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Abstract: In recent decades, Zagros forests from western Iran have experienced 
dramatic changes in cover and structure. Conservation policies, on the other 
hand, have existed or are being implemented in these forests since 2002 to 
prevent deforestation. There is, however, the question on how effective were 
the conservation policies in preventing forest loss. The goal of this study was 
to analyze the effect of conservation policies in preventing forest loss, as well 
as to forecast their future effectiveness. Since the spatio-temporal changes in 
forest cover, land-use and its patterns occur in a non-linear way, this study 
was based on the use of Land Transformation Model (LTM). Using geographic 
information systems (GIS) and artificial neural networks (ANNs), this model 
forecasts future forest changes for the next 30 years. Three scenarios were 
used for this purpose, in which the input patterns included the years 2002-
2012, 2002-2022, and 2012-2022. Based on these, deforestation was predicted 
for the next three decades using 14 variables. Assuming no changes in the 
implementation of conservation policies in the Zagros forests, the model was 
characterized by a consistent accuracy and indicated a projected pattern of 
increased deforestation over the next years in the region. In other words, by the 
ongoing conservation policies, the net deforestation overtakes net reforestation. 
It appears that to stop further forest degradation, Iran's Forestry Service 
decision-makers must implement improved forest conservation policies.
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Introduction

Land-Cover and Land-Use Change (LCLUC)‎ 
is the end consequence of a complex interaction 
between several variables, including human 
activity, resource exploitation, agricultural 
activity, policy changes, management, 
environmental changes, and socioeconomic 
disturbances (Hostert et al. 2011, Baumann et al. 
2015, Svoboda et al. 2022). These changes occur 
at various paces as a result of the conversion 
of natural lands such as forests to other land 
uses such as croplands, grasslands, urban or 
settlements (Ge et al. 2018). Due to LCLUC’s 
detrimental effects on the environment and its 
processes, including increased soil erosion, 
runoff, CO2 emissions, climate change, and 
a decline in biodiversity (Warth et al. 2020), 
understanding how and why LCLUC occurs is 
very important. Land use maps of previous years 
help provide valuable information about the 
background and past conditions of each region 
for the sustainable resource management and 
conservation programs (Munthali et al. 2020). 
Although the overall amount of forest cover has 
been declining in many countries (Li et al. 2013), 
at the same time, many other European, North 
American, and Asian countries are experiencing 
a forest transition (i.e., forest expansion) to meet 
the United Nations’ Sustainable Development 
Goals (Katila et al. 2019).
 By considering the wide range of climatic 
variation in Iran, researchers have divided 
Iran’s forests into five vegetation regions 
(forests and other wooded lands with a canopy 
cover of more than 5%) as follows: The 
Hyrcanian Forests (2,073,000 ha), Arasbaran 
Forests (174,000 ha), Iran-Touranian Forests 
(4,666,000 ha), Persian Gulf and Sea of 
Oman Region forests (2,039,000 ha), and 
Zagros Forests (4,749,000 ha) (Sagheb 
Talebi et al. 2014, Roozitalab et al. 2018). 
According to the U.N. FAO, Iranian forests 
cover about 10,751,870 ha (FAO 2020).Iran’s 
forest resources were nationalized under 
government development plans, starting 

from 1963, to control forest loss then, from 
1967 the government moved to nationalize 
all the natural resources (i.e., natural forests 
and pastures), which led to the preparation of 
protective plans on a large scale (Roudgarmi 
& Mahdiraji 2020). Since then, the Iran’s 
government has gradually gained control over 
the forest use, and various policies have been 
adopted since 1997 (such as Zagros Forests 
conservation policy from 2002), which had 
different effects (Beygi Heidarlou et al. 2019). 
Beginning in the early 20th century, a system 
of development planning was implemented to 
enhance capital-intensive sectors and quickly 
modernizing society while also supporting 
the nation’s economic growth. This led to 
many challenges in forest management and 
law enforcement (Sotoudeh Foumani et al. 
2017), resulting in losses of large forest areas 
in the Alborz (Hyrcanian forests) and Zagros 
mountains (Zagros forests) and the extinction 
of many valuable tree and plant species due to 
illegal logging, which is not recorded in the 
official statistics.
 About 60 years have passed since the 
implementation of the first forest management 
plan in Iran. Hundreds of forest management 
plans have been implemented in these 60 years, 
90% of which are related to the Hyrcanian 
forests. Before the nationalization, forests were 
managed under private ownership and were 
used as pastures. In the past, forestry projects 
were implemented only for the utilization of 
industrial wood products. Then, multi-purpose 
plans were proposed and economic and social 
considerations were added, especially in the 
Zagros forests. These plans include Charcoal-
making schemes (1950-1959), ”Savadkuh 
Frame” development plan (1962-1978), 
“Neka Choob” Mazandaran Company (1969), 
exclosure and rehabilitation (1972-1981), 
afforestation with people’s participation, 
by-products operation, ”Tuba” plan (1999-
2005), and Zagros Forests conservation 
policy (”Siyanat” plan) (since 2002). Siyanat 
plan is implemented to reduce deforestation 
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and increase people’s participation in Zagros 
forests protective projects (Beygi Heidarlou 
et al. 2019). These policies did not take 
into account the forest-dependent people 
(especially in the Zagros); as such, forests and 
grasslands were managed with both traditional 
and governmental participation. With an 
area of around 4,749,000 ha, the Zagros oak 
forests cover 20% of the vegetative area and 11 
provinces of Iran, playing an important ‎socio-
economic role (Roozitalab et al. 2018, Beygi 
Heidarlou et al. 2020b).
 Remote sensing, as a cutting-edge technology, 
is useful in extracting land use maps, enables 
short-term access to valuable data at low cost, 
and it is being used to track the changes that 
occurred in space and time based on satellite 
data (Legdou et al. 2020). To date, several 
techniques, models, and computer algorithms 
have been developed to use the data provided 
by remote sensing instruments to identify 
LCLUC (Thyagharajan & Vignesh 2019); since 
these data are simply entered into geographic 
information system (GIS) environments, 
they can be widely used in modelling using 
GIS technology. Land-use models are useful 
reproductible tools which complement the 
existing capabilities in analysing LCLUC to 
make more informed decisions (Verburg et 
al. 2004). To date, LCLUC models are able to 
link biophysical, socio-economic, and political 
factors and to evaluate LCLUC based on hybrid 
methods and models (Schürmann et al. 2020). 
Several studies have been able to identify areas 
susceptible to deforestation as well as its main 
contributing factors, by using land-use models 
(Dávalos et al. 2011, Armenteras et al. 2013).
 LCLUC is a complex process (Lambin and 
Geist 2008, Guan et al. 2019), and modelling 
these systems is always challenging (Tayyebi 
and Pijanowski 2014). Veldkamp and Lambin 
(2001) showed that the drivers of LCLUC 
operate nonlinearly at spatio-temporal scale. 
Therefore, to model the dynamics of land use, 
nonlinear learning techniques are required, 
such as artificial neural networks (ANNs) 

