greece, 
consisting of a nearly homogeneous stand 
of fir trees (Abies x borisii-regis Mattf.). A 
systematic sampling approach was employed, 
measuring a total of 728 fir trees to encompass 
variations across different sites. Nevertheless, 
upon conducting exploratory data analysis 
(Hoaglin et al. 2006, Myatt & Johnson 2014), 
it was observed that certain extreme data 

values were present, introducing significant 
noise into the initial dataset. For this reason, 
this study utilized a refined dataset, comprising 
measurements from 677 cleaned fir trees, to 
mitigate the impact of outliers and enhance the 
reliability of the analysis.
 The dataset comprises variables of the 
following included measurements: a) of 
stump and diameter at breast height (0.3m 
and 1.3m from the ground, denoted as d0.3, 
d1.3, respectively) using a caliper, b) of the 
base diameter of the one meter top of the tree 
(denoted as dtop) using a Speigel Relaskop, and 
c) of total height (denoted as htotal) of the sampled 
trees using the Blume-Leiss hypsometer.

Data base construction

After the completion of the fieldwork, the 
measured variables which formed the initial 
database were the d0.3, d1.3, dtop and htotal. In order 
for the mean tree stem mean diameter reduction 
factor (DRF) to be calculated, the distance (L) 
between the stump diameter (d0.3) and the base 
top diameter (dtop) for each tree was calculated, 
as well, using the formula (Matis 2004):
                 d0.3-dtop       DRF= ——                            (1)
                  L
 To estimate the stem mean diameter 
reduction factor (DRF), the diameter at breast 
height and total tree height were used as input 
(independent) variables. These variables 
were chosen because they have a strong 
correlation with the DRF and are among the 
most commonly measured tree attributes. 
Additionally, the diameter at breast height 
is the easiest to obtain due to its accessible 
position on the tree.

Models construction

In the construction of a machine learning 
model, having both training and testing 
datasets is crucial to check overfitting. This 
approach aims to capture not only general 
patterns but also sampling variations. In this 
regard, the available dataset was randomly 
divided into two distinct parts: a) the fitting Figure 1 Location of the study area.
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data sample, constituting 90% of the total data, 
that is the measurements from 609 trees and b) 
the testing sample, comprising the remaining 
10% of the data, that is the measurements 
from the rest 68 trees. In order to facilitate 
the repeated validation of the constructed 
models, the fitting dataset was partitioned 
into training and validation subsets utilizing 
the k-fold cross-validation technique, where k 
was configured to 10 (Russell & Norvig 2020). 
The testing sample was employed to evaluate 
the predictive performance of the constructed 
models. It's important to highlight that the 
test dataset was kept separate from the fitting 
dataset to ensure there was no data leakage 
between them.
 The developed models employed the tree 
bole mean diameter reduction factor (DRF) as 
the dependent variable, with the diameter at 
breast height (d1.3) and the total height (htotal) of 
each tree serving as independent variables. 
 To employ regression analysis, the normality 
of the dependent variable (DRF) was assessed 
(Zuur et al. 2010) using Kolmogorov-Smirnov 
statistical test under the Lilliefors' significance 
correction (Lilliefors 1967) and a normal 
probability plot (IBM-SPSS 2021). To address 
the observed non-normality of the dependent 
variable, a combination of techniques was 
employed, which included bootstrapping (Efron 
& Tibshirani 1994) to estimate the standard 
errors of non-linear model parameters and the 
sequential quadratic optimization (Nocedal & 
Wright 2006) algorithm. The above techniques 
allowed the reliable estimation of both the 
bootstrapped 95% confidence intervals for 
the non-linear regression parameters and 
their 95% trimmed ranges, as well. Finally, 
the required effective initial values for the 
parameters estimation of the nonlinear models 
were acquired through the methods outlined in 
Draper & Smith (1998).
 According to the artificial neural network 
modeling, three architectures were used, 
namely the cascade (CCANN) where 
the Levenberg-Marquardt algorithm was 

