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Abstract: Invasive plants have imposed severe threats to native ecosystems 
worldwide. Triadica sebifera (Tallow tree) and Ligustrum sinense (Chinese privet) 
are among the most prolific invasive species in the southern United States (US) that 
needs urgent assessment to protect coastal ecosystems. The lack of spatially explicit 
assessments of these invasives, coupled with the increasing availability of high-
resolution remotely sensed data, represents an opportunity to produce a distribution 
map for subsequent monitoring. The overall goal of this study was to develop 
spatially comprehensive maps of Tallow tree and Chinese privet in ecologically 
sensitive coastal regions, where both invasives have become well established. 
The study was conducted in three coastal sites within Alabama and Mississippi: 
(1) Mobile Tensaw River Delta, (2) Bon Secour National Wildlife Refuge, and 
(3) Mississippi Sandhill Crane National Wildlife Refuge. We implemented three 
image classification methods, representing unsupervised, supervised, and machine 
learning techniques, respectively: (1) ISODATA, (2) Maximum Likelihood (ML), 
and (3) Random Forest (RF). For each classification, a 1 m National Agriculture 
Imagery Program (NAIP) orthoimage was first examined, then integrated with 
vegetation structure and topography parameter derived from airborne light 
detection and ranging (LiDAR). The maximum Overall Accuracy (OA) of 
87.5% was obtained using RF model with NAIP stacked image integrated with 
LiDAR derived variables. Overall, findings highlight the potential for accurately 
characterizing both Tallow tree and Chinese privet using readily available remote 
sensing data. Mapped products from this study represent a spatially comprehensive 
baseline inventory of crucial invasive species and will serve to inform the 
development of a framework for broader-scale mapping and monitoring efforts. 
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Introduction

Invasive plants are defined as species whose 
introduction causes or is likely to cause 
economic or environmental harm, or harm 
to human health (Order Executive 1999). 

They impair soil nutrient cycling and alter 
forest stand structure (Ehrenfeld 2010). The 
infestation of invasive plants has significantly 
threatened native plants listed under the 
Endangered Species Act in almost half of the 
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US ecosystems (Wilcove et al. 1998). For 
instance, invasive plants have caused a decline 
of 42% of the US endangered and threatened 
species (Order Executive 1999). In addition, 
the control cost of invasion has increased from 
$2 billion in 1960-1969 to $21 billion in 2010-
2020 (Fantle-Lepczyk et al. 2022).
 Several invasive species are well-established 
across the southeastern US. For instance, 
among the ten most prominent invasive plants 
in Alabama according to the Alabama Invasive 
Plant Council are, Tallow tree and Chinese 
privet (ALIPC 2019). Both invasive plants 
are native to China and were introduced to the 
US in 1852 for ornamental purposes (Hanula 
& Horn 2009, Wang 2011). Tallow tree is a 
deciduous tree that can grow up to 18.3 m high 
and 0.9 m wide at maturity. The main pathways 
for seed dispersion are birds and disturbances, 
such as hurricanes and floodwater (Yang et 
al. 2021). Tallow tree contains high tannins 
in the leaf litter, that alters the composition 
of microbial communities and eventually 
displaces native species (Montez et al. 2021). 
In the south-eastern US, from North Carolina 
south to Florida and west through Louisiana 
and Arkansas to Texas, Tallow tree has invaded 
wet coastal areas and spread rapidly inland. 
Around $518 million of timber loss is estimated 
within the next 20 years if no effective control 
measures for Tallow tree is applied (Wang 
2011). Chinese privet is a semi-evergreen to 
evergreen shrub that can grow up to 10 m. It 
propagates by root sprouts, and seed dispersal 
is carried out mainly by birds and other 
wildlife. It has a negative impact on native 
plant abundance and diversity (Wilcox & Beck 
2007, Foard 2014), limits forest regeneration 
(Loewenstein & Loewenstein 2005, Cash 
et al. 2020), and produces a monoculture 
(Hart & Holmes 2013). Furthermore, it has 
been implicated in the decline of species of 
conservation concern, such as the Sarracenia 
oreophila (green pitcher plant) and Helianthus 
schweinitzii (Schweinitz’s sunflower) (Cash et 
al. 2020). Estimated control cost of Chinese 
privet ranges from $216–$1,820 per ha (Klepac 

