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Abstract Over the last two decades, airborne light detection and ranging 
(LiDAR) has been developed into an advanced tool for practical forest resource 
inventory monitoring over large areas. Nonetheless, improving the accuracy of 
forest inventory attribute estimations remains an ongoing challenge. This paper 
introduces a novel framework for estimating forest inventory attributes based on 
the stratification of vertical forest structures (VFS). According to the composition 
and spatial arrangement of the superior, middle, and inferior strata in the tree 
layer, the forest stand was classified into six distinct VFS classes. Subsequently, 
the multiplicative power models were established for the stratification-based 
estimations of the forest inventory attributes, including stand volume (VOL), basal 
area (BA), and above-ground biomass (AGB), by using a rule-based exhaustive 
combination approach, and their performances were comparatively analyzed. The 
result indicated that: compared to the accuracy (relative root mean squared error, 
rRMSE) of the species-based estimation, the weighted average rRMSE of stratum-
based VOL, BA, and AGB estimations of four forest types (Chinese fir, Masson 
pine, eucalyptus, and broadleaf forests) decreased by 0.3%–7.3%, +3.6%–9.4%, 
and 0.7%–8.7%, respectively, and the accuracy was significantly improved after 
stratification. Even after clustering the VFS into two or three classes using cluster 
analysis, the accuracy of forest attribute estimations remained superior to that of 
the species-based estimations. Notably, the coefficients of variation for both forest 
attributes and LiDAR metrics experienced a substantial decrease, and their statistical 
relationship considerably strengthened within most strata post-VFS classification, 
which led to an improvement in the accuracy of the forest attribute estimations. The 
methodology presented in this paper provides a significant advance in improving the 
accuracy of forest inventory attributes for large areas using airborne LiDAR data.
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Introduction

Airborne laser scanning (ALS, also referred to 
as light detection and ranging, LiDAR) is an 
active remote sensing technology that accurately 
depicts the three-dimensional (3D) structure of 
forest canopies (Montaghi et al. 2013, Bouvier 
et al. 2015). Robust statistical relationships exist 
between certain descriptive statistics of ALS data 
(LiDAR-derived metrics) and field-measured 
attributes (Næsset et al. 2004, Gobakken et al. 
2012, Wulder et al. 2012), making it widely used 
for estimating and mapping forest attributes like 
tree height (H), diameter at breast height (DBH), 
basal area (BA), stand volume (VOL), above-
ground biomass (AGB), carbon, and leaf area 
index (LAI) (Nilsson, 1996, Means et al. 2000, 
Lefsky et al. 2002, Næsset and Økland 2002, 
Ioki et al. 2010, Tang et al. 2015, Marczak et 
al. 2020, Leboeuf et al. 2022). Since 2002, ALS 
has replaced conventional field measurement in 
Scandinavian countries (Næsset et al. 2004) and 
Canada (White et al. 2017) for operational forest 
resource inventory. It is also widely used in large-
scale plantations and ecological monitoring 
(Watt & Watt, 2013, Matasci et al. 2018, Silva et 
al. 2017a, b). However, improving the accuracy 
of forest attributes estimation using airborne 
LiDAR remains a tireless pursuit for foresters 
and researchers, posing a significant challenge 
for airborne LiDAR forest applications.
 Different forest types consist of diverse 
tree species, each with unique biological 
and ecological characteristics that result in 
variations in height, canopy shape (Gökkaya 
et al. 2015), spatial arrangement of canopy 
layers (Zolkos et al. 2013), canopy material 
distribution (Nelson et al. 2007), allometric 
equation for calculating forest attributes (Zhao 
et al. 2012), and wood carbon density (van 
Leeuwen et al. 2011). The relationships between 
the LiDAR metrics and forest attributes often 
vary among forest types and tree species 
(Hauglin et al. 2021). Hence, airborne LiDAR-
based forest attribute estimations typically 
require stratification. While some studies lack 

sufficient field plots for stratification (e.g., 
Knapp et al. 2020, Fekety et al. 2015, Fassnacht 
et al. 2014, Asner et al. 2012, Palace et al. 2015, 
Luo et al. 2018, Song et al. 2016, Chirici et al. 
2016, Laurin et al. 2016, González-Jaramillo 
et al. 2018), most utilize stratifications based 
on forest type (e.g., deciduous, coniferous, 
and mixed forests) (Viana et al. 2012, Nord-
Larsen & Schumacher 2012, Singh et al. 
2015, Latifi et al. 2015, Nelson et al. 2017, 
Zhang et al. 2017, Bouvier et al. 2015, Chen 
et al. 2022), or dominant tree species (Chen 
et al. 2012, Keränen et al. 2016, Maltamo et 
al. 2016, Bohlin et al. 2017, Yang et al. 2021, 
Novo-Fernández et al. 2019, Hill et al. 2018, 
Jiang et al. 2020). Nordic countries commonly 
employ tree species, site productivity, or 
development classes for stratification (Næsset, 
2004, Gobakken & Næsset, 2008, Gobakken et 
al. 2013, McRoberts et al. 2015, Gobakken et 
al. 2012, de Lera Garrido et al. 2020, Hauglin 
et al. 2021). Additionally, some studies stratify 
forests based on LiDAR data, such as the 90th 
height percentile and the proportion of ground 
echoes vs. canopy echoes (VEG) (Maltamo 
et al. 2011), the L-coefficient of variation of 
LiDAR echo heights (Lcv; equivalent to the 
Gini coefficient, GCH) (Adnan et al. 2021), 
and the relationships between canopy height 
and above-ground biomass (Jiang et al. 2020). 
Numerous studies have shown that: (1) proper 
stratification could improve the accuracy 
of forest attribute estimations (Chen et al. 
2022), reduce the effect of under- and over-
estimation problems (Jiang et al. 2020); (2) 
the finer the forest stratification, the higher the 
accuracy of forest attribute estimation. A study 
demonstrated that stratification by dominant 
tree species was superior to stratification by 
forest types (e.g., coniferous and broadleaf 
forests) (Chen et al. 2022), while Hauglin et al. 
(2021) found that stratification by species and 
maturity class (e.g., young and mature forests) 
had lower root mean squared error (RMSE) 
than stratification by main tree species groups 
(e.g., spruce, pine, and deciduous); (3) ALS data 



103

Zhou et al. Stratification of vertical canopy structure to improve estimation...

as a priori information to select field training 
plots provided better estimation (Maltamo et al. 
2011); and (4) proper stratification may reduce 
the number of sample plots needed (Jiang et al. 
2020, Hauglin et al. 2021). Forest stands of the 
same forest type or dominant species, or even 
of the same age class, have single-, double-, 
and multi-storied forests, so their vertical 
canopy structures vary widely. Even for the 
single-storied stands, there are both pruned and 
unpruned stands, and their 3D structures also 
vary considerably. Although some scholars 
have used LiDAR variables to classify vertical 
structure, the classification results lack clear 
ecological significance (Adnan et al. 2021). 
Consequently, stratifying the vertical forest 
structures and conducting stratification-based 
estimation with airborne LiDAR data can 
potentially improve the accuracy of forest 
attribute estimation.
 Recently, Zhou and Li (2023) proposed a 
novel approach for automated mapping of 
the vertical forest structure (VFS) in a large 
subtropical region based on discrete airborne 
LiDAR data. Their proposed approach exhibits 
high accuracy and generalization across forest 

types, species, and study sites, demonstrating 
its ecological and forestry significance. 
Building on Zhou and Li’s work, the overall 
scientific aim of this study is to develop a 
new framework for airborne LiDAR forest 
inventory attribute estimation, utilizing an 
area-based method and vertical structure 
stratification of forest stands. This research 
aims to (1) investigate the effect of VFS 
stratification on the accuracy of forest attribute 
estimations, and (2) reveal the mechanism 
for improving the accuracy of forest attribute 
estimations using VFS stratification based on 
airborne LiDAR data. The authors anticipate 
that their approach will further improve the 
accuracy of forest attribute estimation over 
large areas using airborne LiDAR data.