embedded, the feedforward generalized 
regression (GRNN) and the back-propagation 
Bayesian regularization (BRNN) artificial 
neural networks. All selected architectures 
and algorithms have shown their potential to 
regression type problems in forestry research 
(Diamantopoulou 2005, Özçelik et al. 2017, 
Özçelik et al. 2019, Vieira et al. 2018, Zhou 
et al. 2019). Therefore, applying these 
algorithms to estimate the stem mean diameter 
reduction factor (DRF) would be challenging. 
However, what makes this study particularly 
interesting is the comparative evaluation of 
their effectiveness in accurately estimating this 
important taper factor.
 The cascade correlation algorithm, as 
described by Fahlman & Lebiere (1990) 
generates the cascade correlation Artificial 
Neural Network (ANN) of the feed-forward 
type networks. This supervised algorithm 
operates within multilayer feed-forward ANNs, 
utilizing the Levenberg-Marquardt algorithm 
(Levenberg 1944, Marquardt 1963) to adjust 
the ANN weights. This type of network 
possesses the capability to approximate any 
continuous function. The cascade correlation 
algorithm commences training without any 
hidden nodes. The introduction of each hidden 
node in the hidden layer occurs when the 
error between the network's realized output 
and the target is not sufficiently small. Each 
new added node establishes connections with 
all other nodes except the output nodes. The 
determination of the optimal number of hidden 
nodes involves a trial-and-error approach. This 
method begins with no hidden nodes, proceeds 
to train the network, and iteratively repeats the 
process by incrementally adding nodes until no 
further enhancement in network performance 
is observed. Owing to its dynamic expansion, 
persisting until the problem is effectively 
learned, the cascade correlation algorithm 
naturally emerges as a suitable solution for 
a given problem. This iterative procedure 
continues until the correlation between the 
hidden node's output and the network's residual 
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error is maximized (Equation 2):

            (2)

where o is the oth node; p is the pth training 
pattern;  is the value of the candidate node at 
pth training pattern;  is the mean of ; 
is the residual error observed at node o at pth 
training pattern;   is the mean of .
 During each training step, a new hidden 
neuron is introduced, and its weights are 
fine-tuned to maximize the magnitude of 
the correlation (Equation 2) and then this 
connection is frozen. Subsequently, each 
hidden neuron undergoes training only once, 
after which its weights are fixed (Figure 2).

 Generalized regression neural networks 
(GRNN) which are known as Bayesian 
networks were formulated by Speckt (1991), 
transforming a statistical method of function 
approximation into the structure of a neural 
network. The regression network employs 
Bayesian techniques to predict the anticipated 
mean value of the output, given an input case, 
as illustrated below:

                          (3)

where z is the output value, which is being 
estimated; x is the input case; f () is the joint 
probability density function of the inputs and 
outputs. 
 Since the joint probability density function 

is unknown, it is approximated by the sum 
of Gaussian kernel functions. The GRNN 
architecture includes four layers (Figure 3).

 

In each node of the pattern layer, the quantity 
of  is the derived signal 
which is passed to the next layer (summation 
layer), where Di is the distance between the 
training value and the point of prediction, 
which represents the degree of the adaptation 
of the predictions by the neural net to the 
actual training values and σ is the smoothing 
coefficient. That is the normal distribution is 
centred at each training value that fitted to the 
system. The signals reach at the summation 
layer are weighted with the estimated values of 
the training samples; the summation of these 
weighted signals represent the information of 
the first node (Figure 3 - S1) of the summation 
layer which is divided by the summation of the 
unweighted signals (Figure 3 - S2) reach to 
the second summation node. The estimated z 
value was derived as:

                     (4)

where zi are the observed values of the output 
variable for i=1,..., nf  
 From the above description, it is obvious that 
to control the magnitude of Di deviations, and 
finally the best GRNN model construction, the 
optimal smoothing coefficient (σ) value has to 
be selected. This optimal value was identified 
through an exhaustive grid-search approach 
(Belete & Huchaiah 2022) under a trial-and-
error procedure, over the range [0, 10] with a 
step size of 0.001.
 Bayesian Regularization Neural Networks 

Figure 2 Cascade correlation neural network architecture.

Figure 3 Generalized regression neural network architecture.
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(BRNN) (Figure 4) have gained popularity 
for their robustness in contrast to multilayer 
perceptron backpropagation networks. Moreover, 
they can reduce the necessity for extensive cross-
validation (Burden & Winkler 2008).

