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Abstract: Pacific madrone leaf blight (PMLB) is a contributing agent to the decline 
of Pacific madrone (Arbutus menziesii) trees. Multiple fungal pathogens cause 
PMLB, resulting in leaf spotting that can eventually kill leaves, increasing stress in 
individuals, and leaving them more susceptible to deadly cankers. Spores transmit via 
air and water droplets, particularly during wet Spring months. Unoccupied aircraft 
systems (UAS) technologies are in their relative infancy, but UAS are becoming 
more affordable and accessible. UAS promise increased efficiency in forest health 
monitoring applications, providing a safer aerial data collection method at a 
relatively-low cost when compared to occupied aircraft. In this study, we develop 
and present a UAS methodology to detect PMLB with a multispectral sensor. This 
methodology combines orthomosaic products derived from high-resolution (~4 cm) 
multirotor platform UAS multispectral imagery with machine learning and ground 
assessment of PMLB to classify visual presence of blight at the individual tree-
level during multiple site revisits. The resulting model detected PMLB infection 
status of 29 field surveyed madrone trees with a kappa coefficient of , a balanced 
accuracy of 0.85, and a true positive rate of 0.92. The method presented here can be 
readily scaled to efficiently cover a much larger extent with a beyond-line-of-site 
capable UAS and minimal field sampling. The increased efficiency of this approach 
may be critical to characterizing PMLB in the near future as it is anticipated 
that PMLB prevalence will continue to increase as a result of climate change. 
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Introduction

Pacific Madrone Background

Pacific madrone (Arbutus menziesii Pursh) is 
a species of hardwood endemic to the Pacific 
northwest, USA and has been in a state of 
decline for the past decade due to the increased 
prevalence of multiple fungal pathogens, 
including Phacidiopycnis washingtonensis 
Xiao & Rogers, that cause Pacific madrone 
leaf blight (PMLB) (Elliott 1999, Sikdar et 
al. 2019). PMLB leaves the trees stressed and 
more susceptible to deadly canker diseases 
(Fusicoccum spp.) (Elliott et al. 2002). Under 
predicted climate change scenarios, it is 
expected some madrone populations will be 
lost as a result of changing temperatures and 
precipitation associated with climate change 
(Elliott et al. 2012). The species is characterized 
by the burnt-orange hue of its bark which peels 
away on younger growth to uncover a light 
green color. The range of Pacific madrone 
extends from southern California to Vancouver, 
B.C., and can be found west of the Cascade 
Range in Oregon, U.S.A. Madrone retains 
its leaves throughout the year, sprouting new 
growth in the spring. Madrone produces bright 
red berries and light-colored flowers which 
grow at the ends of its branches. Its sprouts 
provide some value to browsers including 
sheep, goats, and deer while its berries are a 
food source for deer and many bird species 
(Sampson & Jesperson 1963). Additionally, it 
provides habitat for cavity nesters including 
woodpeckers and wrens (Reeves 2007). 
Madrone is commercially valued for use in 
veneers, flooring, and other non-structural uses 
(USDA 2006), and is employed for erosion 
control and valued for its aesthetic beauty 
in landscaping, growing in sites with well-
drained, rocky soils that experience little shade 
(Bennett & Shaw 2008). 

Foliar Blight

Blight has been implicated as one of the 
leading factors in the widespread decline 

of Pacific madrone (Elliott et al. 2012). 
The plant’s foliage is host to a variety of 
fungal pathogens that colonize young leaves, 
spreading via spores in air or water primarily 
during spring rains (Bennett & Shaw 2008). 
Fungi that infect Pacific madrones manifest 
in the form of discoloration, spots, and galls 
on foliage. Disease can increase a tree’s 
susceptibility to further colonization by fungi. 
It has been shown that infection of A. menziesii 
by the pathogenic oomycete Phytophthora 
ramorum followed by secondary infection by 
Botryosphaeria dothidea resulted in greater 
mortality than infection by either species alone 
(Maloney et al. 2004). 
 Pacific madrone is known to be sensitive to 
foliage diseases caused by fungal organisms, 
which can be transmitted via airborne or water-
splashed spores during wet weather (Bennett 
& Shaw 2008). Such diseases often cause leaf 
spots that can grow into foliage blight, killing 
entire leaves. Root diseases can also affect 
foliage loss or curl and are associated with 
moist soil conditions found in overwatered, 
heavy clay, or poorly drained soils. Deep 
infrequent watering is considered preferable 
to frequent light watering for overall madrone 
health. Although madrones are relatively 
drought tolerant, extended periods of drought 
can increase disease susceptibility in trees. 
 Detection and management of PMLB by 
raking and destroying impacted foliage is an 
approach that can fortify madrone populations 
as blight-impacted individuals are more 
susceptible to more severe disease and stress 
associated with climate change (Bennett & 
Shaw 2008, Elliott et al. 2012). Conventional 
PMLB survey methods are field-centric 
which are costly due to the need to survey 
trees individually and time and expense 
associated with accessing remote sites upon 
which they grow. Individual tree assessment 
is necessary because detection of PMLB can 
dictate which trees managers should focus 
control measures like leaf raking and burning 
efforts to mitigate the spread of the disease 
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(Bennett & Shaw 2008). Additionally, human 
activity represents a potential vector for further 
spreading disease when they move through 
an infected site (Lucas & Dickinson 1998). 
With the growing popularity and accessibility 
of unoccupied aircraft systems (UAS) for 
remotely sensing environmental phenomena, 
there exists an unexplored opportunity 
for increasing PMLB survey efficiency 
by remotely conducting individual tree 
assessments while simultaneously reducing 
the risk of exacerbating PMLB spread through 
anthropogenic vectors. 