Materials and Methods

Study area

The study area encompasses the entire 
Guangxi Zhuang Autonomous Region, China, 
with geographical coordinates ranging from 
104°28′ to 112°04′E and 20°54′ to 26°24′N, 
covering an area of 237.6 × 103 km2 (Fig. 1). 

Figure 1 Study area and distribution of the field plots. (a) geographic location of the study area in China; (b) distribution 
of plot-clusters in three regions in the study area; and (c) locations of field plots in a cluster.
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The study area was divided into three regions 
according to the financial allocation, namely 
the Nanning, eastern, and western regions. For 
further insights into the study area’s specific 
characteristics, additional details can be found 
in the works of Li et al. (2022) and Zhou and 
Li (2023).

Field data 
and LiDAR 
data

The field plots 
in the Nanning, 
eastern, and 
western regions 
were measured from October 2016 to January 
2017, November 2018 to May 2019, and 
August 2019 to January 2020, respectively. 
The forests in the study area were categorized 
into four types according to the dominant tree 
species and species groups, namely Chinese 
fir (Cunninghamia lanceolate (Lamb.) Hook) 
forest, Masson pine (approximately 90% is 
Pinus massoniana Lamb., with the remainder 
being P. elliottii Engelmann and P. yunnanensis 
Franch) forest, eucalyptus (mainly Eucalyptus 
urophylla S. T. Blake and E. grandis × 
urophylla) forest plantation, and broad-leaved 
(includes a large number of tree species) forest. 
A total of 1003 rectangular plots with a size of 
30 m × 20 m were distributed in clusters over 
the study area, and each was subdivided into 
four sub-plots with an area of 15 m × 10 m. 
 All live trees with a DBH (1.3 m above 
the ground) ≥ 5 cm within the sub-
plot were measured and recorded. Tree 
height was measured using a Haglöf 
Vertex IV hypsometer (Haglöf, Långsele, 
Västernorrland, Sweden) for three average 
trees and the tallest tree in each subplot. 
The VOL was calculated using provincial 
species-specific allometric equations (Liao 
& Huang 1986), using BA and mean height 
as predictors. The AGB of an individual 
tree was calculated using species-specific 
allometric equations (Cai et al. 2018), using 
DBH as the predictor. Table 1 provides 

the summary statistics for the 1003 field 
plots. Comprehensive details regarding plot 
installation, configuration, measurement 
procedures, and positioning are provided in 
the works of Li et al. (2023) and Zhou and Li 
(2023).

 LiDAR data were acquired separately in the 
Nanning, eastern, and western regions from 
October 2016 to April 2017, October 2018 to 
October 2019, and August 2019 to January 
2020, respectively. The Riegl VQ-1560 and 
Riegl VQ-1560i laser scanning systems from 
Riegl Laser Measurement Systems GmbH in 
Horn, Austria, were used to collect LiDAR 
data in all three regions. The final average 
point density was 5.54 (±2.14) points⸱m2. The 
LiDAR survey flight, sensor parameters, and 
preprocessing method of point clouds were 
described in detail in the works of Li et al. 
(2023) and Zhou and Li (2023).

Classification and clustering of the 
vertical forest structure

Zhou and Li (2023) presented a procedure 
for mapping the VFS using discrete airborne 
LiDAR data. The fundamental methodology 
and steps of the procedure are summarized 
below.
 (1) The tree layer was stratified into three 
strata: superior (T1), middle (T2), and inferior 
(T3), following the stand dominance height 
criteria of the International Union of Forestry 
Research Organizations (IUFRO) (Neto et 
al. 2018). In this approach, the 99th height 
percentile (hp99) of LiDAR point clouds 
was used to replace the stand dominance 
height. Based on the composition and spatial 
arrangement of the three tree strata, the VFS 

Table 1 Summary statistics for measured field plots data. CV is the coefficient of variation.

Forest type Sample 
size

Stem density
(stem⸱ha-1)

Stand Volume (VOL) Basal Area (BA) Above ground 
biomass (AGB)

Mean 
(m3⸱ha-1) CV (%) Mean 

(m2⸱ha-1) CV (%) Mean 
(Mg⸱ha-1) CV (%)

Chinese fir 222 683-6883 193.60 46.58 31.91 29.34 86.97 35.35
Masson pine 260 350-3917 192.03 46.94 27.95 31.71 114.33 35.70
Eucalyptus 269 517-3350 141.91 17.24 17.24 34.12 78.25 45.47
Broad-leaved 252 233-4800 111.80 19.62 19.64 41.07 90.60 48.25
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of the tree layer was further classified into six 
classes, as visually presented in Fig. 2.

 (2) The study area was subdivided into an 
array of grid cells, with each grid cell matching 
the size of a field plot. LiDAR point clouds 
enclosed in the field plots and grid cells were 
segmented into 100 height bins, covering the 
range from the top to the ground. Each height 
bin was assigned a value representing the 
proportion of the number of returns enclosed 
in that bin to the total number of returns of 
all echoes within the field plot or grid cell. 
This process generated a height-frequency 
histogram.
 (3) A univariate ten-order polynomial was 
used to fit the height-frequency histogram, 
creating the vertical canopy profiles, also 
known as pseudo-waveforms.
 (4) A comprehensive set of vertical structure 
parameters was then extracted from the pseudo-
waveforms. These parameters characterized 
the vertical canopy structures, including the 
surface height of the profile layer (hls), height 
to the base of the profile layer (hlb), layer length 
of the profile layer (hla), layer ratio of the 
profile layer (LR), canopy surface height (hcs), 
height to the base of the canopy (hcb), canopy 
length (hcl), and canopy ratio (CR), cover of the 
superior (    ), middle (    ), and inferior (    ) 
layers, etc.
 (5) According to the number of effective 
peaks of the pseudo-waveforms and a selection 
of vertical structure parameters, a total of 43 
model profiles were selected from the field 
plot. These profiles were used to develop 43 

classification rules using the vertical structure 
parameters to classify and map the VFS of the 

field plot or 
study area into 
six classes.
 V i s u a l 
interpretation 
of the pseudo-
waveforms and 
vertical profiles 
of the point 
clouds were 
employed to 