et al. 2007, Benez-Secanho et al. 2018). 
Around $2.72 billion of timber loss, within 
the next 20 years, is estimated if no effective 
control measures for Chinese privet is applied 
(Wang 2011).
 Field surveys can be used to collect detailed 
information on invasive plant species; 
however, studies (Zuberi et al. 2014, Ismail et 
al. 2016) have noted that this approach is not 
sustainable for large geographical areas due to 
labor, time, capital constraints, and difficulty in 
accessing remote areas of interest. On the other 
hand, remote sensing technologies have been 
increasingly used for invasive plants mapping 
due to the capability to provide synoptic views 
over large geographical and inaccessible 
areas (Huang & Asner 2009, Matongera et 
al. 2018). Several studies have shown that 
using remotely sensed data to map invasive 
plants may be a viable option. For example, 
Bradley (2014) explored spectral, textural, and 
phenological approaches for remote detection 
of invasive plants. Another study, Ismail et al. 
(2016) found that the synergy of multi-source 
remotely sensed data could increase image 
classification accuracy.
 Many studies highlight higher accuracy 
in detection and vegetation mapping using 
LiDAR combined with high-resolution 
multispectral imagery (Asner et al. 2008, Kim 
et al. 2020, Liang et al. 2020). LiDAR uses laser 
light to derive three-dimensional information 
(Popescu 2007). Asner et al. (2008) explained 
that LiDAR, when combined with imagery 
could be used to detect woody invasive tree 
species, such as Fraxinus uhdei, Myrica faya, 
and Psidium cattleianum, for studying the 
presence and abundance of species. The use of 
aerial imagery and LiDAR-derived products 
increases the potential for detecting invasive 
species, particularly for taller, woody invasives 
(Dubayah & Drake 2000, Asner et al. 2008, 
Hantson et al. 2012). For instance, Hantson et 
al. (2012) demonstrated that LiDAR-derived 
products using ML classification increased 
the classification accuracy from 39% to 50% 
for woody invasive species. The use of aerial 
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imagery alone underestimated the classification 
of shrub vegetation, but the integration of 
LiDAR and imagery helps distinguish shrub 
vegetation from tall trees (Bork & Su 2007).
 Image classification techniques like Iterative 
Self Organizing Data Analysis Technique 
(ISODATA) and ML classifier are used as 
traditional techniques to map invasive plants 
(Ustin et al. 2002, Michez et al. 2016, Mohler 
& Morse 2022). Over the last two decades, 
machine learning algorithms have been widely 
used to classify invasive plants and demonstrate 
the ability to obtain accurate and reliable 
information from satellite imagery (Calvino-
Cancela et al. 2014, Singh et al. 2015, Jensen 
et al. 2020). Among machine learning methods 
described in the literature, RF is considered 
desirable for multi-source classification of 
remote sensing data (Gislason et al. 2006). 
Several studies have demonstrated its superiority 
for high-dimensional input data such as 
hyperspectral and multi-source data , even with 
limited training data (Ham et al. 2005, Chan et 
al. 2012, Abdel-Rahman et al. 2014, Jensen et 
al. 2020, Shoot et al. 2021). Kim et al. (2020) 
conducted vegetation mapping with LiDAR 
and multispectral imagery using four different 
classification algorithms (Support Vector 
Machine (SVM), RF, ML, and Mahalanobis 
Distance). RF classification using NAIP-
LiDAR stacked image provided the highest 
OA (75.7%). Another study, Liang et al. (2020) 
carried out vegetation mapping by using three 
classification approaches (Object-based image 
analysis, RF, and SVM on high-resolution 
multispectral imagery. LiDAR data used with 
RF gave the highest user’s accuracy (96%) for 
classifying Pueraria montana (Kudzu).
 A study on Tallow tree mapping across a 
48.25 km2 coastal region of Texas-Louisiana 
showed classification accuracies greater 
than 95% at 0.5 m and 1 m spatial resolution 
using color-infrared photography (Ramsey 
et al. 2002). Authors used imagery collected 
during senescence when leaves of Tallow 
tree were bright red, but observed that not 
all senescing tallow leaves were bright red. 