Pertinent Previous Findings

UAS are popular in environmental monitoring 
applications because they are inexpensive 
compared to occupied aircraft and capable 
of rapidly surveying large areas in a short 
time. UAS remote sensing has been shown to 
enable efficient acquisition of forest inventory 
data at lower costs and with more detail than 
ground-based inventories (Guimarães et al. 
2020). Common products from such surveys 
characterize physical attributes of trees via 
elevation models, ortho-imagery, and point 
clouds, with calculation of vegetation indices 
and use of spectral signatures also common. In 
forest health monitoring for disease detection, 
the most common platforms are vertical 
takeoff and landing (VTOL) vehicles with true-
color (i.e., red, green, blue wavelength (RGB)) 
sensors.
 Repeat UAS remote sensing surveys have 
succeeded in facilitating multi-temporal 
change detection. Marques et al. (2019) 
employed a method to extract features from 
UAS-derived color-infrared (CIR) and true-
color orthoimagery with a resolution of 16 cm 
ground sampling distance (GSD) to conduct 
a multitemporal analysis of chestnut trees. 
Results showed 98% success in detecting 
individual chestnut trees. Additionally, 
the strong relationship between ground 
observations and UAS-derived tree height 
and diameter evidenced by R2 correlation 

coefficients of 0.79 and 0.92, respectively, were 
indicative that UAS estimates of biophysical 
attributes would be sufficient for examining 
change at tree-level through time. 
 Extracting physiologically relevant 
vegetation indices (VIs) from remotely 
sensed data has been effectively utilized in 
disease detection. For example, Marin et 
al. (2018) found vegetation indices derived 
from the Landsat 8 Operational Land Imager 
and Thermal Infrared Sensor to be highly 
correlated with disease incidence of bacterial 
blight of coffee (r = 0.76) and disease severity 
(r = 0.52).  When paired with high resolution 
data originating from UAS, VIs have been 
effectively employed to classify disease severity 
of Verticillium wilt at various stages in olive 
trees (Calderón et al. 2013). Zarco-Tejada et al. 
(2012) investigated water stress detection in a 
citrus orchard and demonstrated the feasibility 
of thermal, narrow-band indices, and micro-
hyperspectral imaging via small UAS for stress 
detection in a heterogeneous tree canopy where 
very high resolution is required. Di Nisio et al. 
(2020) investigated 71 olive trees impacted 
with olive quick decline syndrome using 
multispectral, thermal, and high-resolution 
visible sensors. They calculated RGB, CIR, 
and NDVI indices from UAS imagery, 
and a Sørensen-Dice similarity coefficient 
for each olive tree after tree segmentation. 
High Sørsensen-Dice coefficients indicated 
successful tree delineation noting NDVI 
alone was not sufficient for segmentation 
and olive quick decline syndrome classifier 
performed well with 98% sensitivity and 100% 
specificity. Additionally, Garza et al. (2020) 
found the correlation between UAS-derived 
triangular greenness index (TGI) and field 
health measurements of citrus trees useful to 
assess tree health and disease status.
 UAS technology has additionally been used 
in previous studies to detect blight in a variety 
of species. Bagheri (2020) investigated a UAS 
equipped with a multispectral sensor to identify 
fire blight in 75 pear trees at different levels of 
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disease achieving classification accuracies for 
healthy, asymptomatic, and symptomatic trees 
of 98.7%, 91.4%, and 93.9%, respectively. 
Sandino et al. (2018) combined UAS aerial 
mapping, a hyperspectral sensor, and machine 
learning to detect and classify myrtle rust 
(Austropuccinia psidii) in paperbark trees 
(Melaleuca quinquenervia), achieving 
detection rates of 97.24% for healthy trees and 
94.72% for affected trees. 
 Our objectives are to demonstrate the utility 
of combining machine learning methods with 
UAS multi-spectral remote sensing data for 
individual tree surveys of PMLB. We quantified 
the relationship between field observed blight 
impact on 29 trees and remotely sensed spectral 
signatures of individual madrone crowns 
across a common garden site for three years 
using a machine learning model development 
method. We then used the resulting model to 
assess PMLB disease status of all 1,349 trees 
in the site for the purpose of evaluating spatio-
temporal trends in PMLB. We are unaware of 
any previous peer-reviewed literature that has 
applied UAS remote sensing data and machine 
learning for PMLB assessment.