(Živković et al. 2009). In addition, Liu et al. 
(2017) suggested a future land use simulation 
model (FLUS) model to predict the long-term 
spatial trajectories of multiple LCLUCs. They 
used Cellular automata (CA) to improve the 
model’s capacity to accurately anticipate future 
land use patterns. Morshed et al. (2022) and 
Rahnama and Wyatt’s (2021) studies, which 
used ANNs, also revealed the importance of 
a strategic land use plan for monitoring and 
controlling plant encroachment, as well as 
scientific mitigation approaches to maintain 
ecological sustainability. ANNs have been 
widely used by LCLUC modellers over the 
last two decades (Tayyebi & Pijanowski 
2014, Pijanowski et al. 2020). The Land 
Transformation Model (LTM), which is an 
ANN-based model, has been applied as a 
forecasting tool in various parts of the world to 
analyze spatio-temporal dynamics of land use, 
and to model and predict the impacts of LCLUC 
in the future (Pijanowski et al. 2009, Newman 
et al. 2016). The LTM model is implemented 
in GIS and has been widely used as the most 
accurate ANN-based LCLUC model to forecast 
LCLUC (Newman et al. 2016). This model 
integrates the multi-layer perceptron (MLP) 
ANN and GIS, based on socio-economic and 
biological factors with the aim to simulate 
LCLUC (Pijanowski et al. 2002a, Pijanowski 
et al. 2014). Without any prior knowledge of 
their functional relationship, MLP performs a 
supervised learning which is useful in checking 
the agreement between input and output pairs 
of drivers (Tayyebi & Pijanowski 2014).
 On the other hand, the failure of many 
environmental studies is a result of the absence 
of quantifiable indicators and quantitative 
projections of changes based on the conditions 
of each place (Mallard & François 2013). 
Spatial analysis models that generate forecasts 
of potential changes at the landscape scale 
should be used in conjunction with these 
evaluations (Gómez-Ossa & Botero-Fernández 
2017). Natural resources of West Azarbaijan 
Province (northwest Iran) and especially the 
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forests of Sardasht city, with an area of 91,117 
ha, are considered an important and relatively 
one of the critical areas in Zagros forests for 
land-use change and forest decline (Beygi 
Heidarlou et al. 2019). This region has not 
been immune to human harm and has seen 
forest loss throughout the years as a result of 
population increase, poverty, and the demand 
for food, jobs, livable environments, roads, 
and urbanization growth, among other factors 
(Beygi Heidarlou et al. 2020a). As a result, the 
necessity for a careful planning and assessment 
in this region of the country has intensified in 
the last period.
 This study aims at predicting deforestation of 
the Sardasht City for three periods (2002-2012, 
2002-2022, and 2012-2022) and at modelling 
these changes for the next 10 (2032), 20 (2042) 
and 30 (2052) years by a LTM model assuming 
that conservation policies would be kept 
unchanged. Specifically, the study attempted 
to answer the following research questions: i) 
How will the future forests change by keeping 
the current state in the implementation of 
conservation policies in the area of study? 
and ii) Has the implementation of Zagros 
conservation policies enabled forest transition 
and did it prevented the forest loss?

Materials and Methods

Study area

City of Sardasht, which is located in Iran's West 
Azarbaijan province's southwest, was chosen 
as the research area. Sardasht has an average 
altitude of 1515 m (altitude ranges between 
591 and 2683 m) and holds 3.8% (1381.83 
km2) of the province's total area, being 
located between 35°37' and 36°28' N latitude 
and 45°13' to 45°42' E longitude (Figure 1). 
Over a 30-year period (1983-2013), the area's 
average yearly precipitation was 724 mm. 
Typically, Sardasht has the highest and lowest 
temperatures of 21°C and 6°C, respectively. 
According to the 2016 Iranian census, the city 
has 118,849 residents, with 68,162 living in 
the city and 50,687 in the countryside (Beygi 
Heidarlou et al. 2022).