Another study conducted on the coastal region 
of the southern U.S. observed an overall 
classification accuracy of 80% for mapping 
Tallow tree using RF (Randall 2015). The 
application of remote sensing data for mapping 
Chinese privet is limited. A study using citizen 
science data showed 84% accuracy in mapping 
Chinese privet over a study area of 0.72 km2 
in Georgia (Hawthorne et al. 2015). In Cash et 
al. (2020), moderate resolution multispectral 
images (Landsat 8 and Sentinel 2) were used to 
map Chinese privet at a 30 m and 10 m spatial 
resolution over a 23 km² study site and obtained 
an overall accuracy of 92.3% using the ML. 
This work highlights the utility of satellite 
imagery for detecting dense monocultures of 
Chinese privet with high accuracy.
 Although previous studies have focused 
on mapping Tallow tree (Ramsey et al. 2002, 
Randall 2015) and Chinese privet (Hawthorne 
et al. 2015, Barnett 2016, Cash et al. 2020b) 
over a small spatial extent, the potential of 
freely available remotely sensed data for 
mapping invasive plants over larger areas has 
not been investigated. There is especially a 
need to develop effective methods for detecting 
and mapping understory invasive species 
(Joshi et al. 2004). More importantly, to date, 
there are no spatially explicit fine-scale maps 
of Tallow tree and Chinese privet for coastal 
Alabama and Mississippi. Such maps can 
support decision-making for effective invasive 
species management and to moderate their 
spread in the coastal area. Coastal ecosystems 
are ecologically important and sensitive to 
global climate (Heckbert et al. 2011, Ng et 
al. 2021). They are especially vulnerable to 
invasive plants as they can form monotypic 
stands and impact nutrient cycling (Zedler & 
Kercher 2004, Bush et al. 2020). The study 
of invasive species in the coastal areas can 
help researchers understand the associated 
factors that facilitate the growth and spread 
of invasives. The increasing availability of 
airborne LiDAR and NAIP imagery presents an 
exceptional convenience to achieve detailed, 
finer-scale observations for invasive species 
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assessments.
 This study’s overall goal was to develop 
approaches for detection and distribution 
mapping of Tallow tree and Chinese privet in the 
coastal region of Alabama and Mississippi using 
available remotely sensed data. With a focus on 
three study sites, this work specifically served to:

a. Develop a methodology for detecting
Tallow tree and Chinese privet using 
airborne LiDAR and NAIP imagery, and 
b. Characterize the spatial extent and
coverage of Tallow tree and Chinese 
privet.

Materials and Methods

To meet the study’s overall goal, NAIP imagery 
and airborne LiDAR data from United States 
Geological Survey’s 3D Elevation Program 
(USGS 3DEP) (U.S. Geological Survey 
2020a) were examined and field verification 
was conducted. Bands of NAIP imagery and 
a NAIP derived vegetation index, Normalized 
Difference Vegetation Index (NDVI) were 
integrated with LiDAR-derived variables, 
such as Canopy Height Model (CHM) and 
Topographic Wetness Index (TWI) for the 
image classification. Three classification 
methods (unsupervised, supervised and 
machine learning technique) were   applied 
using various combinations of spectral bands, 
vegetation index and airborne LiDAR-derived 
parameters to determine potential improvement 
in invasives’ detection. The overall workflow 
of the study is shown in Figure 1.