Materials and Methods

Site and Data Acquisition

The Pacific madrone study area is one site in 
a common garden study intended to gather 
data regarding various genetic traits of 105 
Pacific madrone families from 7 ecoregions 
using seed Washington State University 
collected from 2006 to 2010. Researchers 
sowed plug trays in February 2011 and 
moved them to a greenhouse in April 2011. 
In June 2011, they germinated seeds grown 
in containers and placed them outside until 
they transplanted them in fall and winter 2011. 
Genetic traits examined included but were not 
limited to disease resistance, growth traits, 
and suitability to predicted conditions under 
climate change scenarios (Elliott et al. 2012). 
The site is located on privately owned land 
located north of Corvallis, Oregon, USA near 

N 44°43’, W 123°23’ (Figure 1). The study site 
is approximately 1.5 ha (3.6 acres) in area with 
a modest elevation gradient ranging between 
235 and 247 m. According to precipitation 
data acquired from PRISM Climate Group 
(2022), annual precipitation in the area was 
1187 mm, 1411 mm, and 1585 mm for 2019, 
2020, and 2021, respectively. We conducted 
field and aerial surveys during five site visits 
occurring on October 15, 2019, May 28, 2020, 
October 15, 2020, May 28, 2021, and October 
15, 2021, between approximately 12:00 and 
15:00 PDT. The October 2019 flights occurred 
during scattered cloud conditions, and the May 
2020, October 2020, May 2021, and October 
2021 flights during clear skies. 

Ground Survey

We selected and surveyed 30 trees for field 
validation, hereafter referred to as ground 
survey trees. The ground surveys facilitated 
model training and validation described later. 
We revisited the same ground survey trees 
during each site visit. We selected ground 
survey trees that encompassed a broad spatial 
distribution and displayed the full range of 
visible signs of infection, ranging from few 
visible signs to clearly affected. We stem 
mapped and georeferenced ground survey 
trees with a Trimble Geo XH global navigation 
satellite system receiver paired with a range 

Figure 1 Study Site – Pacific madrone plantation in northwest 
Oregon, USA. Points are locations of 29 field 
validation trees. Background is orthomosaic from 
UAS imagery flown in Oct. 2019.
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pole-mounted external Tornado antenna. We 
assessed blight and measured height of each 
ground survey tree during each visit. We 
measured tree height with a measurement pole 
from base of stem to the highest point of each 
tree. We followed the blight assessment from 
DeWald et al. (2018) and is as follows: (1) 
Identify the most severely impacted leaf from 
current season growth and classify severity 
according to percentage of leaf area (0%, <25%, 
25%-50%, >50%) exhibiting signs of blight. 
(2)  Estimate incidence by visually examining 
the entire crown and estimating the percentage 
of tree leaves affected (<25, 25-50, 51-75, >75) 
by the most severe rating identified in step 1 
(DeWald et al. 2018). (3) The incidence data is 
then used to assign a dominant severity class 
to each surveyed tree, and when two equally 
dominant severity classes are apparent, the 
most severe class is reported. We then tallied 
severity classes by survey date to characterize 
PMLB severity (Table 1).
 Due to all surveyed trees having a visual 
severity rating greater than 50%, we modified 
DeWald et al.’s approach to increase levels 
of gradation to better correspond with the 
continuous response of the indicator variables 
in the remotely sensed data.
 

We incorporated current year incidence to 
provide a distinction between blight impacts 
from previous years. This accounts for the 
disproportionately large influence the leaves 
from the most recent growing year has on the 
remotely sensed signal relative the proportion 
to total leaf area, owing to the fact that most 
recent growing year’s leaves represent the 
largest proportion of the visible crown when 
viewed from above at nadir. 
 Given the relatively few observations in the 
intermediate severity classes of <25 and 25-
50, we consolidated severity classes into two 
blight classes based on incidence, No Visual 
Blight (NVB) and Visual Blight (VB). We 
assigned blight class NVB to ground surveyed 
trees with blight severity class of ‘Blight 0’ and 
incidence > 50, i.e., greater than 50% of the 
current year’s foliage presented leaves of blight 
severity 0. The Blight Class VB was assigned 
to all remaining observations, i.e., greater than 
50% of the current growth presented visually 
symptomatic leaves (Table 2). One ground 
surveyed tree fell as a result of wind damage 
during 2021, thereby reducing our ground 
surveyed trees from 30 to 29. This resulted in 
a total of 145 field observations, each labeled 
with blight class and corresponding date of the 

Table 1 PMLB Severity: Four Class Distribution Table.