Background of LTM

LTM was originally developed by Pijanowski 
et al. (1995) at the Human-Environment 
Modelling and Analysis Laboratory of Purdue 
University to simulate locally-scaled LCLUC 
patterns (Pijanowski et al. 2000, Pijanowski 
et al. 2014). In order to model the functional 
link between variables (both independent and 

Figure 1 The geographic location of Sardasht City.
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dependent drivers) and evaluate a model’s 
potential to forecast them, ANNs based on 
GIS are used to learn the patterns of LCLUC. 
Four operational steps are required for LTM 
modelling (Pijanowski et al. 2002a): data 
processing, applying spatial information, 
integrating the grid, and temporal scaling of 
prediction output.
 The modelling process of LTM includes 
data preparation, network creation, network 
learning pattern, network training and testing, 
prediction of change, and finally model 
validation. LTM requires data from a minimum 
of two time periods for ANN training, and 
the parameters of an optimal LTM model are 
estimated by running the ANN over a very 
large number of iterations (up to 250,000 
iterations). A training cycle in LTM is defined 
as a set of all ANN training data, and the mean 
squared error (MSE) is recorded for every 100 
cycles run in LTM. Typically, the difference 
between the reference data and the estimated 
output of the LTM is measured by the MSE 
(e Silva et al. 2020). Also, the difference 
between the MSE of each 100 cycles is used to 
evaluate the network training agreement, and 
the network training continues until the MSE 
of successive training cycles becomes stable. 
When this condition is met and the training 
is ended, the best network will be used on 
the testing data to estimate a suitability map. 
After that, the model will be used to develop a 
binary (change or no change) LCLUC map to 
predict future changes (Tayyebi & Pijanowski 
2014).

Input data and model building

To examine forest cover changes due to the 
ongoing forest management in the Iranian 
Zagros forests, three time milestones were 
chosen. The LTM model was developed based 
on LCLUC patterns of Sardasht using GIS data 
of 2002, 2012 and 2022. The inputs of the model 
included 14 variables (Table 1) which were used 
to characterize the LCLUC. Their choice was 
based on how well they may describe the changes 

(Olmedo et al. 2015), our prior study-related 
knowledge, and earlier research done in western 
Iran (Beygi Heidarlou et al. 2019, 2022).

 

Table 1 List of used spatial predictors for deforestation 
in Sardasht.

Input 
variable

Layer 
source Reference

Elevation ASTER 
data

Mas et al. 2004, Tayyebi & 
Pijanowski 2014, Tayyebi et al. 2014

Slope DEM
Mas et al. 2004, Pijanowski 
et al. 2006, Pijanowski et al. 
2014, Gómez-Ossa & Botero-
Fernández 2017

Aspect DEM
Tayyebi & Pijanowski 2014, 
Tayyebi et al. 2014, Song et al. 
2015

Distance from 
permanent 
river

1:25,000 
scale INCC1 
topographic 
map

Tang et al. 2005, Oyebode 2007, 
Song et al. 2015, Gómez-Ossa & 
Botero-Fernández 2017

Distance from 
periodic rivers

1:25,000 
scale INCC 
topographic 
map

Tayyebi & Pijanowski 2014, 
Tayyebi et al. 2014

Distance from 
primary roads

1:25,000 
scale INCC 
topographic 
map

Pijanowski et al. 2002a, 
Pijanowski et al. 2002b, Mas et 
al. 2004, Pijanowski et al. 2006, 
Oyebode 2007, Pijanowski et al. 
2014, Tayyebi & Pijanowski 2014

Distance from 
secondary 
roads

1:25,000 
scale INCC 
topographic 
map

Pijanowski et al. 2002a, Tayyebi 
& Pijanowski 2014, Ordway 2015

Distance from 
tertiary roads

1:25,000 
scale INCC 
topographic 
map

Pijanowski et al. 2006, Tayyebi 
& Pijanowski 2014

Distance from 
main city 
(Sardasht)