Study area 

The study was carried out within Mobile Tensaw 
River Delta (Mobile Tensaw), Bon Secour 
National Wildlife Refuge (Bon Secour), and 
Mississippi Sandhill Crane National Wildlife 
Refuge (Mississippi Sandhill) located in 
the coastal region of southern Alabama and 
Mississippi (Figure 2). The study region is 
classified as a humid subtropical climate with an 
average annual temperature of 18°C (64°F). 
The temperature in the hottest month (July) and 
coldest month (January) averages 32°C (90°F) 
and 4°C (40°F), respectively. The region’s 
average annual precipitation is 1,400 mm. The 
landform consists of flat plains, marshes, bogs, 
swamps, and river deltas and is mostly dominated 
by prairie ecosystem, wetlands, submerged 
grass beds, pine flatwoods, wet pine savanna 
ecosystem, and bottomland hardwoods. The area 
for the study extents of Mobile Tensaw, Bon 
Secour, and Mississippi Sandhill were 751 km², 
20.03 km² and 4.74 km², respectively. Mobile 
Tensaw is one of the largest wetland ecosystems 
of the US and is a biologically diverse region that 
offers home to endangered freshwater mussels 
(Handley et al. 2013). Bon Secour protects the 
coastal barrier of Alabama and provides habitat 
to threatened species, such as Alabama beach 
mouse and green, loggerhead, and Kemp’s ridley 
turtle (U.S. Fish and Wildlife Service 2023a). 
Mississippi Sandhill restores the last remaining 
wet pine savanna ecosystem, a pivotal habitat 
for critically endangered Mississippi Sandhill 
cranes, songbirds, waterfowls, and dusky gopher 
frog (U.S. Fish and Wildlife Service 2023b).

Figure 1 Workflow of the study.
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Data

Field data collection

Field data was collected in May 2021 along 
the road networks of Bon Secour and Mobile 
Tensaw. These study sites are located in 
coastal Alabama, thus only the road networks 
were accessible. On Mississippi Sandhill, the 
data collection was carried out in the western 
region of the wildlife refuge, where Tallow 
tree was dominant. Within Bon Secour and 
Mississippi Sandhill, only Tallow tree was 
observed and on Mobile Tensaw, both Tallow 
tree and Chinese privet were observed, based 
on a preliminary assessment of the study 
area. As a result, this study investigated the 
development of distribution maps of both 
Tallow tree and Chinese privet in Mobile 
Tensaw and examined only Tallow tree at Bon 
Secour and Mississippi Sandhill for species 
mapping. Location coordinates and percentage 
cover of the targeted invasive plants were 
recorded upon species sighting for all three 
study areas. This recorded actual presence and 
absence information of the invasives was used 
to validate the accuracy of maps. 

Remote Sensing Data

Two sources of remotely sensed 
data were used, i.e., NAIP 
imagery and discrete return 
LiDAR data. The principal 
purpose of the NAIP is to make 
aerial imagery available within 
a year of acquisition. NAIP 
imagery acquired between the 
year 2019 and 2020 was collected 
in NAD83 UTM zone 16 N 
(unit: meter) from the USGS 
Earth Explorer (U.S. Geological 
Survey 2019). The image had 
a spatial resolution of 1 m and 
spectral resolution of four bands 
(RGB and Near Infrared).
 Airborne LiDAR point 
clouds for the study area were 
acquired from USGS 3DEP. 

The primary goal of USGS 3DEP is to 
acquire nationwide LiDAR data and offer the 
first-ever national baseline of reliable high-
resolution 3D point cloud data. Based on 
data availability, discrete return LiDAR data 
accessed from 2015 to 2020 was used for the 
study sites (Table 1). The LiDAR data was of 
Topographic Data Quality level 2 (QL2) with 
point density ranging from 2-3 points per m2 
(USGS 2020c) and point spacing ranging from 
0.45-0.57 m (Table 1). LiDAR returns were 
classified into 7 land cover classes such as 
ground, urban, grassland, brushland, forested 
area, sawgrass, and mangrove/swamps (U.S. 
Geological Survey 2020b).
Data processing

NAIP imagery processing and derived products

Thirty, five and two NAIP Digital Ortho 
Quarter Quad tiles (DOQQs) were 
downloaded for Mobile Tensaw, Bon Secour, 
and Mississippi Sandhill, respectively. Those 
tiles were mosaicked and clipped to the extent 
of respective study area using ArcGIS Desktop 
(ESRI 2014). All four NAIP image bands (Blue, 
Green, Red and Near infrared) and NDVI were 