identify the VFS classes in the field plots, and 
these results served as a reference for validating 
the classification. The overall accuracy of the 
tree layer classification in the 1147 field plots 
(including 144 field plots in rocky mountain 
forests) was 95.5%, with a Kappa coefficient 
of 0.936. It should be noted that in the study 
of Zhou and Li (2023), the forest canopy was 
divided into the tree, shrub, and herbaceous 
layers, which were further classified into 
24 VFS classes, with an overall accuracy of 
94.7% and a Kappa coefficient of 0.937. In 
an area of 811,000 ha, 99.8% of the grid cells 
were successfully mapped for vertical forest 
structures.
 As some classes had fewer than 20 field 
plots and were unsuitable for estimating forest 
inventory attributes, they were grouped into 
similar classes. Consequently, three, four, three, 
and five VFS classes were identified in the field 
plot of Chinese fir, Masson pine, eucalyptus, 
and broad-leaved forests, respectively. While 
estimating forest inventory attributes by 
stratum, the more strata there are, the more 
field plots are needed. To explore the feasibility 
of reducing the VFS number and effectively 
minimizing the sample size in the stratification-
based estimation of forest inventory attributes, 
classes with similar vertical structures were 
clustered. The coefficient of variation of the 
height distribution of LiDAR point clouds 
(Hcv) represents the variation in the height 
distribution of the laser point clouds, while the 

Figure 2 Stratification of the VFS of tree layers based on the composition and spatial arrangement 
of the three strata (Zhou & Li 2023).

1TC
2TC

3TC
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canopy ratio (CR, equal to the canopy height 
(length) divided by the canopy surface height) 
characterizes the canopy shape. Both Hcv and 
CR serve as indicators of the differences in 
the vertical structure of the canopy. Statistical 
analysis of the field plots revealed that Hcv and 
CR effectively characterized the differences 
among the vertical structure classes (Table 2).

Using the systematic clustering analysis, the 
vertical structures for all forest types were 
ultimately grouped into two or three classes 
based on Hcv and  CR (Fig. 3).

 

Model calibration and validation

Over the past two decades, numerous studies 
have been conducted on various forest 
types and forest attributes (e.g., H, DBH, 
BA, VOL, AGB, etc.), resulting in various 
estimation models (Zolkos et al. 2013; Latifi 
et al. 2015). These models include parametric 

regression and nonparametric approaches, 
with the primary goal of optimizing prediction 
accuracy by maximizing explained variability 
(e.g., R2), minimizing prediction error (e.g., 
RMSE), and reducing systematic bias (Zolkos 
et al. 2013), for specific forest attributes, forest 
types, and study sites (Næsset et al. 2005, 
Hudak et al. 2008, Penner et al. 2013, White 
et al. 2017). In this study, our objective was to 
investigate the impact of VFS stratification on 
estimation accuracy and to develop models for 
simplicity and clarity. Therefore, we focused 
on parametric models, specifically multivariate 
multiplicative power models known for their 
flexibility (Hollaus et al. 2009).
 A total of ten LiDAR-derived metrics were 
utilized in this study, including the mean 
height of point clouds (Hmean), the 95th height 
percentile (hp95), the standard deviation 
(Hstd), and the coefficient of variation (Hcv) 
of point cloud height distribution; the canopy 
cover (CC), the 50th and 75th density percentile 
(dp50 and dp75); the mean of the vertical 
leaf area density (LAD) profile (LADmean) 
and their standard deviation (LADstd) and 
coefficient of variation (LADcv). They were 
categorized into three groups of metrics: 

height, density, and 
vertical structure-
related metrics, 
each of which 
accurately depicts 
the 3D structural 
aspects of the 
forest canopy. 
Through a rule-
based exhaustive 
c o m b i n a t i o n 

approach as described by Li et al. (2023), a 
total of 44 formulations of the multiplicative 
power model, each consisting of 2–5 variables, 
facilitated the estimations of the VOL, BA, 
and AGB.
 All 44 formulations were fitted using all 
field plot data from each stratum. The optimal 
formulation for that stratum was the formulation 

Figure 3 Dendrogram for classifying the vertical forest structures into two or three clusters: (a) 
Chinese fir; (b) Masson pine; (c) eucalyptus, and (d) broad-leaved forest.

Table 2 Number of the vertical forest structure classes and 
their mean Hcv and CR in the field plots.

Forest 
type Par (1) 

UT1

(2) 
OT1

(3) 
UT1T2

(4) 
OT1T2

(5) 
T1T3

(6) 
T1T2T3

Chinese No 53 108 61
fir Hcv 0.30 0.19 0.27

CR 0.78 0.55 0.73
Masson No 38 149 36 37
pine Hcv 0.33 0.22 0.30 0.37

CR 0.79 0.49 0.73 0.81
Eucalyptus No 212 30 27

Hcv 0.21 0.31 0.42
CR 0.39 0.70 0.62

Broad- No 43 42 40 80 47
leaved Hcv 0.32 0.23 0.36 0.28 0.38

CR 0.79 0.56 0.85 0.72 0.85
Note: Par: parameter; No: Number of plots
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with the smallest relative root mean square 
error (rRMSE). The optimal model formulation 
was log-transformed in order to address the 
heteroscedasticity in the field plot data, to 
ensure the normality of the residuals, and to 
stabilize the variance of the forest attributes. 
The logarithmic transform was chosen to 
accommodate the nonlinearity of the response. 
The model fitting was performed using the 
maximum likelihood method. However, due 
to the systematic bias resulting from the log 
transformation, a correction factor (CF) was 
applied during the back-transformation of the 
final model by exponentiating both sides of the 
log-log regression model. The estimate values 
(  ) were finally multiplied by the following CF 
(Bouvier et al. 2015):

where p is the number of parameters in the final 
model, and n is the number of field plots. The 
goodness-of-fir statistics include R2, rRMSE 
and mean percentage error (MPE). MPE 
indicates forecast bias.

where yi is the field measurement value of 
VOL, BA, and AGB, and  i is the predicted 
value.
 To ensure an unbiased assessment of the 
predictive capability of the model, a specific 
subset of the field plot dataset was dedicated 
to model validation. In scenarios where the 
sample size exceeded 100, 70% of the field 
plots were randomly selected from the field plot 
data to serve for model calibration, while the 
remaining 30% were used for model validation 
subject to 5 iterations. In cases where the 
sample size ranged from 50 to 99, the model 
validation employed a ten-fold cross-validation 
method. For sample sizes below 50, model 

validation adopted a leave-one-out cross-
validation (LOOV) method. Statistical metrics 
employed for model validation included 
R2, rRMSE, and MPE, whose averaged 
values were calculated across all iterations.
 In this study, Chinese fir, Masson pine, and 
eucalyptus forests were the single dominant 
species. Nearly all broad-leaved forests were 
natural mixed forests, consisting of a diversity 
of species with a variety of dominant species. 
However, only an allometric equation was used 
to calculate their VOL, as was the case for the 
AGB. Therefore, we refer to the model developed 
using all field plot data for each forest type as 
the species-specific model. Correspondingly, 
the model developed using field plot data 
from each class and cluster of vertical forest 
was referred to as the stratum-specific 
and cluster-specific models, respectively.

