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Abstract. Forests play an important role in carbon circulation, and the pro-
ductivity of forest ecosystems can be evaluated by evaluating its biomass. 
Evaluation of biomass aids the determination and understanding of changes 
in forest ecosystems. Because of the limitations of ground measurements of 
biomass, in recent times, satellite images have been broadly applied to esti-
mate aboveground biomass (AGB). The objective of this study is to examine 
the relationships between AGB and individual band reflectance values and 
ten Vegetation Indices (VIs) obtained from a Landsat TM satellite image for 
a Anatolian pine forests in northwestern Turkey. Multiple regression analy-
sis is utilized to predict the AGB. The AGB model using TM 1 and TM 2 
had an adjusted R2 of 0.465. Another AGB model using Enhanced Vegeta-
tion Index (EVI) and Normalized Difference 57 (ND57) had an adjusted R2 
of 0.606. Our results reveal that VIs present better estimation of AGB in 
Anatolian pine forests as compared to individual band reflectance values.
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Introduction

Forests play a signifi cant role in maintaining 
global climate stability and carbon circulation. 
Forest ecosystem productivity can be evaluated 

by evaluating its biomass. Biomass estimation 
is very important for evaluating forest ecosys-
tem productivity and controlling carbon budg-
ets (Zianis & Mencuccini, 2004, Hall et al., 
2006). Accurate prediction of biomass is nec-
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essary to better understand the carbon cycles in 
forest ecosystems, which act as a major pool of 
carbon (Houghton 2005). Various techniques, 
such as ground measurements (Schroeder et al. 
1997, Houghton et al. 2001) and satellite im-
agery (Foody et al. 2003, Lu 2005), have been 
applied to estimate the amount of biomass.  
 Ground measurements have been used to 
accurately predict the aboveground biomass 
(AGB) by using the allometric relationship 
between tree height and diameter of trees at 
breast height.  However, for large forest ar-
eas, this technique is often very time and la-
bor consuming (Lu 2006). Recently, satellite 
images have been broadly applied to monitor 
and predict the AGB over larger areas (Goetz 
et al. 2009, Houghton et al. 2009, Gallaun et 
al. 2010). In particular, Landsat satellite im-
agery has been utilized as a main resource in 
many applications to predict the AGB of small 
and/ or large areas.  However, different opti-
cal satellite images such as Aster (Muukkonen 
& Heiskanen 2005), Ikonos (Thenkabail et al. 
2004), MODIS (Baccini et al. 2004), NOAA 
AVHRR (Dong et al. 2003), and WorldView-2 
(Eckert 2012) have been used for estimating 
biomass. Generally, the AGB can be estimated 
from satellite images by using various tech-
niques such as multiple regression analysis and 
k-nearest-neighbor classifi cation (Zheng et al. 
2004, Labrecque et al. 2006, Ji et al. 2012). 
 However, the ability to estimate forest bio-
mass from passive satellite images is limited 
because the spectral responses in passive 
satellite images are primarily connected to 
the interface between sun radiance and stand 
crown closures. Therefore, in general, the re-
lationship between AGB and Vis or spectral 
refl ectance values is low (Lu 2006, Sarker & 
Nichol 2011). Recent studies have demonstrat-
ed that the use of SAR satellite images such 
as radar or lidar can result in more successful 
biomass estimates as compared to those from 
optical satellite images (Lu 2006, Wang & Qi 
2008, Goetz et al. 2009). Many studies have 
indicated the potential of using active satellite 