Figure 2 Map of the study area. a) Showing Alabama state and two 
study areas in the coastal region (Esri). b) Extent of Mobile 
Tensaw Wildlife Management Area (Survey 2019b). c) Extent 
of Bon Secour National Wildlife Refuge (Survey 2019b).  
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used for image classification (Table 1). The 
original input bands were used since Kim et al. 
(2020) did not find an increase in classification 
accuracies using the normalized input bands. 
We decided not to convert the brightness values 
(or digital numbers) to reflectance values in 
order to calculate NDVI values following Kim 
et al. (2020). NDVI, a vegetation index with 
values ranging from -1 to +1 was computed 
from NAIP for image classification. Values 
closer to -1 represent unhealthy vegetation, +1 
represent healthy vegetation, and 0 represent 
less or no vegetation. NDVI was calculated 
using brightness values of band 3 (Red) and 
band 4 (NIR) using the following formula:
NDVI = (BVNIR – BVRed) / (BVNIR+BVRed)
where BVRed represents the brightness values 
(or digital numbers) of each pixel in the 
Red band (band 3) and BVNIR represents the 
brightness values (or digital numbers) of each 
pixel in the Near Infrared band (band 4).

LiDAR data processing and derived products

Some of the LiDAR data originally collected 
in Alabama State Plane West Zone (unit: feet) 
coordinate system was converted to NAD83 
UTM zone 16 N (unit: meter) for consistency 
with NAIP imagery. The LiDAR point 
clouds were pre-processed to remove noise 
returns and derive heights above ground 
level using LAStools (Isenburg 2012) and 
ArcGIS. Points were filtered below 0 m and 
above 40 m. The height cut-off was defined 
based on the tallest tree recorded on the 
study site, i.e., 39.9 meters. After that, lasclip 

tool from LAStools was used to extract all 
returns of LiDAR data within the study area. 
One meter Canopy Height Models (CHMs) 
were derived from the height-normalized data 
for the study sites. To generate each CHM, a 
Digital Elevation Model (DEM), derived from 
ground returns of LiDAR was subtracted from 
Digital Surface Model (DSM), derived from 
first returns of LiDAR. In addition to that, 
Topographic Wetness Indices (TWI) for three 
study sites were also generated from respective 
LiDAR-derived DEM using ArcGIS.
Image classification

Training data

Five classes (water/coastal area, urban, other 
vegetation, Tallow tree, and Chinese privet) 
were defined for Mobile Tensaw. Four classes 
(water/coastal area, urban, other vegetation, 
and Tallow tree) were defined for Bon Secour 
and three classes (ground, other vegetation, 
and Tallow tree) were defined for Mississippi 

Sandhill, based on landcover of the 
respective study sites. Ten training 
samples were prepared for each 
class within each of the three study 
regions. A total of 120 training 
samples were prepared for the three 
study sites (Table 2). The training 
samples were selected based on the 
known locations of the classes using 
visual interpretation of the NAIP 
imagery. The samples for each class 

within the study sites were selected in such 
a way that they capture spectral variability 
and is a representative of the specific class. 
Jeffries-Matusita distance and Transformed 
Divergence measure, scaled between 0 and 2 
(Sen et al. 2019), were used to determine the 

Table 2 Summary of training samples used for ML 
and RF classification.

Study site
ML RF

Train Test* Total Train Test* Total

Mobile Tensaw 10*5 6*5 80 50 6*5 80
Bon Secour 10*4 6*4 64 40 6*4 64
Sandhill Crane 10*3 6*3 48 30 6*3 48
Total 120 72 192 120 72 192

Table 1 Summary of data specification, acquisition date, and 
variables name for each study site.

Study site Data Acquisition 
date (Year)

LiDAR point 
spacing (m) Variables name

Mobile NAIP 2019
Tensaw LiDAR 2015 & 2019 0.49-0.55 Red, Blue, Green and 

NIR band
Bon NAIP 2019 CHM and TWI
Secour LiDAR 2017 0.45 449 (414/8/27)

Sandhill NAIP 2020 Red, Blue, Green and 
NIR band

Crane LiDAR 2017 0.45 CHM and TWI
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spectral separability of the classes to ensure that 
the values were at least 1.9. Spectral separability 
greater than 1.9 indicated higher spectral 
separability of classes and is expected to enhance 
the classification accuracy. A separate test data, 
prepared based on ground truth were used for the 
validation of classification maps.
Image classifiers