Statistical analysis of measurement 
forest attributes and LiDAR metrics

To analyze the variation in the field-measured 
attributes and LiDAR metrics after stratification 
of the vertical forest structure, the coefficient 
of variation among them was compared and 
analyzed for all strata.
 Pearson's correlation coefficients were used 
to analyze the statistical relationship between 
the LiDAR metrics and field-measured 
attributes for all strata.

Result

Comparative analysis of model accuracy

The rRMSEs of the species-specific model 
for VOL, BA, and AGB estimations were 
around 20% for Chinese fir, Masson pine, 
and eucalyptus forests. In the context of the 
complex structures exhibited by broad-leaved 
forests, the rRMSEs of their species-specific 
VOL, BA, and AGB models were marginally 
higher, ranging from 28.57% to 35.09% 
(Table 3 and Supp. Table 1). Notably, the 
validation statistics, including R2 and rRMSE, 
were closely aligned with the goodness-of-fit 
statistics of those models across all three forest 

ŷ
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attributes and the four forest types. Although 
the later metrics slightly outperformed the 
former (Supp. Table 1), the consensus indicates 
the robust performance of the species-specific 
models.

 The performance of the stratum-specific 
models for most VFS classes is also robust. 
Although the rRMSEs of some models were 
larger than those of the species-specific models, 
the rRMSEs of the stratum-specific models 
for the three forest attributes estimations in 
Chinese fir, Masson pine, and eucalyptus forests 
were approximately 20%. In broad-leaved 
forests, the rRMSEs of most stratum-specific 
models were less than 35%. Furthermore, the 
validation statistics, R2 and rRMSE, were close 
to the goodness-of-fit statistics (Table 3, Fig. 4, 
and Supp. Table 1).
 After calculating the difference in rRMSE 

between the stratum- and species-specific 
models (∆rRMSE:

where rRMSE sp  was the rRMSE of the 
species-specific model and  rRMSE st was the 
rRMSE of the stratum-specific model), we 
found that 64% of stratum-specific models 
showed a decrease in rRMSE compared to 
species-specific models, reductions ranged 
from 0.7% to31.4%. 36% of the stratum-
specific models had a larger RMSE than the 
tree-specific models, with an increase ranging 
from 2.4% to 24.7%. (Table 4). Generally, the 
performances of stratum-specific models for 
Masson pine and broad-leaved forests were 
better than that for Chinese fir and eucalyptus 
forests. Among the 12 stratum-specific models 

Table 3 Plot level validation rRMSE and MPE of species- and stratum-specific linear regression (log-transformed) 
models for estimating forest inventory attributes.

Species Stratum Sample 
size

VOL BA AGB

R2 rRMSE 
(%)

MPE 
(%) R2 rRMSE

 (%)
MPE
(%) R2 rRMSE

(%)
MPE
(%)

Chinese fir ALL 222 0.719 22.84 -1.2 0.545 18.33 -0.7 0.619 20.75 -1.1
OT1/M1 108 0.777 19.36 -4.3 0.483 14.63 -1.9 0.618 17.06 -2.3
UT1 61 0.608 23.78 -5.2 0.483 14.63 -1.9 0.685 19.33 -1.3
OT1T2 53 0.466 25.12 -6.9 0.524 22.86 -6.1 0.411 21.93 -5.7
M2 114 0.706 24.89 -4.3 0.558 21.59 -2.4 0.690 22.17 -2.6

Masson pine ALL 260 0.845 19.03 -3.6 0.705 17.38 -3.4 0.694 20.67 -4.7
OT1/M1 149 0.757 17.85 -4.6 0.523 16.46 -5.0 0.452 18.78 -6.0
UT1 36 0.759 20.39 -5.1 0.743 15.37 -4.1 0.667 21.46 -4.9
OT1T2 37 0.759 16.67 -5.1 0.511 15.52 -5.5 0.544 16.59 -5.6
T1T2T3 38 0.837 15.92 -4.8 0.706 13.44 -3.2 0.615 19.68 -6.0
M2 111 0.884 18.75 -4.0 0.840 13.86 -1.1 0.791 18.80 -2.2

Eucalyptus ALL 269 0.837 17.97 -3.1 0.755 16.86 -2.7 0.725 23.32 -5.8
OT1/M1 212 0.794 17.63 -3.3 0.706 16.74 -2.5 0.671 23.17 -7.7
OT1T2 30 0.779 21.17 -5.1 0.757 19.75 -2.3 0.811 20.66 -1.5
T1T3 27 0.748 16.60 -3.1 0.386 20.66 -8.4 0.418 25.77 -14.5
M2 57 0.887 17.22 -2.8 0.843 15.88 -2.6 0.841 20.26 -4.5

Broad-leaved ALL 252 0.527 35.09 -11.0 0.445 28.57 -8.1 0.414 33.49 -10.7
OT1/M1 42 0.636 26.23 -7.0 0.632 19.90 -5.9 0.687 22.98 -9.7
UT1 43 0.692 29.97 -16.1 0.685 24.38 -8.7 0.685 25.51 -7.4
OT1T2/M2 80 0.402 37.12 -18.1 0.398 30.65 -3.1 0.367 37.33 -17.9
UT1T2 40 0.422 37.21 -22.4 0.223 34.32 -21.1 0.178 39.09 -25.9
T1T2T3 47 0.410 28.66 -6.2 0.364 23.83 -3.5 0.354 28.32 -6.8
M3 130 0.588 35.94 -16.8 0.401 30.17 -14.7 0.448 34.29 -17.1

( sp st)(%) 100
sp

rRMSE rRMSErRMSE
rRMSE

−
∆ = ×
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for pine forests, ten models had an rRMSE 
smaller than that of the species-specific model, 

while among the 15 stratum-specific models 
for broadleaf forests, nine models had an 

Figure 4 Observed vs. predicted stand volume (VOL), basal area (BA) and aboveground biomass (AGB) for field plots 
with Chinese fir, Masson pine, eucalyptus, and broad-leaved as main species or species group. Predictions were 
the log-transformed inverse value based on the validation dataset.
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rRMSE smaller than that of the species-specific 
model. In contrast, only five of the nine models 
in the Chinese fir and eucalyptus forests had 
an rRMSE smaller than those of the species-
specific model, respectively. The above results 
demonstrated that vertical forest structure 
stratification helps to improve the accuracy of 
forest attribute estimations. Overall, strata with 
lower estimation accuracies than the species-
specific models were mostly strata with a 
smaller number of field plots.