Land use 
map2

Pijanowski et al. 2002a, Tang et 
al. 2005, Oyebode 2007

Distance from 
other cities

Land use 
map Tang et al. 2005, Oyebode 2007

Distance 
from other 
residential area

Land use 
map Mas et al. 2004

Distance from 
croplands

Land use 
map

Pijanowski et al. 2006, Tayyebi 
& Pijanowski 2014, Tayyebi et 
al. 2014

Density of 
croplands

Land use 
map

Tang et al. 2005, Tayyebi et al. 
2013

Density of 
forest

Land use 
map

Tayyebi & Pijanowski 2014, 
Tayyebi et al. 2014

Note: 1INCC: Iran National Cartographic Center. 2 Produced 
land use maps in this study.
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 The croplands, rangelands, built-up areas, 
barren lands, and water body cells (pixels) in 
the ‎land use maps of 2002, 2012, and 2022 were 
identified and aggregated in an exclusionary 
‎zone (layer) since these cells are less likely to be 
candidates for new deforestation areas in 2032, 
2042 and 2052 (Newman et al. 2016). Using the 
ASCII file of variables as input layers, land use 
past changes as base maps and input patterns, 
and the one exclusionary layer (for modelling 
forest change), future forest change patterns 
of Sardasht were forecasted (Figure 2). Three 
input patterns (2002-2012, 2002-2022, and 
2012-2022, hereafter, the first, second, and third 
scenario, respectively), corresponding to the 
periods of implementing the conservation plans 
(Siyanat plan, first ten years, second ten years 
and all period of implementation), were ‎used to 
predict forest changes in Sardasht.
 To study LCLUC patterns, powerful 
analytical methods can be used. These may be 
split into distance- and density-based methods 
(Pebesma 2018). To determine each pixel’s 
distance from the closest land use class and 
the density of that land use class surrounding 
the centre pixel, respectively, in this study, 
distance and density functions were applied 
to the input data. The slope and aspect were 
calculated based on a 30-m digital elevation 
model (DEM) by using the Spatial Analyst 
tool of ESRI ArcGIS 10.8 software.
 To generate multi-temporal land use 
maps for all time milestones following the 
implementation of the conservation policies, 
Landsat satellite time series were used (Table 1). 

In this regard, the Google Earth Engine (GEE) 
cloud computing platform was used to provide 
image collections, as well as for preprocessing, 
feature extraction, classification, and accuracy 
assessment of land use/cover maps. Landsat 
surface reflectance products from the period 
of 1 March to 30 October (for Landsat 9, all 
images between 1 March and 30 August) that 
had a cloud cover of less than 10%, were used 
for all time points. To effectively identify the 
land use classes, several spectral temporal 
metrics (STMs) including percentile metrics 
(5th, 25th, 50th, 75th, and 95th), standard 
deviation, mean, minimum and maximum of 
all spectral bands (B2:B7) were calculated. 
Along with spectral bands, several vegetation 
indices including Soil Adjusted Vegetation 
Index (SAVI), Normalized Difference 
Vegetation Index (NDVI), Green Normalized 

Figure 2 A flowchart for the LTM used to anticipate changes in forest cover.

Time 
milestoneData type Sensor No. of 

images STMs No of 
STMs

2022 Landsat 9

Operational 
Land 
Imager-2 
(OLI-2)

19

Percentile 
metrics 
(5th, 25th, 
50th, 75th, 
and 95th) 
+ standard 
deviation 
+ mean + 
minimum + 
maximum 
of spectral 
bands and 
vegetation 
indices

90
2012 Landsat 5

Thematic 
Mapper 
(TM)

15

2002 Landsat 7

Enhanced 
Thematic 
Mapper 
Plus 
(ETM+)

10

Table 2 Details of used Landsat imagery and STMs 
for multi-temporal LULC classification.
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Difference Vegetation Index (GNDVI), and 
Difference Vegetation Index (DVI), were 
calculated. In total, 90 STMs were used for 
LULC classification (Table 2).
 A visual inspection of very high-resolution 
satellite imagery was carried out in Google Earth 
(GE) to generate a reference dataset, which 
provided a sufficient number of training and 
validation samples. To obtain multi-temporal 
reference datasets, the sample extraction process 
started with the earliest time milestone (2022). 
For the previous ones (2002 and 2012) a revision 
process was implemented. To do this, the 2022 
reference dataset was overlaid with previous 
ones which were in the form of GE images and/
or Landsat color composites. In the next step, 
all the samples throughout the study site were 
checked and updated. The subsets for training 
(70% of the samples) and validation (30% of 
the samples) were randomly selected from the 
reference datasets. Table 3 lists the characteristics 
of the reference datasets for 2022. 
 For land use classification, the training 
samples, STMs and random forest (RF) 
algorithm were used. RF is a tree-based machine 
learning algorithm (Breiman 1999) that has been 
widely used to classify remote sensing datasets 
(Pflugmacher et al. 2019). In previous studies, 
RF outperformed traditional parametric (such as 
maximum likelihood) and novel nonparametric 
machine learning algorithms (Valero Medina 
& Alzate Atehortúa 2019). In GEE, several 
hyperparameters can be tuned to improve the 

learning process, including but not limited 
to the number of trees and variables (www.
developers.google.com). In this study, only the 
number of trees for the earliest time milestone 
(2022) was tuned, and an optimal value (ntree 
= 100) was also used to classify land use/cover 
for other time milestones. Default values were 
used for the rest of the tuning parameters. For 
the post-processing step, an iterative majority-
filter tool was used in ArcGIS software on the 
classified output images to simplify the last 
land use maps (Baumann et al. 2015). Using 
validation samples and confusion matrices, 
the accuracy assessment of thematic land use 
maps was assessed (Geyer & DeWald 1973). 
Accuracy metrics such as the overall accuracy, 
kappa coefficient, producer and user accuracies 
(PA% and UA%), commission and omission 
errors (Ce% and Oe%) were calculated based 
on the data from confusion matrices. Then, land 
use maps of the time milestones (2002, 2015, 
and 2022) were reclassified into forest and non-
forest classes with the aim to produce a land-use 
change map for each model (Figure 3).
 Using the command prompt of Windows, 
the three models were developed to evaluate 
‎the forest change of Sardasht by using 14 
identical input factors (variables) with the aim 
of outputting a forest change map. Following 
the training of ANN models, simulation cycles 
were run for each time period. The output layers 
(i.e., suitability and probability to change) 
were then converted to binary data based on 
cell position change (forest, non-forest) after 
all input layers had been standardized to a 
range from 0 to 1. The input variables (drivers) 
for calculating the expected changes of forest 
cover between the time periods (2002-2012, 
2002-2022, and 2012-2022) were then used 
to train the ANNs. In the training phase, each 
ANN model was run up to 100,000 times; 
after that point, no appreciable decrease in the 
MSE between the output of the model and the 
given data was observed. Following the ANNs’ 
training, preparation of the real change map 
and computing of the number of transitioned 

Table 3 The details of the reference dataset for 
2022: the number of samples and pixels 
for training and validation subsets.