 The Bayesian learning of this algorithm 
which lies on the Bayes’ theorem, it has been 
extensively described by Titterington (2004), 
Kayri (2016), Sariev & Germano (2020). 
Indicatively, unlike conventional methods that 
seek point estimates for the parameters of the 
neural network, Bayesian neural networks treat 
the weight coefficients as random variables 
characterized by probability distributions 
known as prior distributions. That is, the 
Bayesian approach, relying on the probability 
distribution of the network weights, utilizes 
the Bayesian theorem to derive the probability 
distribution of the network predictions. During 
the training process, the mean square network 
error, incorporating the Bayesian regularization 
term, is minimized (Kayri 2016). Within 
the Levenberg-Marquardt algorithm, which 
is embedded to neural network training to 
minimize the objective function of the system, 
Bayesian regularization is integrated in order 
for any possible overfitting of the network to 
be prevented. This involves computing the 
Jacobian matrix (J), leading to the Hessian 
matrix (Hm) of the objective function. Jacobian 
matrix includes the first derivatives of the 
network errors with respect to the weights 
considered as random variables and biases. 
Ultimately, the training process continues until 
it converges while approaching the optimal 
number of nodes in the hidden layer.

 As a subset of Support Vector Machines 
exploring the application of Support Vector 
Regression (ε-SVR) methodology (Vapnik 
1999) holds promise in forest modelling. 
ε-SVR algorithm introduced and described in 
detail by Vapnik et al. (1997). Summarizing 
it can be stated that ε-SVR involves creating 
an initial space of (2ε) width, where ε > 0, 
encompassing the original data within the 
range [-ε, +ε]. By using an additional variable 
ξi, known as slack variable, the system tries to 
minimize the function (Vapnik 2000, Smola & 
Schölkopf 2004):

 subject to

                        (5)

where C represents a constant that governs 
the impact of each individual support vector, 
balancing model smoothness by considering 
the trade-off between prediction errors and 
model simplicity, w is the vector of the weights 
and bc is the system’s bias.
 The radial basis function (RBF) kernel:

   (6)

where,  and is 
the Euclidean distance between the support 
vectors (SV). 
 Euclidean distance is employed to transform 
the data into an m-dimensional super-space 
enabling the representation of complex 
nonlinear relationships through an optimal 
straight line (Williams 2011). Considering 
Equation (5) and (6), it can be concluded that 
the accuracy of estimation and the complexity 
of ε-SVR models are contingent upon three 
meta-parameters: (ε) which is governing the 
width of the ε-insensitive zone, gamma (γ) 
which is the free parameter of Gaussian radial 
basis function (RBF) kernels, and the cost 
parameter (C), which modulates the impact of 

Figure 4 Bayesian regularization neural network architecture.
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each support vector, striking a balance between 
mis-prediction and model simplicity.The 
optimal combination of these hyperparameters 
was selected through exhaustive grid-search 
approach (Belete & Huchaiah 2022), with 
values ranged a) for (ε) from 0.01 to 0.5 by 0.01, 
b) for (γ) from 0.01 to 1 by 0.01 and c) for (C) 
from 1 to 30 by 0.10.
 The non-linear regression modelling was 
performed using the SPSS software (IBM-
SPSS 2022), the cascade correlation and 
the Bayesian regularization neural networks 
modelling was accomplished with Matlab 
programming language and platform (Matlab 
2022) both provided by Aristotle University 
of Thessaloniki, Greece, while the generalized 
regression and the ε-SVR modelling was 
implemented using the "Python" programming 
language (Python Software Foundation 2022).

Modeling evaluation metrics

The assessment of the reliability and accuracy 
of models constructed through both regression 
and machine learning approaches employed 
the following evaluation metrics:

                        (7)

                (8)

(9)

              
(10)

where AAE is the absolute average error 
between observed (yi) and estimated ŷi by the 
model values; RMSE is the root mean square 
error; R is the correlation coefficient; RE% is 
the relative efficiency of the model estimations.
 Each of these metrics provides insight into 
model performance from different points of 
view. AEE indicates the typical size of errors, 
RMSE offers a more realistic measure of error 
size, and RE% enables direct comparison 
across models. Lower values for these metrics 
indicate better model performance. Conversely, 
the correlation coefficient (R) assesses the 
consistency of model predictions, with higher 
values denoting stronger agreement between 
estimated and observed values.