 In most strata, the performances of the 
stratum-specific models in estimating three 
forest attributes (VOL, BA, and AGB) were 
consistent. When the rRMSE of the stratum-
specific model for one attribute estimation was 
lower than that of the species-specific model, 
the rRMSE of the stratum-specific model for 

the remaining two attribute estimations was 
also lower than that of the species-specific 
model. Similarly, if the rRMSE of the stratum-
specific model for one attribute estimation was 
higher than that of the species-specific model, 
the rRMSEs of the stratum-specific model for 
the remaining two attribute estimations were 
also higher than that of the species-specific 
model. However, there were exceptions to this 
trend, such as in the UT1 stratum of Chinese fir 
and Masson pine forests, as well as the OT1T2 
and T1T3 strata of eucalyptus forests. In these 
cases, the rRMSEs of the stratum-specific 
models for one or two attribute estimations 
may be lower than those of the species-specific 
model, while the rRMSE of the remaining 
attribute estimation was larger than that of the 
species-specific model.
 After clustering multiple vertical forest 
structure classes into a new class (cluster), the 
rRMSEs of the cluster-specific model for three 
forest attribute estimations for the new class 
(M2) in Masson pine and eucalyptus forests 
were lower than those of the species-specific 
models. However, the performances of the 
models for the new class of Chinese fir forests 
(M2) and broad-leaved forests (M3) were the 
opposite (Table 4).
 Based on the number of field plots of all 
classes and clusters of vertical forest structure, 
we calculated the weighted average rRMSE 
for three attribute estimations of four forest 
types (species). After comparing the weighted 
average rRMSE and the rRMSE of the species-
specific model, we found that in ten out of 12 
attribute estimations for the four forest types, 
the weighted average rRMSEs were smaller 
than those of the species-specific model, with 
a maximum reduction of 9.4%. This suggested 
that the stratification-based estimation method, 
which was founded on vertical forest structure, 
could improve the accuracy of forest attribute 
estimation. When we clustered the vertical 
forest structures, we found that in 11 out of 
the 12 forest attributes, the weighted average 
rRMSEs were lower than those of the species-

Table 4 Relative difference of rRMSE between the species-
specific models and stratum-specific models.

Species Stratum
∆rRMSE (%)

VOL 
model

BA 
model

AGB 
model

Chinese fir OT1/M1 -15.2 -20.2 -17.8

UT1 4.1 -20.2 -6.8

OT1T2 10.0 24.7 5.7

M2 9.0 17.8 6.9

Masson pine OT1/M1 -6.2 -5.3 -9.2

UT1 7.1 -11.6 3.8

OT1T2 -12.4 -10.7 -19.8

T1T2T3 -16.4 -22.7 -4.8

M2 -1.5 -20.3 -9.0

Eucalyptus OT1/M1 -1.9 -0.7 -0.7

OT1T2 17.8 17.1 -11.4

T1T3 -7.6 22.6 10.5

M2 -4.2 -5.8 -13.1

Broad-leaved OT1/M1 -25.2 -30.3 -31.4

UT1 -14.6 -14.7 -23.8

OT1T2/M2 5.8 7.3 11.5

UT1T2 6.1 20.1 16.7

T1T2T3 -18.3 -16.6 -15.4

M3 2.4 5.6 2.4
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specific model, with a maximum reduction 
of 11.7%. Although overall their weighted 
average rRMSEs were reduced to a lesser 
extent than those of the stratum-specific 
model (Table 5), this still demonstrated that 
clustering the vertical forest structure into two 
or three classes could improve the accuracy of 
estimating forest attributes to some extent.
 Both Chinese fir and eucalyptus forests are 
planted and have only three vertical structure 
types, as shown in Table 2 and Fig. 3. They 
have relatively simple vertical forest structure. 
After VFS stratification, the weighted average 
rRMSEs for the VOL, BA and AGB estimation 
were reduced by 3.7%, -0.7% and 8.7% for fir 
forests compared with those of the species-
specific model, respectively. Similarly, for 
eucalyptus forests, their rRMSEs were reduced 
by 0.3%, -3.6% and 0.7%, respectively. Most 
of Masson pine and broad-leaved forests 
are natural forests that have a more complex 
vertical structures as compared to planted 
forests, with four and five vertical structure 
classes, respectively. After stratification of 
vertical forest structure was implemented, 
the weighted average rRMSEs of VOL, BA 
and AGB estimations were reduced by 6.6%, 
9.4% and 8.1% for pine forests and 7.3%, 5.1% 
and 5.9% for broad-leaved forests compared 
to those of the species-specific model, 
respectively (Table 5).
 The MPEs for most of the stratum-specific models 

were larger than those for the species-specific 
models, although there were some exceptions.
 In summarizing the performance of the 
stratum-and cluster-specific models, several 
key points emerge:
 (1) More than 60% of stratum-specific 
models had rRMSEs that were lower than 
those of the species-specific models across 
all four forest types (species), regardless of 
whether VOL, BA, or AGB estimations. In 
addition, the weighted average rRMSEs based 
on the number of plots for all strata were less 
than those of the species-specific models. It 
was found that most of the stratum-specific 
models with rRMSEs larger than those of the 
species-specific models were in strata with a 
small number of field plots.
 (2) Except the BA of broad-leaved forests, 
the weighted average rRMSEs for all three 
forest attribute estimations across all four 
forest types consistently showed lower values 
than those of the species-specific models after 
clustering the vertical forest structures into two 
or three clusters.
 (3) The level of complexity in vertical forest 
structures had a direct impact on the rRMSE 
reduction achieved through stratification. 
Forest types with complex vertical structures, 
such as broad-leaved and Masson pine forests, 
experienced substantial weighted average 
rRMSE reductions when using stratum-specific 
modes. Conversely, forest types with relatively 

Table 5 Weighted average rRMSE of VFS classes and clusters vs. rRMSE of species-specific mode for three forest 
attribute estimations.

Forest type Attribute rRMSE of species-
specific model (all) (%)

Weighted average 
rRMSE of Stratum-
specific model(%)

∆rRMSE 
(%)

Weighted average 
rRMSE of cluster-
specific model (%)

∆rRMSE 
(%)

Chinese fir VOL 22.84 22.00 -3.7 22.2 -2.8
BA 18.33 18.45 0.7 18.2 -0.7
AGB 20.75 18.94 -8.7 19.7 -5.1

Masson pine VOL 19.03 17.78 -6.6 18.2 -4.2
BA 17.38 15.74 -9.4 15.4 -11.7
AGB 20.67 19.00 -8.1 18.8 -9.1

Eucalyptus VOL 17.97 17.92 -0.3 17.5 -2.4
BA 16.86 17.47 3.6 16.6 -1.8
AGB 23.32 23.15 -0.7 22.6 -3.3

Broad-leaved VOL 35.09 32.52 -7.3 34.7 -1.1
BA 28.57 27.10 -5.1 28.6 0.2
AGB 33.49 31.52 -5.9 33.4 -0.3
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simple vertical structures, like eucalyptus and 
Chinese fir forests, exhibited a lower weighted 
average rRMSE reduction with stratum-
specific models.