images (radar) for predicting AGB (Kuplich et 
al. 2000, Wang & Qi 2008), and active remote 
sensing data (airborne laser) has been utilized 
to estimate aboveground (Naesset 2011) and 
tree biomass (Nyström et al. 2011). Lidar and 
radar satellite images have also been used to 
estimate the biomass in different forest struc-
tures (Saatchi et al. 2011, Zhao et al. 2012, Za-
lkos et al. 2013). Previous studies have shown 
that long-wavelength data, such as that from 
radar or lidar, is useful for predicting the AGB 
of forests with complex structures (Lim et al. 
2003, Zimble et al. 2003). However, active re-
mote sensing images require extra processing 
such as pre-processing, subtraction of noise, 
and image processing. Additionally, active re-
mote sensing data is more expensive than other 
satellite images, such as Ikonos and QuickBird. 
Therefore, in general, radar or lidar data has 
not been suffi ciently useful for predicting the 
AGB in large areas. Medium resolution satel-
lite images offer the potential for predicting 
AGB at the regional level. However, problems 
such as mixed pixels and image saturation in 
medium resolution satellite images are found 
when estimating AGB from them. The spec-
tral refl ection of Landsat TM satellite images 
is more appropriate for AGB estimation in a 
simple forest structure. 
 This study focuses mainly on evaluating the 
relationship between band refl ectance values 
and VIs from a Landsat TM satellite image and 
the AGB obtained from ground measurements 
by using multiple regression analysis for Ana-
tolian pine forests in northwestern Turkey.

Material and methods

Study area

The study area is the Buyukduz planning unit 
located in Karabuk city in northwestern Turkey 
(Fig. 1). The elevation ranges from 800 to 1736 
m above sea level and is 1270 m on average. 
The study area has an average slope of 45%. 
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Mean annual temperature and precipitation 
are 12.0°C and 650 mm, respectively. 393.3 
ha (2.3%) of the study area is covered with 
fi r [Abies nordmanniana (Stev.) Spach. subsp.
bornmuelleriana (Mattf.)], 490.4 ha (2.9%) 
with Scotch pine (Pinus sylvestris L.), 10246.0 
ha (60.9%) with Anatolian Crimean pine [Pi-
nus nigra Arnold. subsp. pallasiana (Lamb.) 
Holmboe], 274.4 ha (1.6%) with beech (Fagus 
orientalis Lipsky), 3416.5 ha (20.5%) with 
Çoruh oak [Quercus petraea subsp. iberica 
(Steven ex Bieb.) Krassilin], and  1094.2 ha 
(11.8%) with  Pinus brutia Ten. 

Ground measurements and aboveground 
biomass estimation

Ground measurements were conducted in the 
summer of 2010. In total, 130 sample plots of 
pure Crimean pine forest areas were developed 
and investigated. The size of the circular sam-
ple plots ranged from 400 to 800 m2, depend-
ing on stand crown closure. A Global Position-

ing Systems (GPS) receiver was placed at the 
center of every sample plot. UTM coordinates 
of every sample plot were also recorded by 
GPS. In these sample plots, the diameter of 
every tree at breast height (dbh) was measured 
to the nearest 0.1 cm using calipers with dbh > 
7.9 cm. The AGB of each tree was calculated 
using the following equation (Equation 1  –3) 
developed by Çakıl (2008) for Anatolian pine 
trees.  
Tree stem: 

Y = 0.10335 d2
1.30 + 9.773876 d1.30 - 103.221    

                                                                     (1)
Branch:

Y = 15.72827 Ln(d1.30) - 35.8478                 (2)   

Needle:

Y= 0.709426 + 0.002182 d2
1.30                                   (3)

where d1.30 - diameter at breast height.

Location of the study areaFigure 1 
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 When calculating the AGB in the sample 
plots, the biomass amount of individual trees 
was summarized and converted to a per hec-
tare unit based on the size of the sample plots.  