Results
The descriptive statistics such as the minimum 
(Min.) and maximum (Max.) values, the 
arithmetic mean (Mean) and standard deviation 
(Sd) of the mean diameter reduction factor 
(DRF), Sthe breast height diameter (d1.3) and 
the total tree height (htotal), for the fitting and 
the test data sets are given in Table 1.
 Given the non-linear behaviour observed 
in the stem mean diameter reduction factor 
(Figure 5), we employed a non-linear regression 
modelling approach (IBM-SPSS 2021).
 Among the various linear and nonlinear 
regression models examined utilizing 

Figure 5 Scatterplots of the diameter reduction factor values (DRF) against diameter at breast height (d1.3) and total height (h) 
values, for the fitting and the test data sets.



46

Ann. For. Res. 68(1): 39-54, 2025 Research article 

bootstrapping and the sequential quadratic 
optimization algorithm, the form of the non-
linear equation given below demonstrated the 
most effective fit to the available data:

        (11)

where bi are the asymptotic non-linear 
regression coefficients.
 The sum of squared residuals was utilized 
as the loss function. As previously mentioned, 
a combination of methods was employed to 
address the observed non-normality of the 
dependent variable. The approach used aimed 
to ensure the reliable estimation of both the 
asymptotic 95% confidence intervals for the 
non-linear regression parameters and their 
95% trimmed range. The regression coefficient 
values of Equation (11), their standard errors, 
the 95% asymptotic confidence intervals as 
estimated using the bootstrap technique along 
with their 95% trimmed range, are given in 
Table 2. All regression coefficients were found 
to be significantly different from zero, for 
significance level of a= 0.05 (Table 2).
 The cascade correlation model that was 

chosen as the best option had a hidden layer 
with four input nodes. This specific number of 
hidden nodes yielded the optimal performance 
for both the fitting and test datasets (Figure 6a). 
Within the context of the generalized regression 
neural network model, the most notable 
adaptation to both datasets was observed in the 
model with an optimal smoothing coefficient 
(σ) of 1.4 (Figure 6b). As depicted in Figure 
6c, the most effective Bayesian Regularization 
neural network model featured eight input 
nodes in the hidden layer. In the case of the 
chosen best support vector regression model, 
the ε-SVR model, which configured with 
hyperparameter values ε = 0.01, γ = 0.09, and 
C = 8.1, demonstrated the highest level of 
accuracy and reliability in adapting to both the 
fitting and test datasets (Figure 6d).
 The machine learning models documented 
in Table 3 demonstrated the most effective 
alignment with the ground-truth data. They 
showcased robust generalization capabilities, 
as demonstrated by their prediction root mean 

Table 2 Regression coefficient values, bootstrap standard errors, 95% bootstrap confidence intervals, and 95% trimmed 
ranges of Equation (11).

Bootstrap
standard 

error

95% bootstrap 
conf. inter.

95% trimmed 
range

Coef. Value
Lower 
limit

Upper 
limit

Lower 
limit

Upper 
limit

b0 -7.51 0.658 -8.806 -6.214 -8.570 -6.140
b1 -109.45 10.245 -129.597 -89.262 -124.460 -91.054
b2 743.24 47.247 650.184 836.304 661.817 808.755
b3 129.23 13.023 103.592 154.861 103.631 154.068
b4 -7689.47 352.757 -8382.874 -6994.066 -7976.535 -7301.107
b5 36405.06 1613.645 33228.598 39581.528 36330.275 36477.610
b6 -22.33 1.285 -22.859 -19.802 -25.286 -20.010

Table 1 Descriptive statistics of the mean diameter reduction factor (DRF), breast height diameter (d1.3) and the total 
tree height (htotal), for the fitting and the test data sets.

Variable
Fitting data set, nf = 609 Test data set, nt = 68
Min. Max. Mean Sd Min. Max. Mean Sd

DRF, cm/m 1.41 3.48 2.20 0.45 1.48 3.44 2.14 0.47
d1.3, cm 12.00 95.50 39.60 17.26 13.00 87.00 38.62 18.05
htotal, m 6.00 35.00 19.55 7.07 7.00 34.00 19.23 7.45
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square errors, correlation coefficient and 
relative efficiency (%) when applied to entirely 
new and previously unobserved test datasets, 
which were not part of their construction phase.
 Analysing the outcomes presented in Table 3, 
the relative efficiency of the machine learning 
models varied between 3.11% and 3.78% for the 
fitting dataset and between 4.90% and 5.00% 
for the test dataset. Notably, the ε-SVR model 

demonstrated the most favourable alignment 
with the data. Among the neural network 
models, it was the generalized regression 
architecture that yielded the most precise 
results, for both the fitting and the test data sets.
 In order for a comparison along with an 
evaluation of the performance to be conducted 
between the non-linear regression modelling 
approach (NLR) against the machine learning 

Figure 6 Parameter tuning for machine learning models, specifically: a) CCANN, b) GRNN, c) BRNN, and d) ε-SVR.