Date Severity Count Date Severity Count Date Severity Count
10/15/2019 Blight 0 13 5/28/2020 Blight 0 10 5/28/2021 Blight 0 27
10/15/2019 Blight >0-<25 5 5/28/2020 Blight >0-<25 0 5/28/2021 Blight >0-<25 0
10/15/2019 Blight 25-<50 2 5/28/2020 Blight 25-<50 0 5/28/2021 Blight 25-<50 0
10/15/2019 Blight 50 9 5/28/2020 Blight 50 19 5/28/2021 Blight 50 2

10/15/2020 Blight 0 15 10/15/2021 Blight 0 26
10/15/2020 Blight >0-<25 2 10/15/2021 Blight >0-<25 2
10/15/2020 Blight 25-<50 0 10/15/2021 Blight 25-<50 1
10/15/2020 Blight 50 12 10/15/2021 Blight 50 0

Date Blight Class Count Date Blight Class Count Date Blight Class Count

10/15/2019 NVB 3 5/28/2020 NVB 4 5/28/2021 NVB 25
10/15/2019 VB 26 5/28/2020 VB 25 5/28/2021 VB 4

10/15/2020 NVB 3 10/15/2021 NVB 24
10/15/2020 VB 26 10/15/2021 VB 5

Table 2 PMLB Severity: Two Class Distribution Table.
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observation for each of the 29 trees measured 
and remeasured over the five observation 
events (Table 2). Table 2 is derived from 
observations associated with the complete 
severity and incidence table of 29 survey trees 
provided in supporting information.

Aerial Survey

We collected remotely sensed imagery using 
a Micasense Altum multispectral camera 
(Micasense 2020) onboard a DJI Matrice 200 
v2 quadcopter UAS (DJI 2019). The Altum 
is a six-band camera sensitive to red, green, 
blue, near infrared, red-edge, and longwave 
infrared (i.e., thermal). Imaging resolution is 
4.3 cm and 67.8 cm ground sampling distance 
at 100 m above ground level (AGL) for the 
first five bands and thermal band, respectively. 
Detailed Matrice and Altum flight and imaging 
specifications are described by Wing (2019). 
 We conducted UAS flights autonomously 
with DJI Pilot software (DJI 2020) to ensure 
necessary image forward overlap and 
side overlap were achieved. Flights were 
approximately 8 minutes in duration to cover 
the entire study site. This software allows 
for user-provided specifications on flight 
area, velocity, image overlap, and altitude. 
Flight altitude was set to 100 m AGL, ground 
velocity was set at 5 m/s, and forward and 
side overlap were both specified at 80%. This 
level of forward and side overlap results in 
approximately 25 overlapping images of any 
given location in the study area which produces 
the most geometrically accurate orthomosaics 
(Hostens et al. 2022; Nesbit & Hugenholtz 
2019). We imaged a spectral calibration target 
with the multispectral sensor immediately 
before and after each flight to calibrate the five 
non-thermal bands and convert imagery data 
to time-invariant at-sensor reflectance which 
facilitated comparison of images taken on 
different dates. 

Image Processing

Image processing was accomplished with 

Agisoft Metashape (2019) photogrammetry 
software with processing parameters based on 
the sensor manufacturer’s recommendations 
(Micasense 2019, July 25). We applied a 
radiometric calibration to imagery during 
Metashape processing by sourcing the spectral 
calibration target images taken during each 
flight and specifying manufacture-provided 
albedo values. We converted the five non-
thermal bands from 16 bit digital numbers to 
surface reflectance values between 0.0 and 
1.0, where 1 is equivalent to 100% reflectance 
of incident light for the specified band and 
converted thermal values from centi-Kelvin 
to Celsius (cK/100 – 273.15) for more 
intuitive interpretation. The resulting six-band 
orthomosaic image raster files had resolutions 
of approximately 5 cm GSD. Note that the 
thermal band is automatically resampled from 
67.8 cm GSD to match GSD of the non-thermal 
bands using the nearest neighbor assignment 
method. 
 The resulting orthomosaics were imported 
to R (R Core Team 2021) using the Raster 
package (Hijmans 2021) to conduct a series 
of calculations necessary to produce nine VIs 
that are known to indicate structural and/or 
physiological condition of vegetation (Table 
3). This expanded the original six bands to a 
total of 15. 

Tree Crown Delineation and VI Extraction 

with GIS Software

We utilized ArcGIS Pro version 2.8.3 (Esri 
2021) to manually delineate 1,349 tree crowns 
by generating circular buffers, where circle 
radius and center were manually measured 
and identified for each tree using the true 
color orthomosaic from October 2019 as a 
reference. The 29 ground survey trees were 
associated with a corresponding tree crown 
in ArcGIS using the GPS position to provide 
labeled training data for the supervised 
classification model described in the next 
section. We exported tree crown circles into 
the R environment and used the exactextractr 
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tool (Baston 2021) to calculate mean of each 
of the 15 bands (Table 3) for each of the given 
time periods. Each tree circle received a mean 
for each raster band and date (i.e., factors 
indicating month and year).