Remote sensing data and processing

Landsat TM satellite data acquired on Sep-
tember 3, 2010 was used in this study. The 
fi rst six bands, TM 1 (0.45–0.52μm), TM 2 
(0.52–0.60 μm), TM 3 (0.63–0.69 μm), TM 
4 (0.76–0.90 μm), TM5  (1.55–1.75 μm), 
and TM 7 (2.08–2.35 μm), with 30 m spatial 
resolution were used. The Landsat TM satel-
lite data was georeferenced to UTM WGS 84 
Zone 36. Using 20 control points taken from 
1/25.000 scale topographic maps using the 
nearest-neighbor method, a root square mean 
error of 0.5 pixels was obtained, which trans-
lates to a ±15 m ground accuracy. The loca-
tions of the sample plots and test points were 
determined by GPS. However, the GPS points 
have positional errors, which normally aver-
age to ±4m. Therefore, it is nearly impossible 
to accurately locate every sample plot and test 
point on the center of the 30 m grid of Land-
sat TM pixels. To solve this location problem, 
many researchers used a moving window, such 
as a 3 x 3 pixel (Makela and Pekkarinen 2004, 

Labrecque et al. 2006) one. We used a mov-
ing window to average the spectral refl ectance 
values in the surrounding pixels. In each sam-
ple plot, the spectral refl ectance values of nine 
pixels were averaged by using a 3×3 window. 
Then, the VIs were calculated according to the 
refl ectance values of each sample plot. In this 
study, ten VIs were calculated from six indi-
vidual bands (except Band 6) as independent 
variables. The VI formulas used in this study 
are listed in Table 1. The Erdas Imagine 9.1TM 
software was utilized for data processing.

Statistical analyses

Stepwise multiple regression analysis was 
used to investigate and model the relation-
ship between the spectral refl ectance values of 
TM 1–5, TM 7, and ten VIs, from the Land-
sat TM satellite data, and the AGB values. 
The stepwise multiple regression models were 
improved by using Landsat TM satellite data, 
band spectral refl ectance values and VIs, and 
their combination as independent variables to 
improve the AGB estimation. The dependent 
variable was the AGB values. The regression 
models were improved to forecast the AGB 
as a function of a suite of Landsat TM satel-
lite data variables gathered for the case forest 

Defi nition of vegetation indices used in the study areaTable 1 
Vegetation indices Formula Reference
Normalize Difference Vegetation Index  
(NDVI) (TM4-TM3)/(TM4+TM3) Rouse et al. (1973)

Simple Ratio (SR) (TM4)/(TM3) Jordan (1969)
Difference Vegetation Index (DVI) (TM4)-(TM3) Clevers (1988)
Soil Adjusted Vegetation Index (SAVI) (TM4-TM3)*(1+L)/(TM4+ TM 3+L) Huete (1988)
Normalized Difference (ND)53 (TM 5)-(TM 3)/(TM 5)+( TM 3) Lu et al. (2004)
Normalized Difference (ND)54 (TM 5)-(TM 4)/(TM 5)+( TM 4) Lu et al. (2004)
Normalized Difference (ND)57 (TM 5)-(TM 7)/(TM 5)+( TM 7) Lu et al. (2004)
Normalized Difference (ND)32 (TM 3)-(TM 2)/(TM 3)+( TM 2) Lu et al. (2004)

Normalized Difference (ND)73 (TM 7)-(TM 3)/(TM 7)+( TM 3) Sivanpillai et al. 
(2006

Enhanced Vegatation Index (EVI) (TM 4- TM 3))/((TM 4+(C1.TM 3)-(C2.

TM2).(1+L))
Huete et al. (1999)
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site. The AGB value was modeled with Land-
sat TM satellite data using stepwise multiple 
linear regression. In the stepwise variable se-
lection method, the process starts out just as 
in forward selection. However, at each step, 
the variable that is already in the model is fi rst 
evaluated for removal. The variable whose re-
moval results in the smallest R2 is removed fi rst 
from the variables that are eligible for removal. 
The multiple stepwise regression analysis was 
carried out by SPSS (SPSS Institute Inc 2007). 
This analysis was utilized to determine the best 
predictive variables that were signifi cant (p < 
0.05), with the highest value of the determi-
nation of coeffi cient (R2

adj). In this study, the 
subsequent linear relationship was assumed 
(Equation-4):  