Table 3 Absolute average error, root mean square error, correlation coefficient and relative efficiency (%) of the mean 
diameter reduction factor for all machine learning constructed models, for the fitting and the test data sets.

Model/
structure*

Data 
set n AAE RMSE R RE%

CCANN/ fitting 609 0.2158 0.0816 0.7618 3.71
2-4-1 test 68 0.2328 0.1070 0.7352 5.00
GRNN/ fitting 609 0.2136 0.0814 0.7736 3.71
2-609-2-1 test 68 0.2348 0.1022 0.7676 4.91
BRNN/ fitting 609 0.2156 0.0830 0.7643 3.78
2-8-1 test 68 0.2253 0.1056 0.7389 4.94
ε-SVR fitting 609 0.1794 0.0683 0.8122 3.11

test 68 0.2371 0.1048 0.7496 4.90
Note: * the notation 2-4-1 means a network with one input layer with 2 input nodes, one hidden layer with 4 input 

nodes and one output layer with one output node.
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selected as the best fitted model, the results of 
Table 4 are provided below.
 As shown in Table 4, the relative efficiency 
of all models in estimating the mean diameter 
reduction factor ranged from 3.26% for the 
ε-SVR model to 4.36% for the NLR model. 
Additionally, the root mean square error 
(RMSE) values for the NLR, CCANN, GRNN, 
and BRNN models were 1.337, 1.172, 1.169, 
and 1.187 times higher, respectively, compared 
to the RMSE obtained when applying the 
constructed ε-SVR model to the available 

dataset.
 The first row of Figure 7 (a1, b1, c1, d1, 
and e1) presents the comparisons between 
the mean diameter reduction factor estimates 
produced by all constructed models and the 
observed values. These models exhibited a 
generally similar trend, with their estimations 
closely aligned to the 45-degree line, albeit 
with a few points deviating noticeably from 
it. Notably, the ε-SVR model stands out as it 
outperformed others, with a substantial number 
of points falling directly on or very close to 
the 45-degree line, highlighting its superior 
performance. We can observe similar patterns 
from the residual histograms presented in 
Figure 7 (a2, b2, c2, d2, and e2) generated by 
all the constructed models. In these histograms, 
there is a peak in the distribution of residuals 
around zero, with the frequency decreasing 
as the residual values increase. This pattern 
suggests that the models are well-tuned, and 
their parameters are appropriately set, leading 
to a healthy and acceptable model performance. 

To gain insights into the misestimations at 
various breast height diameter levels, dot plots 
illustrating the residuals for each diameter 
level of the trees (Figure 7 - a3, b3, c3, d3, 
and e3) were generated. These plots reveal 
that the residuals are distributed within a band 
of approximately ±1 cm/m for each diameter 
level. This observation suggests that all models 
are able of producing mean DRF estimates with 
satisfactory accuracy for diameters ranging 
from 12 cm to approximately 100 cm.

Discussion

Understanding the mean diameter reduction 
factor of a tree stem is valuable as it offers 
insights into the taper of the tree stem. This 
knowledge enables precise estimation of stem 
diameters from the ground up to the tree's top, 
leading to reliable estimations of tree bole 
volume, through sectional volume calculation 
methods. This, in turn, serves as the initial step 
in accurately determining the weight of wood 
and finally the amount of carbon stored by a 
tree. Nevertheless, the challenge of identifying 
and measuring tree stem diameters outside the 
bark layer at various heights several meters 
above the ground is widely recognized. 
Consequently, the research for suitable 
estimation models for biologically challenging 
variables that are hard to measure has become 
a central point of extensive research within the 
field of forest science.
 The primary objective of this study is 
to focus on employing advanced machine 
learning modelling techniques, specifically 
Artificial Neural Network modelling methods 
and the support vector machine technique. 
These methods are utilized to estimate the 
mean reduction factor (taper) of the stem in 
standing fir trees (Abies x borisii-regis Matff.) 
with the highest possible degree of accuracy. 
The machine learning approaches utilized 
considered as alternatives to traditional 
non-linear regression modelling. The 
development of non-linear regression models 

Table 4 Metrics of the mean diameter reduction factor 
for all constructed models, for all the available data set                 
(n = 677).