Model

The aim of this study was to develop a 
Pacific madrone leaf blight detection model 
based on remote sensing that would facilitate 
understanding of the site-wide condition of 
the madrone stand using the full population of 
trees rather than the limited number of ground 
survey trees. To this end we utilized the Ranger 
(Wright & Ziegler 2017) implementation 
of the Random Forest (Breiman 2001) 

supervised classification model development 
algorithm. All modeling was conducted in 
the R environment (R Core Team 2021), 
and we used the Caret package (Kuhn 2019) 
because it facilitates extraction of numerous 
model performance metrics, hyperparameter 
tuning, and supports a number of different 
cross-validation routines. We selected the 
Random Forest (RF) algorithm to classify 
blight because it is increasingly popular in 
environmental remote sensing fields due to 
it being robust to assumption violations that 
tend to hamstring conventional linear models 
such as multi-collinearity, non-linearity, and 
unspecified interactions.  Random Forest 
works by building an ensemble of many weak 

Table 3 Vegetation indices constructed from individual bands 1-6. Formula describes how vegetation. indices 
are derived and reference denotes the source of the VI.

Band Name or Vegetation Index Formula* Reference
1 Blue (Rb) From sensor NA
2 Green (Rg) From sensor NA
3 Red (Rr) From sensor NA
4 Red edge (Rre) From sensor NA
5 Near infrared (Rnir) From sensor NA
6 Longwave infrared (LWIR) From sensor NA

7 Triangular Greenness Index (TGI) TGI = -0.5[(λr-λb)(Rr-Rg)-( λr-λg)(Rr-Rb)] (Hunt et al. 2011), 
Hunt et al. (2013)

8 Green Red Vegetation Index 
(GRVI) Tucker (1979)

9 Normalized Difference Vegetation 
Index (NDVI) Rouse et al. (1974)

10 Normalized Difference Red Edge 
(NDRE) Barnes et al. (2000)

11 Green Normalized Difference 
Vegetation Index (GNDVI) Gitelson et al. (1996)

12 Modified Simple Ratio Index 
(MSR) Chen (1996)

13 Modified Simple Ratio Index Red 
Edge (MSRE)  

Cao et al. (2013)

14 Green Chlorophyll Index (GCI) Gitelson et al. (2005)

15 Red Edge Chlorophyll Index 
(RECI) Gitelson et al. (2005)

Note: * λ is wavelength associated with band and R is reflectance of corresponding band: blue (b), green (g), red I, red 
edge (re), near infrared (nir).



178

Ann. For. Res.: 66(1): 171-186, 2023 Research article 

decision tree learners and using the calculated 
proportion of correct and incorrect learners to 
inform splits in the covariate data that explain 
the relationship between model covariates and 
observed response. Additionally, RF produces 
unbiased out-of-bag (OOB) estimates of model 
performance based on held-out independent 
observation data (Zhang et al. 2010). We 
used the Ranger implementation because it is 
natively supported in the Caret package (Kuhn 
2019) we used for constructing the model, 
and in testing Ranger is faster than other RF 
implementations, due in part to its use of multi-
threading and parallelization. 
 We fit a single binomial classification 
RF model to the 29 ground survey trees, 
incorporating means from 15 remotely sensed 
bands, time variables for month and year, 
and spatial x, y coordinates (Equation 1). 
Rather than create five separate models, we 
incorporated month and year into the model 
to maximize the range of madrone crown 
condition captured by the remotely sensed data. 
Additionally, we evaluated model performance 
with 100 repeats of a 5-fold cross-validation 
(CV) routine rather than simple data splitting to 
make use of the limited amount of observation 
data because it has been shown to be unbiased 
(Kuhn 2019). We chose to use 100 repeats in 
order to produce a distribution of means from 
the 5-fold CV runs, resulting in estimates that 
are more stable than a single 5-fold CV routine 
and thus robust to the influence associated 
with randomly reshuffling the data. 5-fold 
is a common implementation of the k-fold 
method and represents an optimization of 
computational efficiency that facilitates testing 
against 20% of the data on each fold. 