Land use/
cover class

Training samples Validation samples

No. of 
Samples

No. of 
Pixels 
(10 m)

No. of 
Samples

No. of 
Pixels 
(10 m)

Dense forest 135 4839 57 2073
Open forest 316 11384 135 4888
Built-up areas 25 1036 12 444
Croplands 340 1353 147 595
Rangelands 238 880 102 480
Waterbodies 245 875 105 375
Barren lands 28 1034 13 442
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cells, the network testing was done based on 
the input layers; the cycle that had the best 
correlation between the simulated models and 
the actual change was retained to build the 
suitability and the change probability maps, 
as well as to validate the models (Pontius Jr & 
Schneider 2001).
 Two validation statistics were used to evaluate 
the accuracy of ANNs: Percent Correct Metric 
(PCM) and Kappa Statistic (KS) values. These 
metrics were used to assess how closely the 
actual change and expected change maps across 
the time periods (2002-2012, 2002-2022, and 
2012-2022) corresponded. In addition, using 
XLSTAT-R (ver. 2019) software the Receiver 

Operating Characteristic (ROC) by Area Under 
Curve (AUC) analysis was used to compare actual 
and probable transition maps, as supplementary 
means of evaluating the performance of ANN 
models (Gaur et al. 2020). These can only be 
used to compare pixels classified as binary 
maps (PCM and KS) or probabilities of change 
(ROC) (Tayyebi et al. 2011). In particular, the 
true positive against false positive rates (TPR vs. 
FPR) of a model are plotted against one other by 
considering all potential classification levels to 
create the ROC curve. The typical architecture of 
the ANN models used in this study is depicted in 
Figure 4, along with the connections between the 
neurons.

Figure 3 Sardasht land use maps: upper panel stands for the real (a) and bottom layer stands for the 
classified forest - non forest maps(b); from left to right are the three scenarios taken into study: 
2002 (I), 2012 (II), 2022 (III).
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an Oe are 
given in 
Table 4. For 
the majority 
of land use 
categories, 
the PA 
and UA 
accuracies 
were higher 
than 65%.

 Based on the above, for each scenario of 
probable changes (2032, 2042, and 2052) 
a score reflecting the changes was used. A 
score of 1 was given to the data indicating 
deforestation, and a score of 0 was given to data 
indicating the absence of deforestation. The 
three scenarios were then combined for each of 
the models developed for the considered time 
periods, and locations where all three, two, 
or only one scenario overlapped in terms of 
forecasting, received a grand score of 3, 2, and 
1, respectively.

Results

Land use mapping and accuracy 
evaluation

Classification accuracy of the Landsat images was 
high for the created land use maps. The findings 
indicate that all three land use maps (2002, 2012, 
and 2022) were, globally, very accurate. The overall 
accuracy of the maps created for 2002, 2012, and 
2022 was 89.48, 88.28, and 89.02%, respectively, 
with Kappa coefficients of 87.54, 86.74, and 85.70%. 
The values of PA and UA accuracies along with Ce 

Figure 4 Architecture of the ANN used in this study.

Land use 
class

2002 2012 2022
PA1 UA1 Ce1 Oe1 PA UA Ce Oe PA UA Ce Oe

Dense forest 95.29 90.30 5.51 7.11 89.29 92.81 11.81 7.19 95.24 92.68 4.76 7.32
Open forest 86.61 87.22 10.28 11.40 93.30 82.45 7.98 17.55 86.9 88.27 13.10 11.72
Built-up areas 90.04 85.52 7.66 12.94 80.15 96.42 20.99 11.14 87.74 98.52 12.25 1.47
Croplands 90.39 92.44 8.71 7.47 91.38 92.66 8.62 7.34 87.5 89.07 12.50 10.93
Rangelands 88.22 91.24 12.98 11.41 87.48 91.62 13.81 8.37 91.31 89.39 8.68 10.61
Waterbodies 85.51 88.14 18.74 17.22 86.44 88.25 11.53 11.75 95.91 86.41 4.09 13.58
Barren lands 66.28 88.32 35.61 11.74 70.41 85.85 28.99 14.14 76.46 78.69 23.54 21.30

Table 4 Image classification accuracy evaluation for the studied years.

 Note: PA and UA: Producer’s (%) and User’s (%) accuracies, Ce and Oe: Commission (%) and Omission (%) errors.