Models
Metrics NLR CCANN GRNN BRNN ε-SVR
AAE 0.2270 0.2262 0.2157 0.2166 0.1852
RMSE 0.0955 0.0837 0.0835 0.0849 0.0715
R 0.7293 0.7584 0.7724 0.7612 0.8049
RE% 4.36 3.82 3.81 3.87 3.26
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in this research involved the application of the 
Levenberg-Marquardt optimization algorithm. 
In addition, the construction of neural network 
models contained the utilization of various 
architectures, including cascade correlation, 
generalized regression, and Bayesian 
regularization back-propagation. Furthermore, 
the study also made use of the support 
vector regression approach, renowned for its 
exceptional properties (Vapnik 1999, 2000; 
Smola & Schölkopf 2004). 
 The need for implementing machine 
learning approaches for the accurate and 
reliable estimations of the mean stem diameter 
reduction arises from its capacity to address 
challenges met in forest data which are 
difficult to confront, including non-linear 
relationships, non-Gaussian distributions, 
and data noise. Machine learning approaches 
hold significant position as viable alternative 
to conventional regression models in various 
forest modelling applications. Additionally, 
it's essential to identify the precise form of 
the regression equation that can effectively 
represent the ground-truth forestry data, 
which is a challenging task, because it adds 
complexity and time to the application of 
regression methodology, and this aspect should 
not be disregarded. Moreover, achieving 
convergence in nonlinear regression models 
depends on having well-considered initial 
parameter values which requires additional 
modelling effort (Diamantopoulou 2022). In 
contrast, intelligent systems like the machine 
learning modelling approaches show the 
ability to handle ground-truth data without any 
prerequisites or specification of an equation 
form capable of accurately representing the data 
in hand. The system is able of independently 
generate the most suitable model, provided 
that its parameters’ values were appropriately 
optimized. However, if the system is not 
handled correctly, it might become stuck in 
local minima or it might lead to over/under 
fitting (Kalkanlı Genç et al. 2023).
 Because of its non-linear characteristics, 

modelling the mean stem diameter reduction 
factor presents a significant challenge. To the 
best of the authors' knowledge, research in this 
domain is limited, and artificial intelligence 
modelling methods have not be employed for 
this specific purpose. Our decision to choose 
among the cascade correlation, generalized 
regression, and Bayesian regularization back-
propagation architectures was primarily 
motivated by the exploration of various 
architectures under different algorithms, 
with the goal of identifying the most flexible 
process. Additionally, we selected algorithms 
specifically designed to address regression-
type problems. In the end, the support vector 
regression modelling approach, which relies on 
non-linear kernel functions (Boser et al. 1992), 
was chosen because of its ability to capture all 
patterns present in real-world data, including 
subtle ones. Furthermore, this approach has 
proved to be effective at overcoming local 
minima and handling outliers, as well. 
 The selected machine learning modelling 
approaches for the accurate and reliable 
estimation of the mean DRF offer several 
advantages. The cascade correlation model 
reduces the tuning effort by dynamically adding 
hidden nodes to the hidden layer as needed. By 
this way, the cascade architecture can effectively 
handle complex relationships (Diamantopoulou 
2005). Generalized Regression, in contrast, 
requires only a single pass through the data. 
The optimization of the smoothing coefficient 
(σ), making GRNN an efficient and easy to 
apply modelling approach (Speckt 1991). 
According to the third approach, the Bayesian 
Regularization method (Sariev & Germano 
2020), due to its Bayesian nature, provides 
robustness for noisy biological datasets, such 
as primary field measurements in forestry, 
ensuring smooth function approximation. 
Lastly, support vector regression (ε-SVR) 
has demonstrated its ability to balance model 
complexity and prediction accuracy (Vapnik 
1999) while offering robustness to outliers, 
an issue frequently met in forestry data. 



51

Maria J. Diamantopoulou Tree stem mean diameter reduction factor prediction....