Equation 1:

Variables in bold are factors. Blight Class has 
2 levels: NVB and VB, month has two levels: 
October and May, Year has three levels: 2019, 

2020, and 2021.
 Nested within each CV routine was a 
hyperparameter tuning grid that evaluated 
the optimal value of mtry between 2 and 15, 
and the optimal minimum node size between 
three and five. MTRY is important to optimize, 
especially in high dimensionality data because 
it can affect importance values of highly 
correlated predictors, introducing bias when 
assessing variable importance (Strobl et al. 
2007).  Minimum node size is important 
in a prediction or detection model because 
it further minimizes potential for Random 
Forest to overfit the model to a single extreme 
observation. We did not tune number of trees, 
opting to hold this value constant at 500 
trees. The split rule was set to extratrees, an 
implementation of extremely randomized trees 
by Geurts et al. (2006). This implementation 
of RF randomly selects the point at which to 
split features from a subset of data, averaging 
the value to increase accuracy and reduce 
overfitting, whereas random forest traditionally 
optimized this value based on Gini for each 
resample of the data.
 Following the model training, we calculated 
normalized variable importance to assess the 
relative importance of predictor variables on 
the resulting classifier. We also calculated 
prediction accuracy for out-of-bag data, 
permuting each predictor variable. The 
statistical software calculated differences in 
accuracies for each random forest tree, then 
averaged these values. We plotted variable 
importance to visualize the relative importance 
of each covariate to the model.
 We used the partial function in the pdp 
package by Greenwell (2017) to calculate partial 

dependence for each spectral variable. Partial 
dependence plots allow for the visualization of 
the relative impact of a subset of independent 

Blight Class ~ R b+ R g+ R r+ Rre+ Rnir+ LWIR + TGI + GRVI + NDVI + NDRE  +GNDVI +MSR 
+ MSRE + GCI + RECI + Time Month+ Time Year+ Coordinate x+ Coordinate y
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variables with regard to the dependent variable 
(Friedman 2001). These plots can provide 
insight regarding the influence of independent 
variables to prediction outcomes but do not 
provide the degree of interpretation gleaned 
from coefficients of parametric models (e.g., 
linear regression). 

Analyses

We evaluated the classification performance of 
the model using Cohen’s kappa (Cohen 1960), 
balanced accuracy (Brodersen et al. 2010), and 
the confusion matrix (Ting 2017).  We assessed 
prediction error using the out-of-bag (OOB) 
estimates produced from Random Forest. 
Additionally, we created and assessed a variable 
importance plot to understand which predictor 
variables are most important to blight detection. 
Lastly, partial dependence plots for the top three 
variables demonstrate how change in these 
variables drive the likelihood of blight.
 We used the RF model to predict blight class 
(i.e., NVB, VB) for the 1,320 trees not having 
field observations, for each of the five month 
and year combinations. Data were subsequently 
summarized to infer stand-level blight status 
by estimating the percentage of NVB and VB 
from the individual tree blight class assessments 
generated from the predictions. 

Results
Random Forest

RF classification performance of the model 
based on the confusion matrix from the 100 
repeat 5-fold CV (Table 4) is as follows: kappa 
= 0.71 (95% CI 0.70, 0.72), balanced accuracy 
0.85, and OOB prediction error = 0.11. The 
true positive rate was VB 0.92, which is higher 
than the true NVB rate of 0.78. Tuned final 
model parameters are as follows: mtry = 3 and 
minimum node size = 5. 

Variable Importance and Partial Dependence

Predictors with the highest influence were 
indicator variables for year, followed by mean 

at-sensor reflectance in 
the red and blue bands, 
an indicator variable 
for month, and mean 
radiant temperature 
from the LWIR band 
(Figure 2). Partial 
dependence plots of 
spectral predictors 
are presented below 
and organized in 
descending order of 
importance from left 
to right, top to bottom 
to correspond with 
variable importance 
rankings (Figure 3). 

Table 4 Confusion Matrix: Aggregated cell counts 
and percentual average cell counts across 
resamples on 100 repeats of 5-fold CV. 
Cells on the diagonal axis indicate ground 
survey trees correctly classified by the RF 
model.

Reference
NVB VB

Pr
ed

ic
tio

n

NVB 4652 (32.1%) 768 (5.3%)

VB 1248 (8.6%) 7832 (54.0%)

Balanced accuracy = 0.85

Figure 2 Variable Importance Plot, values are normalized by standard error.
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Model Predictions

We used the final RF model to predict blight class 
for all 1,349 trees recorded during each UAS 
flight. We visualized the associated percentages 
of blight class we observed in the field and the 
percentages from the random forest predicted 
results as a stacked bar chart (Figure 4). 

Discussion

Model Performance

The final random forest model demonstrated 
a substantial level of agreement at kappa 
= 0.71 between the predicted results of the 
classifier and the reference data based on the 

Kappa scale in (Landis 
& Koch 1977). Cohen’s 
kappa is considered 
an adequate measure 
of model performance 
and assesses the level 
of agreement between 
predicted classes of 
the trained model and 
observed classes for a 
subset of testing data 
because it accounts 
for the likelihood of 
achieving agreement 
from random chance. A 
kappa of 0 would indicate 
the model performed no 
better than we would 

Figure 3 Partial Dependence Plots for Spectral Predictors.