                                                          (4)       

where AGB is the aboveground biomass,  1X

… nX  are variable vectors corresponding to 
Landsat TM satellite data values, such as the 
spectral refl ectance values, TM 1–5 and TM 7, 
and the ten VIs, β1 … βn characterize the model 
coeffi cients and ε is the additive  bias (Corona 
et al. 1998). 
 To compare the predictive power of the 
spectral refl ectance values, for e.g., for TM 
1–5, TM 7, and VIs, separate regression analy-
sis was performed using relevant Landsat TM 
satellite data. Therefore, two regression mod-
els were developed (the AGB and Landsat TM 
spectral refl ectance values and the AGB and 
VIs) for predicting the AGB; one by using the 
band spectral refl ectance values and the other 
by using the VIs. In each model sub-group, the 
related AGB was estimated by using the spec-
tral refl ectance values in TM 1–5 and TM 7, 
and VIs. The regression models were evaluat-
ed based on the accuracy statistics. The accu-
racy statistics covered the absolute and relative 
biases and the root mean square error (RMSE 
and RMSE%). These statistics were calculated 
for the models as the following (Equation 5–
8):

                                                                     (5)                
                                                                       
     
                                                (6)            
                                 
                           
                              (7)   

                                                                          
                                          (8)                   
 
                                                              
 where n is the number of observations, and  
yi and ŷi are observed and predicted values 
of the aboveground biomass from developed 
models. To further assess the superiority of 
the model fi t, we used the magnitude and dis-
tribution of predicted values versus observed 
ones for the AGB using Landsat TM data. We 
examined any obvious dependencies or pat-
terns representing systematic divergences and 
a breakdown of assumptions of multiple least-
square regressions. The presence of multicol-
linearity was defi ned by values of the variance 
infl ation factors (VIF), with values greater than 
fi ve taken to indicate the presence of multicol-
linearity (Myers 1986).

Results

The selected best regression models provided 
accuracy statistics like coeffi cients of determi-
nation (R2

adj), standard error of the model (Sy,x), 
bias, bias%, RMSE, RMSE% and Durbin-
Watson (DW) values. The AGB prediction 
models were developed based on a combina-
tion of ground measurements and the Landsat 
TM satellite image. Table 2 and Table 3 sum-
marize the best regression models for the AGB 
based on individual band refl ectance values 
and VIs obtained from the Landsat TM satel-
lite image. In these selected regression models 
for the AGB, the F statistics and coeffi cients 
were signifi cant at a probability level of 95%. 

εββββ +⋅++⋅+⋅+= nn XXXAGB ....22110

( )
n

yy
bias ii∑ −

=
ˆ

( )
∑

∑ −
=

ny
nyy

bias
i

ii

/ˆ
/ˆ

100%

( )
1

ˆ 2

−

−
= ∑

n
yy

RMSE ii

( )
∑

∑ −−
=

ny

nyy
RMSE

i

ii

/ˆ
)1/(ˆ

100%
2



294

Ann. For. Res. 57(2): 289-298, 2014                                                                                                                      Research article 

The regression model that used TM 1 and TM 
2 as independent variables had an R2

adj of 0.465 
and RMSE of 9.1836 t ha-1 (Table 2). Further-
more, the other model, which used the EVI 
and ND57 as independent variables, had an R2 
of 0.606 and RMSE of 8.5054 t ha-1 (Table 3). 
The results obtained from the models demon-
strate that VIs can better predict AGB when 
compared with other combinations of Landsat 
TM individual band spectral refl ectance val-
ues. In addition, to test for multicollinearity, 
the variance infl ation factor (VIF) values were 
estimated for each independent variable in the 
models. The VIF values ranged from 2.013 to 
3.024 in the AGB model based on the spec-
tral refl ectance values. The VIF values ranged 
from 1.003 to 1.004 in the model based on VIs. 
Since all VIF values were lower than fi ve for 
the sub-group models, there appears to be no 
problem of multicollinearity for the indepen-
dent variables of these models (Table 2-3).