Variation in forest attributes and LiDAR metrics

In most strata, excluding the UT1 stratum 
in the Chinese fir, Masson pine, and broad-
leaved forests, as well as the OT1T2 stratum 
in the eucalyptus forests, the coefficients of 
variation for all three field-measured attributes 
(VOL, BA, and AGB) were smaller compared 
to those of the non-stratification case. This 
observation implied that the introduction of 
VFS stratification generally led to a reduction 
in the variability of the field-measured 
attributes across most of the strata. The extent 
of attribute variation across different VFS 
classes was shown to depend on the forest 
type. Notably, the least variation was evident in 
the OT1 stratum within the fir and pine forests, 
while in eucalyptus and broad-leaved forests, 
the T1T3 and T1T2T3 strata exhibited the least 

variability, respectively (Table 6).
 Similar to the variability of field-measured 
attributes, most LiDAR metrics exhibited 
reduced variability in most strata, except 
for the UT1 stratum in fir, pine, and broad-
leaved forests, as well as the OT1T2 stratum in 
eucalyptus forests, when compared to the non-
stratified case. Notably, in all but the OT1T2 
stratum in the eucalyptus forest, both Hmean 
and hp95 showed smaller variations compared 
to the non-stratification case, while Hstd and 
Hcv exhibited larger variations in most strata 
than in the case without stratification. In all 
forest types except broad-leaved forests, the 
newly formed stratum (M3) resulting from the 
cluster analysis exhibited greater variations in all 
three field-measured attributes and the majority 
of LiDAR metrics compared to the variation in 
field-measured attributes and LiDAR metrics 
without stratification (Table 6).
 The observed variations in field-measured 
attributes and LiDAR metrics collectively 
suggest a reduction in the heterogeneity 

Table 6 Comparison of coefficient of variation and mean of field-measured attributes and LiDAR metrics for all classes 
of vertical forest structure.

Forest type Stratum
Coefficient of variation Mean

VOL BA AGB Hmean hp95 CC dp50 dp75 LAD
mean Hstd Hcv LADstd LADcv

Chinese fir All 46.58 29.33 35.35 31.76 28.86 7.29 33.33 71.43 43.28 2.18 0.24 0.64 0.95
OT1/M1 39.76 21.05 27.55 27.75 26.17 7.22 21.33 63.16 42.67 1.99 0.19 0.76 1.01
OT1T2 32.35 24.29 27.81 17.74 19.07 3.06 21.31 50.00 32.76 2.80 0.28 0.52 0.86
UT1 45.00 35.67 39.69 26.87 26.97 12.09 50.00 83.33 41.94 1.85 0.30 0.56 0.93
M2 46.70 32.82 40.19 31.72 30.71 8.42 37.25 60.00 38.33 2.36 0.29 0.53 0.89

Masson pine All 46.94 31.70 35.70 30.13 26.95 9.68 28.13 57.69 50.00 3.04 0.27 0.41 0.89
OT1/M1 37.50 26.10 28.81 23.81 22.40 10.75 19.18 43.75 56.25 2.75 0.22 0.46 0.96
OT1T2 36.96 28.32 27.86 23.42 24.22 5.26 26.32 52.94 43.48 3.31 0.30 0.39 0.81
T1T2T3 45.21 27.85 34.84 24.73 20.10 7.53 24.14 50.00 41.18 4.73 0.38 0.28 0.81
UT1 43.23 31.79 38.50 21.38 20.83 12.64 33.33 70.00 34.78 2.28 0.33 0.34 0.73
M2 56.82 36.26 43.36 34.85 32.28 9.78 30.77 66.67 40.48 3.43 0.34 0.33 0.78

Eucalyptus All 44.15 34.11 45.47 24.52 22.46 10.84 21.15 44.12 34.78 3.48 0.25 0.26 1.15
OT1/M1 41.97 31.93 43.17 22.67 21.00 10.84 18.52 41.67 34.78 3.12 0.21 0.28 1.24
OT1T2 64.97 52.93 69.45 36.86 34.35 15.85 28.26 54.17 32.00 3.84 0.31 0.20 0.82
T1T3 38.63 28.93 37.05 20.93 16.78 7.95 15.56 40.00 29.17 5.94 0.44 0.21 0.87
M2 52.43 41.97 53.99 29.78 27.20 12.94 21.74 48.15 33.33 4.83 0.37 0.20 0.84

Broad-leaved All 58.91 41.13 48.26 35.84 30.81 14.29 41.18 93.33 40.00 3.05 0.31 0.39 0.84
OT1/M1 45.58 32.10 38.84 24.38 20.91 14.89 25.68 70.97 40.00 3.20 0.23 0.47 0.92
UT1 57.79 48.63 50.98 18.02 24.34 27.27 65.52 83.33 55.26 1.97 0.34 0.32 0.88
OT1T2/M2 42.03 33.39 40.29 21.79 22.41 4.17 21.31 61.11 33.33 3.14 0.28 0.44 0.82
UT1T2 45.67 39.61 45.74 15.05 12.63 8.89 30.77 75.00 36.36 2.61 0.36 0.37 0.81
T1T2T3 43.81 29.32 34.79 17.71 17.14 7.45 27.91 63.64 33.33 4.12 0.38 0.30 0.81
M3 59.08 41.76 47.70 29.59 30.31 8.35 26.68 61.76 59.63 3.16 0.25 0.42 0.96
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of forest structures following the VFS 
classification across the majority of strata. 

Statistical relationships between forest 
attributes and LiDAR metrics

The Pearson correlation coefficients between 
the field-measured attributes and most LiDAR 
metrics in most strata showed a generally 
stronger connection when stratified than 
when not. Eucalyptus forests, among the four 
forest types, exhibited the simplest VFS. In 
the OT1T2 and T1T3 strata of the eucalyptus 
forests, the correlation coefficients between 
the three field-measured attributes and ten 

LiDAR metrics, excluding hp95 and Hmean, 
were generally higher compared to the non-
stratification scenario. In the OT1 stratum, 
while the correlation coefficients between the 
field-measured attributes and most LiDAR 
metrics were somewhat reduced compared 
to the non-stratified case, there were notable 
improvements for metrics like Hmean, 
LADmean, and LADcv. Upon clustering the 
OT1T1 and T1T3 strata into a new single stratum, 
the correlation coefficients between the ten 
LiDAR metrics and three field-measured 
attributes were consistently higher than those 
in the absence of stratification (Table 7).

Table 7 Comparison of Pearson correlation coefficients between field-measured attributes and LiDAR metrics for vertical 
forest structure classes in eucalyptus and broad-leaved forests.

Forest type Attrib. Stratum hp95 Hmean Hstd Hcv dp50 dp75 CC LADmean LADstd LADcv
Eucalyptus VOL ALL 0.849 0.871 0.517 0.037 0.423 0.672 0.597 -0.064 0.323 0.451

OT1/M1 0.845 0.887 0.511 0.031 0.377 0.649 0.583 -0.113 0.261 0.461
OT1T2 0.903 0.909 0.849 0.074 0.663 0.830 0.718 0.107 0.564 0.535
T1T3 0.820 0.768 0.861 0.151 0.518 0.768 0.485 0.159 0.503 0.578
M2 0.880 0.860 0.820 0.250 0.590 0.818 0.671 0.116 0.526 0.551

BA ALL 0.782 0.804 0.469 0.024 0.456 0.675 0.632 0.018 0.387 0.430
OT1/M1 0.753 0.805 0.439 0.003 0.414 0.667 0.609 -0.035 0.347 0.454
OT1T2 0.895 0.886 0.844 0.083 0.678 0.811 0.742 0.163 0.560 0.482
T1T3 0.739 0.683 0.764 0.135 0.560 0.714 0.585 0.308 0.533 0.479
M2 0.862 0.833 0.777 0.226 0.625 0.784 0.719 0.200 0.531 0.482