88

Ann. For. Res. 65(1): 79-97, 2023.2628 Research article 

Change detection

Table 5 shows the trends of forest and non-
forest changes in Sardasht during the studied 
years. During the 20 years of the studied time 
period (2002 to 2022), 4,350.52 ha of forests 
(dense + open forests) were lost, and forest 
lands decreased from 69,238.16 ha in 2002 
to 66,490.92 and 64,887.64 ha in 2012 and 
2022, respectively. This diminishing tendency 
of forest areas has resulted in a corresponding 
growth in non-forest land uses.
 The results of actual changes have shown that 
2,752.46, 4,355.26, and 1,602.80 ha of forest loss 
occurred during time periods of 2002-2012, 2002-
2022, and 2012-2022, respectively (Figure 5).

Implementing the LTM
Training process was stopped after 100,000 
cycles when the MSE of each ANN achieved a 
stable minimum (Figure 6). The results of ANN 
testing showed that, according to PCM and 
KS, the cycles of 50,000 (first scenario), 7000 
(second scenario) and 800 (third scenario) had 
the highest values of PCM and KS (Table 6), 
respectively. Based on this level of accuracy over 
Sardasht region, the models were considered 
to be satisfactory. Therefore, these cycles were 
used as proper network cycles to generate the 
suitability map, probability change map, and 

for the simulation 
and evaluation of the 
models.
 Figure 7 shows 
the suitability and 
probability change 
maps developed with 
the aim of modeling 
forest cover changes 
in Sardasht for each 
of the time periods‎. 
These two maps, 
which were created 
from the cycles with 
the highest Kappa 
and PCM, depict 
locations with a 
high likelihood of 

deforestation over the studied periods and have 
a significant impact on forecasting, reflecting 
the probability of change from forest to non-
forest over the next 10, 20, and 30 years.

 

Table 5 Changes in forest and non-forest lands (ha) over the studied years.

Ti
m

e 
m

ile
st

on
e

A
re

a

Land use class
Forest Non-forest

Dense 
forest

Open 
forest

Built-up 
areas Croplands Range-

lands
Barren
lands

Water 
body

20
02

ha 6130.09 63108.07 598 41529.75 19753.2 1430.74 5411.08
% 4.44 45.74 0.43 30.10 14.32 1.04 3.92
T1 (ha) 69238.16 68722.77
T (%) 50.19 49.81

20
12

ha 5669.94 60820.98 906.44 44767.60 18968.43 1428.83 5398.71
% 4.11 44.09 0.66 32.45 13.75 1.04 3.91
T (ha) 66490.92 71470.01
T (%) 48.20 51.80

20
22

ha 5664.26 59223.38 974.09 45167.89 18944.89 2841.07 5145.35
% 4.11 42.93 0.71 32.74 13.73 2.06 3.73
T (ha) 64887.64 73073.29
T (%) 47.03 52.97

Note: 1 T = Total.

Figure 5 Changes (deforestation) which occurred 
in Sardasht forests (ha) in the studied 
time periods.

Table 6 Changes (deforestation) which occurred in 
Sardasht forests (ha) in the studied time 
periods.

Scenario Training 
cycle

PCM 
(%)‎ KS

2002-2012 50000 58.60 0.57

2002-2022 7000 56.60 0.54

2012-2022 800 52.32 0.51
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The LTM models 
performed well 
since all computed 
AUC values (ROC 
curves) returned 
values of more than 
0.80 (Figure 8). The 
data in these three 
graphs are above 
the equality line, 
indicating a highly 
accurate positive rate. 
Based on these results, 
modelling obtained from 
the third scenario had the 
highest AUC value for 
deforestation modelling 
(0.860) (Figure 8). 
For all cut-off values 
measured from the 
modelling results, the 
coordinate points in these 
curves are connected 
using “1-specificity 
(FPR)” as the x-axis and 
“sensitivity (TPR)” as 
the y-axis. More points 
on the curves have 
migrated downward and 
to the left, indicating that 
deforestation models are 
performing properly and 
that tighter criteria are 
being used for them. In 
contrast, if loose criteria 
were used, more points on the curve would shift 
upward and to the right side of the curve.
 After training, testing, simulating the changes, 
and evaluating the models, forest cover changes 
from Sardasht were predicted using all models 
for the years 2032, 2042 and 2052. The results 
of the models from Figure 9 and Table 7 also 
indicate an increase in deforestation trend in 
Sardasht over the next 10, 20 and 30 years, 
so the highest deforestation rate (9.46% of the 
total area) was estimated by the second scenario 

(2002-2022) and the lowest deforestation rate 
(1.16% of the total area) was estimated by the 
third scenario (2012-2022).
 Spatial location alignment among anticipated 
forest cover changes appeared to fluctuate 
dramatically with different model input 
patterns at different time periods. Based on 
the results, there was low spatial overlapping 
between the models for 2032, 2042, and 2052 
in the entire region. In the forest cover change 
models, 0.08% (110.55 ha), 0.15% (207.27 
ha) and 0.33% (456.00 ha) of the entire area 

Figure 6 Difference of MSE returned by modelling deforestation in the studied 
time periods.

Figure 7 Suitability (a) and probability (b) change maps of deforestation 
models in Sardasht over time.
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Figure 8 ROC curves and AUC values for modelling 
deforestation in studied time periods (a: 2002-
2012, b: 2002-2022, and c: 2012-2022).

Table 7 Deforestation area for 2032, 2042 and 
2052 based on the used scenarios.