The image classification was carried out using 
two datasets. First, using the NAIP stacked 
imagery alone and second, integrating the NAIP 
stacked imagery with LiDAR-derived CHM 
and TWI. For each study area, three image 
classification approaches i.e., unsupervised 
ISODATA clustering, supervised ML, and RF, 
a non-parametric machine learning algorithm 
were carried out using both datasets (Figure 1). 
Unsupervised classifiers group pixels based on 
similar spectral properties without the need for a 
prior knowledge. However, supervised classifiers 
use the representative sample pixels of specific 
classes provided by the training pixels to classify 
all other pixels in the image. The RF algorithm 
learns the relationship between predictor and 
response data (Horning 2010) and derives 
predictions from decision trees to provide reliable 
classification (Breiman 2001). 
 First image classification approach 
implemented was ISODATA clustering. 
ISODATA with only NAIP image was carried 
out as an exploratory step to determine spectrally 
separable classes. Based on the cluster of pixels 
that share similar spectral properties, a total 
of 15 color-coded classes were prepared with 
five iterations. After that, post classification 
was done to refine and reduce the number of 
classes using image interpretation. Each class 
was closely examined using classified and 
original imagery and the classes that share 
similar spectral property were combined to 
form five classified classes for Mobile Tensaw 
area. A similar process was applied to the other 
two study sites and four classified classes were 
obtained for Bon Secour and three classified 
classes were obtained for Mississippi Sandhill 
(Section Training data).

 Second image classification approach was 
the ML classifier. It requires training data 
based on the known location of classes. The 
classifier assigns pixels to classes based on 
spectral properties of the training data. For 
Mobile Tensaw, fifty training samples for 
five classes were prepared (Table 2) using 
ENVI’s Region of Interest (ROI) tool (Buller 
2023). Similarly, for Bon Secour, forty training 
samples for four classes were prepared and for 
Mississippi Sandhill, thirty training samples 
for three classes were prepared for ML image 
classification. The non target classes such as 
water/coastal area, urban, ground, and other 
vegetation were merged into one class to 
properly discern the invasives in a classified 
map.
 Third image classification approach was RF 
using ModelMap package in R Version 4.2.3 
(R development Core Team 2010). ModelMap 
is an R package that allows for user-friendly 
modeling and mapping over vast geographic 
areas (Freeman et al. 2009). The categorical 
response variable and predictor variables were 
defined as demonstrated by (Freeman and 
Frescino 2018). A landcover classification map 
prepared using the ML classifier was used as 
a categorical response variable for each study 
area. Predictor variables used for RF were 
bands of NAIP imagery (red, green, blue, and 
near-infrared), a vegetation index derived 
from NAIP imagery (NDVI), and LiDAR-
derived variables (CHM and TWI). The user 
defined variables are used to select the splits 
at each node (mtry) on a decision tree. Based 
on majority voting of number of trees (ntrees) 
the final class is selected. The major benefit 
of employing RF is its ability to rank the 
importance of each input variable added in the 
model. The higher the rank of a variable, the 
more it contributes to image classification.

Accuracy assessment

The classification accuracy of NAIP stacked 
and NAIP-LiDAR stacked image were 
assessed using confusion matrices in the ENVI 
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software. The separate test dataset, created 
using presence and absence information from 
ground truth, was used to assess the accuracy 
of each classification approach used for the 
study. The overall classification accuracy was 
estimated by calculating the proportion of 
correctly classified pixels of the land cover 
classes out of the total pixels in the classified 
image. Along with the overall classification 
accuracy, the Kappa coefficient (k), an 
agreement between known and predicted value, 
was also estimated. Producer’s Accuracy (PA) 
and User’s Accuracy (UA) for each of the 
land cover classes were also reported. PA is a 
measure of the precision with which each class 
is produced by an analyst on a classification 
map, whereas UA measures how accurate each 
class is from a map user’s point of view. The 
results of accuracy assessment were mainly 

focused on the targeted invasive plants i.e., 
Tallow tree and Chinese privet.

Results

Three image classification approaches (ISODATA, 
ML, and RF) were implemented on two input 
data sources for three coastal sites of Alabama and 
Mississippi. NAIP stacked image was used for 
ISODATA classification, whereas input datasets, 
such as NAIP stacked image and NAIP stacked 
with LiDAR-derived variables were used for 
ML and RF. Results were summarized based on 
the study sites, image classification algorithms 
and datasets. Figures represent the distribution 
of Tallow tree and Chinese privet produced with 
maximum OA and k for different study sites. 
Tables represent the summary of classification 
results including OA, k, PA, UA and confusion 
matrices for all three study sites (Table 3 – Table 6).                                    