However, all machine learning modelling 
approaches require a deep understanding of 
the best optimization practices, particularly 
regarding hyperparameter tuning, as their 
successful training depends heavily, though 
not exclusively, on this process.
 Based on the analysis outcomes, all 
examined models are acceptable options 
for estimating the mean diameter reduction 
factor. Nevertheless, it's essential to recognize 
the performance superiority of the ε-SVR 
modelling approach. The conventional 
regression method demanded substantial effort 
in constructing the final model, involving tasks 
such as managing prerequisites, determining 
the appropriate model structure, and specifying 
initial parameter values, especially in non-
linear cases. In contrast, the non-parametric 
machine learning approaches did not require 
the handling of assumptions but did require 
effective management of their parameters. 
Specifically, the cascade correlation 
architecture required the determination of 
the number of hidden nodes, the generalized 
regression architecture demanded the proper 
selection of the smoothing coefficient, 
Bayesian Regularization called for specifying 
the number of hidden nodes in the hidden layer, 
and the support vector regression approach 
required precise and careful fine-tuning of 
three meta-parameters. 
 As shown in Figure 6, fine-tuning model 
parameters is essential across all modelling 
approaches. For GRNN, BRNN, and ε-SVR, 
as hyperparameters approach their optimal 
values, the root mean square error (RMSE) 
decreases for both the fitting and test datasets. 
The optimal hyperparameter values were 
selected when this reduction is followed 
by strong generalization ability, ensuring 
that both errors are low and close to each 
other. In contrast, for the cascade correlation 
model, the basic optimization metric is the 
correlation coefficient (Figure 6a) due to the 
system’s ability to dynamically add hidden 
nodes. Increasing the number of hidden nodes 

significantly improves learning quality, leading 
to higher correlation coefficient values. In this 
case, the optimal number of hidden nodes was 
determined based on the highest achieved 
correlation value. 
 Taking the aforementioned points into 
account, the employed machine learning 
techniques present a trustworthy and precise 
solution for estimating the mean diameter 
reduction factor. From a practical forestry point 
of view, we believe that the findings obtained 
and enclosed in these models can serve as a 
valuable tool, enabling the accurate estimation 
of the mean diameter reduction factor for trees.
 Based on the results of this research, the tested 
machine learning methodologies demonstrated 
strong abilities in accurately estimating and 
predicting the diameter reduction factor of 
trees. This resulted in effectively capturing 
the factor’s non-linear behaviour, as compared 
to traditional non-linear regression models. 
However, a potential challenge lies in the lack 
of familiarity of machine learning models 
within forestry practice compared to the more 
established regression models. This challenge 
can be addressed through appropriate training 
for personnel who deal with the application 
of these models. It is worth noting that 
regression techniques which are now widely 
understood, were once considered complex 
and unfamiliar. Taking into consideration the 
advancements in computing, the personnel’s 
growing improvement in programming skills 
and expertise, machine learning can similarly 
become an accessible and efficient tool for 
forestry practice. In this context, despite 
any initial hurdles, machine learning can 
be considered as a significant potential for 
professional and effective management of 
forest ecosystems.

Conclusions

The knowledge of the mean diameter reduction 
factor of trees can offer various benefits for 
the sustainable management of forests. For 
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example, it provides valuable insights into 
the taper of the tree stem, enabling precise 
calculations of tree volume. This paper 
conducts a comparative analysis with the goal 
of achieving precise and reliable estimation of 
the mean diameter reduction factor in trees. 
To achieve this objective, artificial neural 
network modelling techniques and the support 
vector machine technique were employed as 
alternatives to traditional non-linear regression 
modelling. The case study focuses on 
accurately estimating the mean stem diameter 
reduction factor (taper) for standing fir trees 
(Abies x borisii-regis Matff.).
 Artificial intelligence can provide accurate, 
with generalization abilities, modelling 
solutions for addressing estimation challenges 
established by non-linear data with outliers 
and noise, which are commonly faced in 
forestry. Due to its non-parametric nature, this 
modelling approach is efficient and does not 
require prior assumptions or prerequisites.
 The comparative analysis between the 
traditional non-linear model, artificial neural 
network models, and the support vector 
regression (ε-SVR) model concluded that 
the ε-SVR model achieved the best fit based 
on the evaluation metrics used. The artificial 
neural network models demonstrated similar 
performance, whereas the traditional non-
linear model proved to be the least suitable for 
our data. 
 It's challenging to provide a conclusive 
answer regarding the superior method to 
recommend. This decision should be made 
considering significant factors such as the 
required effort for implementation in both field 
and office, along with the necessary skills.
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