Figure 4 Percentual Distributions of Predicted (1,349 trees) and Observed (29 Ground 
Survey Trees) Blight Class. Y-axis is the combined percentage of trees displaying 
no-visible blight (NVB) or visible blight (VB) with NVB in red and VB in green. 
In 2021 NVB trees dominate the stand which may indicate that most of the 
blighted leaves have abscised leaving only the healthy green current-year foliage. 
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anticipate due to random chance, whereas 1 
indicates a perfect classifier. The substantial 
level of agreement between field observations 
and model predictions as evidenced by the 
balanced accuracy metric suggests the model 
is performing suitably well to make predictions 
to all madrone trees in one site. 
 Of the trees the model identified as impacted 
by blight, 21% of these trees did not visually 
present as impacted by the disease. Conversely, 
9% of the trees identified by the model to 
be clear of blight were impacted. The false 
negative warrants higher concern because 
failing to detect a PMLB-positive individual 
would result in a missed opportunity to rake 
and burn the impacted foliage associated with 
the impacted tree, resulting in further spread of 
blight to neighboring trees. False positives are 
less of a concern because a trained crew would 
ignore the tree and move to the next blight-
impacted tree. 

Relative Importance of Predictors

When we examined the relative importance of 
the various predictors regarding their individual 
effects on model accuracy, indicator variables 
for year and month comprised three of the five 
most important predictors. Temporal variables 
encapsulated intra-temporal variation within 
the site. This may include aspects of weather 
like precipitation and temperature that affect 
the spread of blight throughout among trees 
throughout the site. Additionally, there may be 
a lag effect associated with the two years of 
drought the site experienced culminating in a 
decrease in visible blight as the pathogen had 
diminished opportunity to spread via water 
particles. 
 Spectral predictors including mean 
reflectance in red and blue bands had 
relatively high importance to model accuracy. 
Intuitively, chlorophyll associated with 
healthy foliage absorbs blue and red energy 
of the electromagnetic spectrum (centered at 
0.45 µm and 0.67 µm respectively), reflecting 
green energy, thereby resulting in a visibly 

green appearance to the human eye. Whereas a 
leaf associated with a stressed plant exhibits a 
red appearance as it undergoes less chlorophyl 
production, decreasing absorption in red and 
blue (Lillesand et al. 2015). The variable 
importance plot suggests the model is discerning 
the nuanced spectral pattern of leaves impacted 
by blight through mean reflectance in these 
individual bands. Interestingly, mean radiant 
temperature recorded in the LWIR band is also 
an important variable. Reduced transpiration 
rates of diseased leaves can be detected in the 
LWIR region of the electromagnetic spectrum 
(Oerke et al. 2010).
 Mean reflectance in red and blue bands and 
radiant temperature recorded in the LWIR 
band are the spectral variables exhibiting a 
broad range that correlate with the response 
(Figure 3). Potential pixel mixing may explain 
the difficulties the model is experiencing 
where we notice a parabolic trend in the 
spectral data (e.g., TGI). Variable importance 
shows relative less importance associated 
with the noisy variables that have very weak 
relationships to the observed response. The 
range of mean reflectance values in the partial 
dependence plots (Figure 3) are consistent with 
spectral reflectance curves of other hardwoods 
(Kalensky & Wilson 1975, Lillesand et al. 
2015). This range of values suggests the 
reflectance calibration is performing well 
enough that confounding influence from 
potential variation in bi-directional reflectance 
from the five different aerial surveys is not 
significant enough to impact the results of the 
multi-temporal analysis.

Predicted and Observed Blight Distribution

Applying the RF classifier to the 1,349 trees on 
the site produced distributions of VB and NVB 
like those in the ground survey data (Figure 
4). Both revisits in 2021 suggest a significant 
decline in PMLB prevalence throughout the 
site compared to visits that occurred in 2019 
and 2020, possibly owing to the reduced 
drought conditions compared to the previous 
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two years. 2021 experienced the greatest 
annual precipitation at 1585 mm compared to 
the other two years, with 2020 falling just short 
at 1411 mm, while 2019 lagged significantly 
at 1187 mm. When we examine how mean 
precipitation for these years compare to PRISM 
Climate Group’s (2022) 30-year normal 
(calculated from mean annual precipitation 
from 1991-2020) of 1542 mm, both 2019 and 
2020 were relative drought years experiencing 
75% and 89% annual precipitation compared to 
30-year normal. Whereas 2021 was a slightly 
wetter than average year at 103%. Although 
blight is thought to spread via water droplets, 
it warrants further investigation to determine 
whether drought-stressed madrones are more 
susceptible to pathogens that cause the disease 
especially as hydrological drought frequency 
is projected to increase over the course of the 
21st century (Strzepek et al. 2010). 
 Any individual year’s results may be 
useful for informing management decisions. 
Managers may opt to remove impacted foliage 
by either removing entire trees or raking and 
burning impacted foliage near the blighted 
individuals in areas where a high density of 
probable blight impacted trees are identified 
(i.e., VB). It is worth noting that in 2021 
the site appeared to recover suggesting that 
managers may want to consider a longer-
term trend (e.g., 3 to 5 years) of blight status 
before deciding to implement any destructive 
or costly intervention measures. However, 
it could be that the reduction of VB in 2021 
is not a recovery at all but the result of the 
abscission of all visibly infected trees leaving 
the current year’s growth which is visually 
asymptomatic at the time of survey. Additional 
study examining changes in leaf area, leafy 
biomass, and age of distribution of retained 
leaves would be necessary would be necessary 
to draw more concrete conclusions. 
 Given the increased accessibility of UAS 
technology (Wing et al. 2013), the relatively 
inexpensive access to computational power 
(PC meeting the minimum requirements for 
running Agisoft Metashape costs less than 