Discussion

In this study, regression models were employed 
for predicting the relationships between AGB 
and the refl ectance values and VIs obtained 
from a Landsat TM satellite image. The results 
indicate that a linear combination of the Land-
sat TM 1 and TM 2 bands is a better predictor 
of AGB (R2  = 0.465, RMSE = 9.1836 t/ha-1) 
than the other TM bands. TM 1 has a negative 
relationship with AGB, but TM 2 has a posi-
tive relationship (Table 2). The negative rela-
tionship may be due to the following reasons; 
(a) increased crown closure shadowing in larg-
er forest areas and/or (b) decreased understory 
refl ectance values owing to raised intensity 
with AGB increases (Spanner et al. 1990). The 
positive relation is explained by the increased 
refl ectance values based on the AGB increases. 
In addition, the model that included EVI and 
ND57 as predictor variables better predicted 
the AGB (R2

adj = 0.606, RMSE = 8.5054 t/ha-

1) than that using other VIs. Our results dem-
onstrate that using VIs obtained from Landsat 

Parameters of the ‘Best fi t’ regression models of stand biomass based the spectral refl ectance va-
lues, TM 1-5 and TM 7

Table 2 

Parameters of the ‘Best fi t’ Regression models of stand biomass based the vegetation indicesTable 3 

Independent
variables

Coeffi cients of
independent
variables

S. E. of
variables t-statistics p-value VIF

Constant  7.405 0,300277 24.659 0.000
TM 1 -0.10095 0,012948 -7,79690 0.000 3.024
TM 2  0.089591 0,016944  5,287218 0.000 2.013
Note.  Related measures: R2

a= 0.465, Sy.x = 0.2239, D.W. = 2.016, Bias = 1.9906, Bias% = 2.3778,  RMSE = 9.1836, 
RMSE% = 10.9697

Note. Related measures: R2
a= 0.606, Sy.x = 0.20687, D.W. = 1.982, Bias = 1.7055, Bias% = 2.0433,  RMSE = 8.5054, 

RMSE% = 10.1896

Independent
variables

Coeffi cients of
independent
variables

S. E. of
variables t-statistics p-value VIF

Constant 2,40192 0,14822 16,20435 0.000
ND57 4,76912 0,35412 13,46752 0.000 1.003
EVI 0,00403 0,00079   5,059291 0.000 1.004
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TM is more successful for AGB prediction than 
using individual Landsat TM band refl ectance 
values since VIs can maximize the sensitivity 
for recording the green vegetation situation. 
Furthermore, VIs can minimize the impacts of 
topography, sun angles, canopy geometry, soil 
background, and atmospheric changeability, 
and therefore their relationship with the AGB 
can be more straightforward (Lu et al. 2005). 
VIs have also been suggested to be good in-
dicators for estimating biomass and LAI (Ver-
relest et al. 2008). Our results also agree with 
some previous studies that indicated a correla-
tion between AGB and VIs (Heiskanen 2006, 
Maynard et al. 2007). However, some studies 
have demonstrated little correlation between 
AGB and VIs (Foody et al. 2003, Schlerf et 
al. 2005).
 Dahlberg (2001) stated that the TM 3 band is 
the best predictor of biomass in the birch for-
ests in Sweden. However, no relationship was 
observed between TM 3 and AGB in our study. 
Using a multiple regression model, Lu et al. 
(2002) found that the AGB was estimated well 
when individual band refl ectance values and 
VIs obtained from Landsat TM were used (R2 