AGB ALL 0.816 0.825 0.514 0.063 0.430 0.655 0.571 -0.071 0.298 0.407
OT1/M1 0.804 0.839 0.499 0.052 0.400 0.638 0.547 -0.133 0.237 0.422
OT1T2 0.885 0.879 0.845 0.112 0.624 0.810 0.681 0.124 0.560 0.508
T1T3 0.755 0.719 0.785 0.115 0.571 0.766 0.485 0.208 0.498 0.531
M2 0.857 0.835 0.789 0.240 0.586 0.802 0.652 0.143 0.519 0.516

Broad-leaved VOL ALL 0.718 0.633 0.108 -0.007 0.030 0.019 0.012 0.009 0.011 0.005
OT1/M1 0.774 0.814 0.437 -0.469 0.535 0.634 0.306 0.173 0.349 0.452
UT1 0.281 0.674 0.176 -0.265 0.623 0.596 0.523 0.451 0.195 -0.289
OT1T2/M2 0.426 0.475 0.337 -0.090 0.273 0.178 0.263 0.028 0.087 0.080
UT1T2 0.311 0.371 0.056 -0.009 0.040 0.015 0.015 0.017 -0.016 -0.041
T1T2T3 0.622 0.722 0.589 0.013 0.414 0.522 0.181 0.060 0.049 0.006
M3 0.645 0.496 0.136 -0.004 0.025 0.011 0.014 0.008 0.006 -0.004

BA ALL 0.610 0.536 0.090 -0.007 0.029 0.015 0.014 0.013 0.015 0.005
OT1/M1 0.652 0.691 0.316 -0.484 0.611 0.498 0.468 0.376 0.501 0.474
UT1 0.270 0.630 0.147 -0.273 0.633 0.617 0.571 0.518 0.282 -0.256
OT1T2/M2 0.363 0.381 0.271 -0.092 0.193 0.071 0.342 0.126 0.194 0.183
UT1T2 0.225 0.289 0.031 -0.009 0.035 0.013 0.017 0.025 -0.003 -0.030
T1T2T3 0.463 0.584 0.418 -0.066 0.424 0.452 0.254 0.211 0.206 0.126
M3 0.541 0.427 0.105 -0.004 0.024 0.009 0.015 0.013 0.011 -0.001

AGB ALL 0.638 0.550 0.100 -0.006 0.028 0.016 0.012 0.010 0.012 0.004
OT1/M1 0.711 0.747 0.374 -0.465 0.580 0.560 0.386 0.303 0.451 0.466
UT1 0.370 0.674 0.262 -0.161 0.576 0.581 0.537 0.419 0.190 -0.230
OT1T2/M2 0.349 0.365 0.285 -0.048 0.197 0.079 0.247 0.051 0.111 0.095
UT1T2 0.244 0.268 0.052 -0.005 0.030 0.014 0.010 0.012 -0.015 -0.034
T1T2T3 0.558 0.622 0.547 0.090 0.326 0.476 0.161 0.079 0.104 0.079
M3 0.561 0.425 0.118 -0.003 0.022 0.009 0.013 0.009 0.007 -0.003
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 Broad-leaved forests exhibited the most 
complex VFS. In contrast to the Pearson 
correlation coefficients between the field-
measured attributes and the LiDAR metrics in 
the absence of stratification in the broad-leaved 
forest, all correlation coefficients increased in 
the OT1 stratum. In the OT1T2, T1T2T3, and UT1 
strata, all correlation coefficients exhibited an 
increase beyond hp95. While some correlation 
coefficients increased in the UT1T2 stratum. 
Upon clustering the OT1T2, T1T2T3, UT1, 
and UT1T2 strata into a new stratum (M2), 
a majority of the correlation coefficients 
decreased, except for Hstd and CC (Table 6).
The changes in the Pearson correlation 
coefficients between the field-measured 
attributes and the LiDAR metrics after VFS 
stratification in the Chinese fir and Masson 
pine forests were similar to those observed 
in the eucalyptus and broad-leaved forests. 
This suggested that the statistical relationship 
between the field-measured attributes and 
the LiDAR metrics becomes stronger after 
stratification.

Discussion

Numerous previous studies have consistently 
highlighted that stratification based on forest 
type and dominant species can enhance the 
accuracy of airborne LiDAR forest attribute 
estimation (Jiang et al. 2020, Chen et al. 2022). 
Furthermore, some studies have underscored 
that stratification based on dominant species 
and maturity class can yield even greater 
improvements in accuracy (Hauglin et al. 
2021). Our study not only corroborated 
these findings but also demonstrated that 
the accuracy of forest attribute estimation 
experienced notable enhancements through 
tree species-based vertical forest structure 
stratification.

Performances of the species-specific 
models

Over the past decade, numerous studies have 
emerged focusing on airborne LiDAR-based 

forest attribute estimation in subtropical 
regions, although often within a limited spatial 
extent. For instance, in studies conducted 
across planted forests in Guangxi (5000 ha 
in area) and Jiangsu Province (1260 ha) in 
China, the rRMSEs for VOL estimations 
using multiple linear regression models were 
21.34% and 16.47%, respectively (Liu et 
al. 2021, Zhang et al. 2017). Similarly, the 
rRMSEs for aboveground biomass estimations 
in Chinese fir, Masson pine, and eucalyptus 
forests were 15.86%, 21.7%, and 25.66%, 
respectively (Jing et al. 2022). However, 
although the estimation accuracies of these 
studies were close to those of the present study, 
they exhibited limited comparability with our 
present study due to their restricted study area 
and notable forest homogeneity.
 In contrast, studies encompassing temperate 
forests with study areas exceeding 5,000 km2 
showed varied levels of accuracy in estimating 
forest attributes using parametric models. The 
rRMSEs for VOL and BA estimations ranged 
from 11.04%–46.7% and 13.8%–37.1%, 
respectively, across these diverse investigations 
(Woods et al. 2008, Dalponte et al. 2011, 
Nord-Larsen & Schumacher, 2012, Treitz et al. 
2012, Watt & Watt, 2013, Nilsson et al. 2017, 
Hill et al. 2018, Hauglin et al. 2021). Zolkos et 
al. (2013) synthesized findings from 34 studies 
worldwide on discrete airborne LiDAR-based 
AGB estimations, revealing a mean residual 
standard error (RSE) of 27%. This wide 
variation in model accuracy is attributed to a 
variety of factors, such as forest type, species, 
stand structure and characteristics, site, and 
more.
 In the context of our study, which focused 
on Chinese fir, Masson pine, eucalyptus, 
and broad-leaved forests, the rRMSEs of 
the species-specific models used for VOL 
estimation were 22.84%, 19.03%, 17.97%, 
and 35.09%, respectively. For the BA 
estimations, they were 18.33%, 17.38%, 
16.85%, and 28.57%, respectively. For the 
AGB estimation, they were 20.75%, 20.67%, 
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23.32%, and 33.49%, respectively (Table 3). 
We are confident that the accuracy achieved 
by all species-specific models in this study is 
indeed noteworthy when considering the wide 
range of published studies and taking into 
account the substantial extent of our study area 
along with the inherent heterogeneity in forest 
structure.