Scenario Area
Forecast year

2032 2042 2052

2002-2012
ha 2752.68 5505.35 8258.00
% 1.99 3.98 5.98

2002-2022
ha 4355.26 8710.51 13065.77
% 3.15 6.30 9.46

2012-2022
ha 1602.72 3205.59 4808.39
% 1.16 2.32 3.48

Composite 
score Area

Overlapped area
2032 2042 2052

0
ha 132241.13 125401.07 118395.19
% 95.70 90.75 85.68

1
ha 3316.39 8332.43 13901.21
% 2.40 6.03 10.06

2
ha 2514.93 4242.22 5430.59
% 1.82 3.07 3.93

3
ha 110.55 207.27 456.00
% 0.08 0.15 0.33

Table 8 Overlap area for estimating deforestation in 
2032, 2042, and 2052.

for the years 2032, 2042, and 2052 were found 
to be common, respectively. Also, there was an 
overlapping of 1.82%, 3.07% and 3.93% for 
deforestation predicted for the years 2032, 2042, 
and 2052, for each combination of two probable 
scenarios, respectively (Figure 10), which indicates 
the relatively high potential of these areas to be 
subjected to deforestation in the future (Table 8). 
The overlap of these maps with the modelling input 
variables revealed that these locations are primarily 
located around croplands, roads, cities, and villages.

Discussion

Iran’s Zagros forests have deteriorated 
dramatically during the last few decades. 
For a better management, accurate data and 
information regarding present types of land uses 
and their changes are required. Such changes 
are also expected to explain the implications 
of current conservation policies on increasing 
or decreasing the area of various land uses in 
order to properly manage them. It should also 
be mentioned that the relationship between 
conservation strategies and the changes in the 
Iranian forest cover is still poorly understood, 
owing to the adoption of conventional 
frameworks that are insufficiently sensitive to 
local human and physical geographies (López-
Carr 2021). 
 To effectively manage land cover, policy 
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makers must also have access to information 
on how current conservation policies affect 
the areas dedicated to forests, both positively 
and negatively. Our findings showed that the 
forest areas in the Iranian northern Zagros 
forests have shrunk after 20 years, despite 
the adoption of conservation policies such as 
the Siyanat plan; accordingly, 4,350.5 ha of 
forests have been lost and 4,355.6 ha have 
been added to the non-forest lands in the region 
(Table 5). Explanations on the development 
of this process could be those related to the 
insufficient effectiveness of conservation 
strategies, coupled with the pressures brought 
by the population growth, which have 

Figure 9 Possible patterns of deforestation by 2032 (a), 2042 (b) and 
2052 (c) based on the studied scenarios.

resulted in the increase of 
non-forested areas such as 
croplands and built-up areas, 
to meet the demand for food 
and housing within natural 
habitats. Other studies also 
revealed that these changes 
will lead to deforestation 
and to intensifying the 
fragmentation of the 
remaining forests in the 
region (Lambin et al. 2003; 
Mondal & Southworth 2010; 
Kabba & Li 2011; Riutta et al. 
2014). An important aspect 
is that the changes of forest 
to other land use patterns 
frequently occurred near 
forest regions and existing 
croplands, surrounding 
Sardasht’s major river, and 
close to populated areas 
(Kamusoko & Gamba 
2015). Furthermore, 
Arekhi (2014) found that 
forest land loss occurred 
mostly near the forest areas 
due to their accessibility, 
livestock grazing, and 
tourism attractions in 
western Iran. Shooshtari 
and Gholamalifard (2015) 
pointed out that the most 

significant land use changes occurred on the 
edges of agricultural fields in the Neka Basin 
of northern Iran, demonstrating the importance 
of human activities in increasing deforestation 
rates.
 Meanwhile, due to the poverty of rural 
people and their reliance on forests for living, 
the implementation of the conservation 
policies (i.e., Siyanat Plan) in Sardasht has not 
been flawless. The following were the most 
significant shortcomings of the Siyanat Plan: 
the local people were ignored during the goal-
setting stages; facilities and incentives were 
not allocated to the rural people, preventing 
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them from adjusting and converting their 
livestock and finding secondary careers; and 
the government did not adequately supervise 
the implementation of the related projects. 
According to the findings of Heidari Zahiri 
et al. (2015), environmental resources have 
a vital influence in the livelihoods of rural 
communities. Meanwhile, the forest claims 
30% of the typical overall household income. If 
this source of income would be lost, the number 
of impoverished individuals would grow 
1.8-fold, and their distance from the poverty 
line would increase 4.2-fold. These findings 
revealed that the Siyanat Plan’s intermediate 
goals of improving forest inhabitants’ living 
conditions, increasing their secondary 
substitution income, and eliminating their 

financial reliance on 
the woods could not be 
met. The presence of a 
vicious loop of poverty 
and environmental 
damage is frequently 
proved to be in 
opposition with the 
ideals of sustainable 
development (Reardon 
& Vosti 1995). Poor 
people exploit natural 
resources as a quick 
source of income, to 
breed animals, and 
as a source of energy, 
and convert forests 
to agricultural areas 
and other land uses. 
Population expansion 
aggravates the 
problem even further 
(Beygi Heidarlou et al. 
2022).
 The results of 
forest cover change 
modelling using LTM 
indicate a definite 
increase in forest 
degradation and 

deforestation activities in Sardasht over the 
next three decades. These outcomes forecast 
the likely implications of future developments 
therefore, conservation policies can be 
developed to minimize the negative effects 
of these changes. The proper application and 
development of these policies will increase 
decision efficiency and the ability to respond 
timely to changes (Heathcote 1998, Duncan et 
al. 2020). Other studies have found that when 
deforestation operations rise in the future, 
forested regions would suffer the greatest area 
losses (Pijanowski et al. 2002b, Tang et al. 
2005).
 The spatial overlapping results of 
deforestation forecasting models showed that, 