$1500 at the time of this writing), and free 
and open-source nature of Random Forest 
modeling via the R environment, we assert that 
the methods presented here can be reasonably 
applied by resource managers who have 
qualified personnel available. For those who do 
not possess in-house UAS capabilities there are 
numerous UAS survey firms available within 
the continental United States and elsewhere. For 
those who lack the statistical modeling expertise, 
we have provided the workflow for reproducing 
the model and provide the code for fitting the 
model and conducting predictions. Additionally, 
the method requires someone with expertise 
using GIS for summarizing and producing 
mapping outputs in an operational manner. 

Efficacy of PMLB Detection for Information 

Management Decisions 

The UAS methodology presented here is 
intended to be incorporated with a limited 
field survey, not replace it entirely. We expect 
the presented method would not adequately 
detect PMLB without providing temporally 
synchronized field training data to constrain 
the model. With the addition of more temporal 
data in the form of follow-up flights and 
surveys the model would need to be refitted 
with the new data to account for potential 
variability captured during that date. This is a 
limitation of the method because predictions 
are confined to the months and years for which 
we have observation data. If replicated over 
an expanded area, it is likely that more than 
30 ground observations would be necessary 
to facilitate the development of a model that 
adequately detects PMLB. Practitioners 
intending to replicate this method should be 
aware that a substantial portion of the time 
saved in the field is simply transferred to time 
in front of the computer. However, computer 
time is inherently safer than field time and 
does not incur a multi-hour transportation 
cost. Furthermore, once the method is fully 
developed, the computer time would be 
reduced through continued refinement and 
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analyst experience. The ground survey of 29 
trees typically took a team of four two hours 
to complete while flights required fewer than 
30 minutes including setup and takedown. 
Additionally, image processing, crown 
delineation, and model development require 
less than 10 hours after establishing a workflow 
from this case study. Based on the results of 
our work, it is reasonable to expect that a UAS 
survey and associated ground survey would 
be able to cover more trees and facilitate 
inference about PMLB status over a larger area 
than a ground survey alone. Area coverage can 
be substantially increased by incorporating 
a vertical takeoff and landing fixed-wing 
platform. Manufacturers like Wingtra advertise 
coverage of anywhere from 500-600 acres in a 
single 1-hour flight at the legal altitude ceiling 
of 120 m depending on sensor (Wingtra 2022). 
Pairing emerging UAS platforms such as 
this with multispectral sensors and machine 
learning models like those presented here may 
augment detection surveys of foliar diseases 
such as PMLB, providing robust monitoring 
solutions to detect and manage these problems.

Conclusions

We presented a methodology for supplementing 
field assessments of PMLB with spectral and 
thermal data recorded with a UAS-mounted 
multispectral sensor. This process produces a 
classifier capable of extending data associated 
with the ground survey trees to facilitate 
making inference about the blight status of 
all trees on site. Additionally, we were able to 
account for intra-flight variability by including 
variation as a temporal component in the 
form of year and month in the random forest 
classifier. By incorporating UAS into a PMLB 
detection workflow, managers can determine 
probable blight status at the tree-level, thereby 
informing mitigation efforts to control the 
spread of the pathogens. We anticipate this 
approach could be utilized to detect pathogens 
in other plant species that visually present as 
foliar spotting. This approach does not detect 

blight prior to presentation of visual symptoms, 
but future studies may build on this work by 
incorporating PCR tests of foliage for trees 
that are not displaying visual symptoms and 
investigating whether sensors and machine 
learning algorithms are able to detect blight 
positive individuals prior to visual symptoms. 
Future research may further improve on our 
methodology by incorporating a quantitative 
field component to assess blight impact such as 
a field spectrometer rather than the subjective 
blight assessment we conducted. The RF 
model used to predict trees displaying visible 
blight symptoms does not provide the insight 
one may glean from parametric models, 
e.g., linear regression. Consequently, we are 
unable to estimate the correlations between 
spectral values and blight. However, variable 
importance and partial dependence plots do 
provide some insight into the value of those 
variables as they pertain to the final model 
used to generate predictions. The results of this 
case study culminate in a tool to predict visible 
blight class from UAS imagery that may be 
incorporated into a blight assessment, thereby 
expediting the detection process. 
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