= 0.88). Zheng et al. (2004) estimated the AGB 
by splitting the sample plots into hardwoods 
and softwoods. Hardwood AGB was roughly 
related with stand age and TM 4 (R2 = 0.95), 
while softwood AGB was strongly related with 
NDVIc (R2 = 0.84). Lu (2005), when estimat-
ing the AGB using Landsat satellite images for 
fi ve different areas, showed that the AGB was 
highly correlated with the TM 5 (R2 = 0.683), 
TM 4 (R2 = 0.701), and TM 4 (R2 = 0.746), but 
had a low linear relationships with the ND54 
(R2 = 0.404) and TM 5 (R2=0.158). Heiskanen 
(2006) modeled the AGB using Aster satellite 
data in birch forest areas and the AGB models 
were found be appropriate with an R2 = 0.81 
with SR, R2 = 0.79 with SAVI2, R2 = 0.78 with 
RSR, and R2 = 0.76 with log (band 2). Zheng 
et al. (2007) modeled the AGB using Landsat 
ETM+ data and ground data for four different 
forest stands (Chinese fi r, conifer, broadleaf, 

and mixed forest). The AGB models using VIs 
were developed using LAI-NDVI, LAI-Age, 
Age, and LAI-SR as independent variables and 
gave an R2 of 0.930, 0.937, 0.792, and 0.931, 
respectively. Maynard et al. (2007) mod-
eled the AGB using VIs and spectral refl ect-
ance values generated from Landsat 7 ETM+ 
satellite data and the R2 was 0.41 for NDVI, 
0.44 for SAVI, 0.51 for GVI and WI, and 0.53 
for ETM 4 and ETM 7. Gaspari et al. (2010) 
studied the relationship between the AGB in 
subtropical dry forests of Argentina using in-
dividual band refl ectance values and VIs ob-
tained from Landsat 7 ETM+ satellite images. 
Their models predicted the AGB with an R2 of 
0.581 for ETM 7, 0.560 for ETM 3, 0.436 for 
ETM 5, and 0.636 for NDVI. Another study 
by Das and Singh (2012) on the estimation of 
AGB using VIs obtained from Landsat TM 
satellite data had an R2 of 0.75 for NDVI, 0.76 
for RDVI, 0.70 for MSR, 0.78 for RVI, 0.67 
for MSAVI, and 0.75 for OSAVI. In general, 
most of the studies described above indicate 
signifi cant relationships between the AGB and 
individual band refl ectance values. However, 
in contrast to most of the above studies, a good 
relationship between AGB and VIs was found 
in this study. In addition, forest biomass pre-
dicted with VIs based on the Landsat satellite 
image has been shown to not be suitable for 
complex forest areas (Zheng et al. 2004). In 
order to achieve better results of the relation-
ship between AGB and VIs or refl ectance val-
ues, it would be better to use alternative high-
resolution satellite images such as QuickBird, 
Ikonos, and WorldView-2. However, these sat-
ellite images are not appropriate for large areas 
owing to the expenditure in obtaining the sat-
ellite data, and the enormous amount of time 
required for processing. Active remote sensing 
data such as radar or lidar may well be appro-
priate for predicting forest biomass in simple 
forest structures (Lu 2006). However, for large 
areas, especially for Turkish forest areas, ac-
tive satellite imagery is more expensive to col-
lect than other satellite data. Therefore, a mix 
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of multi-scale remote sensing data (coarse, 
medium, and fi ne resolution) can be used to 
more accurately estimate the AGB at different 
scales.

Conclusions

Using a Landsat TM satellite image, regres-
sion models were developed using independ-
ent variables (TM 1-5 and TM 7 and ten VIs) 
to estimate the AGB in Anatolian Crimean pine 
forests in northwestern Turkey. Our results 
shows that VIs can better estimate the AGB as 
compared to individual band spectral refl ect-
ance values. The most suitable band refl ect-
ance values and VIs will depend upon factors 
such as study aims, geographic position and 
structure of forest areas, scaling issues, mixed 
pixel condition, and timing of satellite data. 
Therefore, more detailed studies need to be 
performed to develop an appropriate method 
that can be applied to different forest ecosys-
tems. Our study shows that regression models 
using VIs obtained from Landsat TM satellite 
data can be benefi cial for modeling the AGB 
in conifer forest areas that have similar forest 
ecosystems as our study area.
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