Figure 10 Overlap of all three scenarios for forecasting deforestation.
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according to the three probability prediction 
scenarios used in this study, 0.33% of Sardasht 
forests loss converged in similar locations over 
the next 30 years; these areas are characterized 
by a high potential of deforestation. The 
majority of forest loss in Sardasht has 
happened near croplands (Beygi Heidarlou et 
al. 2020b). This represents the contribution 
of human activities to deforestation (Beygi 
Heidarlou et al. 2019). Hence, increasing 
monitoring programs in these areas can stop or 
reduce forest land losses.
 According to the results of this study, the 
LTM model, which combines the capabilities 
of ANN and GIS, has the capacity to understand 
the patterns of forest cover changes and, as a 
consequence, to make accurate predictions. 
Results of calibration and validation of ANN 
models showed that forest cover change models 
developed for different temporal scenarios 
performed reasonably well by ROC analysis 
at shorter time periods and close to the end 
years of the study time period. Other studies 
have also shown that the ANNs performed 
better in short-time intervals (Brown et al. 
1993, Areerachakul & Sanguansintukul 2010, 
Tayyebi & Pijanowski 2014,Tayyebi et al. 
2014). In reality, there may be fewer spatial 
factors and interactions between them that 
affect LCLUC in short-time periods, but in 
long-time periods additional drivers that are 
not captured by models and modellers may 
possibly contribute to LCLUC (Tayyebi et al. 
2014). However, few research has examined 
the efficacy of ANN modelling to detect change 
patterns in specific areas across different time 
intervals. Our findings are comparable with 
earlier research that consistently demonstrated 
a better performance of ANN when compared 
to conventional methods (Lek et al. 1996, 
Paruelo & Tomasel 1997, Lek-Ang et al. 1999, 
Mas et al. 2004).
 ANN-based models can account for any 
nonlinear relationship between the explanatory 
and dependent drivers (variables) (Mas et al. 
2004). In this study, the networks that were 

more sophisticated and included more input 
variables performed better. When fewer input 
variables are given to the network, the loss 
in generalization ability may be addressed 
(Kavzoglu & Mather 2000). As a result, 
choosing the right variables might be of first 
importance in producing results that are both 
relevant and accurate. They appeared to be 
tied to specific forest cover change patterns 
throughout the training period, have retained 
the general deforestation tendencies, and have 
effectively anticipated future deforestation.
 The “black box” approach that ANNs use 
to describe the relationship between two sets 
of data (Mas et al. 2004) is a limitation in 
the use of ANN-based models (e.g., LTM). 
Although the LTM was capable of making 
faultless predictions, the functional form of 
the relationship between the 14 demographic, 
socio-economic and environmental variables 
and the output layers remains undisclosed. 
The network’s weight matrices, on the other 
hand, have no clear significance. As a result, 
these matrices may help to identify the most 
important factors influencing changes in forest 
cover along with their functional form and 
model outputs (i.e., suitability and probability 
to change maps). While the LTM has shown 
to be a potentially helpful spatial analytic tool 
for academics and professionals (Pijanowski et 
al. 1995, Tang et al. 2005, Tayyebi et al. 2011, 
Pijanowski et al. 2014, Tayyebi et al. 2015), 
it still requires some substantial improvements 
before it can be widely used for planning and 
policy formulations in the forest management. 
It takes a long time to perform LTM modelling 
on Windows command prompt (e.g., one 
week for network training in this study). 
Additionally, adopting methods that provide 
finer granular information and increased spatial 
resolution, for example, can enhance accuracy 
(Newman et al. 2016). However, the running 
duration of the model is significantly increased 
(Beygi Heidarlou et al. 2022). The model has 
the following general drawbacks: the model 
only forecasts the places where a change in 
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forest cover is expected to take place, and the 
simultaneous consideration of deforestation is 
not included in the model. Additionally, the 
model does not take into account changes in all 
land uses simultaneously; actually, the model 
should only have two land use types (e.g., 
forest and non-forest classes).

Conclusions

One of the most important dynamic 
components of ecosystems is Land-Cover and 
Land-Use Change (LCLUC). Human-induced 
changes to the land regularly influence 
patterns and processes in ecosystems, such 
as changes in forest cover. This study tested 
the GIS-based LTM’s ability to forecast forest 
cover changes using as inputs demographic, 
socio-economic and environmental variables‎. 
Although forecasting changes using empirical 
forest cover change models do not guarantee 
total confidence regarding their future 
occurrence, the findings of this study for 
the 10, 20, and 30 years demonstrated that 
the ANN can draw plausible future patterns 
in forest cover change. The LTM model’s 
results for anticipating changes in the forest 
lands cover over the research periods showed 
a comparable and upward trend in forest 
loss. In addition, the findings showed that, 
despite the implementation of several forest 
management and conservation plans in Iran, 
forest cover loss in the Zagros forests has 
continued. In other words, the forest transition 
was surpassed by the forest loss, making it 
to appear that conservation efforts to manage 
forests sustainably in Iranian Zagros forests 
have failed.
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