Accuracy improvement for VFS 
stratification-based estimation of forest 
attributes

Forest attributes are closely related to a variety 
of factors, such as species composition, stand 
structure and characteristics, study sites, and 
more. Therefore, stratification of field plots 
according to forest types and dominant tree 
species can reduce the heterogeneity of stand 
characteristics within the stratum and improve 
the accuracy of forest attribute estimation 
(Chen et al. 2022, Jiang et al. 2020), which 
has become a consensus in the application 
of airborne LiDAR-based forest attribute 
estimations. Hauglin et al. (2021) demonstrated 
that by stratifying forest stands based on main 
species and maturity classes (such as young 
and mature forests), the rRMSEs of stratum-
specific models for estimating VOL, Lorey’s 
height, BA, and AGB were reduced by up to 
1.6 percentage points (pp) (equal to 4.0%), 0.5 
pp (4.4%), 0.5 pp (1.5%), and 1.8 pp (4.6%), 
when compared to the species-specific models. 
Our findings, in turn, suggested that stratified 
forest stands based on vertical canopy structure 
reduced the weighted average rRMSEs of the 
stratum-specific models for VOL, BA, and 
AGB estimations by 0.3%-7.3%, +3.6%-
9.4% (Chinese fir and eucalyptus forest had 
increased 0.7% and 3.6%), and 0.7%-8.7%, 
respectively, when compared to the rRMSEs 
of the corresponding species-specific models. 
Notably, our stratum-specific models exhibited 
slightly superior performance compared to 
those of Hauglin et al. (2021), indicating that 
stratification based on vertical forest structure 
surpasses age-based stratification.

 Subsequent stratification of the vertical 
canopy structure within stands showed a 
decrease in the coefficient of variation of 
forest attributes across all forest types in 
most strata compared to the case without 
stratification. This decline was also observed 
for key LiDAR-derived height-related 
metrics (Hmean and hp95) in nearly all strata, 
alongside density-related metrics (CC, dp50, 
and dp75) and the mean leaf area density 
(LADmean) in most strata (Table 6). These 
variations in field-measured attributes and 
LiDAR metrics imply that stratification has 
the capacity to mitigate the three-dimensional 
structural diversity within a given stratum. The 
Pearson correlation coefficients between forest 
attributes and LiDAR metrics (excluding 
hp95) from field plots were significantly 
higher in most strata compared to cases 
without stratification, which can be attributed 
to the reduction in heterogeneity after 
stratification (Table 7). This suggested that 
vertical structure stratification significantly 
enhances the statistical relationship between 
forest attributes and LiDAR metrics, serving 
as a principal catalyst for the enhancement in 
the accuracy of forest attribute estimations.
 Similar to the studies of Hauglin et al. (2021) 
and Nord-Larsen and Schumacher (2012), 
this study also observed instances where the 
accuracy of the stratum-specific models for 
forest attribute estimation was marginally 
lower than that of the species-specific models 
for some strata (Tables 3 and Supp Table 1). 
This could potentially be attributed to the 
fact that coefficients of variation of the forest 
attributes and LiDAR metrics in some strata did 
not exhibit a decrease post-stratification (Table 
6), and not all their statistical relationships 
experienced an enhancement (Table 7). These 
instances could be attributed to two primary 
factors: firstly, the substantial heterogeneity 
of the forest structures within certain strata 
owing to the limited number of field plots in 
some strata, necessitating the amalgamation 
of similar strata, as seen in the OT1T2 stratum 
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of eucalyptus forests, which essentially 
encompasses three strata, OT1T2, UT1, and 
UT1T2; and secondly, the small sample size 
in some strata also significantly affects the 
accuracy of the forest attribute estimation.
 It is important to note that this study 
specifically addresses the multiplicative power 
models that rely on the statistical relationships 
between forest attributes and LiDAR 
variables. The effect of VFS stratification on 
the accuracy of forest attribute estimations for 
machine learning models that rely on weaker 
statistical relationships remains an avenue to 
be investigated.

Applications of VFS stratification-based 
estimation

There are two strategies to implement the 
proposed framework for stratification-based 
estimation of forest attributes in airborne 
LiDAR-based large-scale forest resource 
inventory and monitoring:
 (1) If the timeframe for collecting airborne 
LiDAR and field plot data is not too long, if 
forest alterations are gradual (e.g., infrequent 
timber harvesting and forest regeneration), 
or if forest tree growth is moderate (as seen 
in temperate forests), the approach outlined 
by Zhou and Li (2023) can be employed to 
generate the wall-to-wall map of the vertical 
forest structures across the entire study areas 
using LiDAR data. Subsequently, field plots 
are allocated based on this stratification, taking 
potential additional factors like Hmean, CC, 
etc., into consideration. These field plots are 
then measured to acquire the required data. 
Finally, specific models for each stratum are 
developed to estimate the forest attributes.
 (2) If field campaigns and airborne LiDAR 
data acquisition occur concurrently, similar 
to the methodology employed in this study, 
a post-stratification procedure is employed 
for the stratification-based forest attribute 
estimations. This approach is suitable 
when the sample size is sufficiently large, 
generally exceeding 50 plots per stratum and 

enabling coverage of at least two strata. The 
procedure unfolds in two stages: Firstly, the 
classification method detailed by Zhou and Li 
(2023) is utilized to classify the vertical forest 
structures of the field plot. The outcomes of 
this classification are then fine-tuned through 
the visual interpretation method. Secondly, 
specific models are developed for each stratum 
to estimate forest attributes.

Conclusion

This study effectively demonstrated the utility 
of VFS stratification in enhancing the accuracy 
of forest attribute estimation using airborne 
LiDAR data across various forest types, 
including three key attributes: stand volume, 
basal area, and above-ground biomass. Through 
the application of VFS classification, it was 
evident that the weighted average accuracies 
achieved via the stratum-based estimation of 
the three forest attributes of four forest types 
were higher than those achieved using species-
based estimation methods. Although it was 
acknowledged that certain strata might had 
lower estimation accuracy than species-based 
methods due to the limited sample size, the 
overall trend remained one of improvement. 
Even after clustering VFSs into two or three 
classes using cluster analysis for all forest 
types, the resulting accuracy, although reduced 
compared to pre-clustering, still exceeded that 
of species-based estimation.
 The primary factors driving the increased 
accuracy of the post-stratification were the 
reduction of heterogeneity within the strata 
stand structure and the strengthening of the 
statistical relationship between field-measured 
attributes and LiDAR-derived metrics.
 By presenting these findings, this study 
represents a significant advancement in 
improving the accuracy of forest inventory 
attribute estimation in a large region utilizing 
airborne LiDAR data. However, it is important 
to note that the conclusions of this study are 
restricted to the multivariate power models 
and should be further validated using machine 
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learning models. This highlights the potential 
for further refinements and extensions of the 
framework.
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