Study site Method Datasets
NAIP NAIP+CHM NAIP+CHM+TWI

Mobile 
Tensaw
River Delta

ISODATA OA=54.42%, k=0.43
PA=77.10%, UA=59.78% 
PA*=29.72%, UA*=100%

ML OA=76.86%, k=0.71 OA=77.42%, k=0.71 OA=85.63%, k=0.82
PA=97.14%, UA=70.83% PA=67.62%, UA=69.61% PA=91.43%, UA=98.97% 
PA*=79.82, UA*=75.65% PA*=89.91, UA*=100% PA*=89.91%,UA*=89.09% 

RF OA=87.5%, k=0.84 OA=82.64%, k=0.78 OA=80.03%, k=0.75
PA=96.19%, UA=84.17% PA=99.05%, 84.55% PA=99.05%, UA=85.95%
PA*=94.50%, UA*=89.57% PA*=94.50%, UA*=93.6% PA*=97.25%,UA*=92.17%

Bon Secour
National 
Wildlife 
Refuge

ISODATA OA=83.90%, k=0.78
PA=54.95%, UA=100%

ML OA=80.93%, k=0.74 OA=93.64%, k=0.91 OA=95.33%, k=0.93 
PA=71.93%, UA=100% PA=82.46%, UA=100% PA=96.49%, UA=100%

RF OA=89.40%, k=0.85 OA=94.29%, k=0.88 OA=90.25%, k=0.86
PA=100%, UA=78% PA=98.26%, UA=99.12% PA=100%, UA=80.28%

Mississippi
Sandhill 
Crane 
National 
Wildlife 
Refuge 

ISODATA OA= 89.13%, k=0.83
PA=69.57%, UA=100%

ML OA= 87.28%, k=0.81 OA=90.67%, k=0.85 OA=93.22%, k=0.89
PA=87.18%, UA=89.47%  PA=94.87%, UA=100%  PA=94.87%, UA=97.37%

RF OA=88.98%, k=0.83 OA=90.67%, k=0.85 OA=92.37%, k=0.88
PA=89.74%, UA=100% PA=94.87%, UA=100%    PA=97.44%, UA=100%

Note:PA=Producer’s Accuracy of Tallow tree, UA=User’s Accuracy of Tallow tree, PA*=Producer’s Accuracy of Chinese privet, 
UA*=User’s Accuracy of Chinese privet. The highlighted OAs and k are the highest for the study site and are further explained in 
Table 4 - Table 6. 

Table 3 Summary of results obtained from the accuracy assessment.
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Table 4 Confusion matrix prepared by comparing classified image 
generated from RF on NAIP stacked image against ground 
truths of Mobile Tensaw area.

Random 
Forest 
classified 
image

Ground Truth (Pixels)

Class Water Urban Other 
vegetation Tallow Privet Total

Water 81 3 0 0 1 85
Urban 3 103 0 0 0 106
Other 
vegetation 21 0 81 4 4 110

Tallow 0 0 18 101 1 120
Privet 0 0 12 0 103 115
Total 105 106 111 105 109 536

Note: Total number of correctly classified pixels = (81+103+81+101+103) = 469. Overall 
classification accuracy = 469/536 =87.50%. Kappa coefficient = 0.84

Table 5 Confusion matrix prepared by comparing classified image 
generated from ML on NAIP-LiDAR stacked image against 
ground truths of Bon Secour area.

Maximum 
Likelihood 
classified 
image

Ground Truth (Pixels)

Class Water Urban Other 
vegetation Tallow Total

Water 56 0 9 0 65
Urban 0 80 0 0 80
Other 
vegetation 0 0 34 2 36

Tallow 0 0 0 55 55
Total 56 80 43 57 236

Note: Total number of correctly classified pixels = (56+80+34+55) = 225. Overall 
classification accuracy = 225/236 = 95.33%. Kappa coefficient = 0.93.

Table 6 Confusion matrix prepared by comparing classified 
image generated from ML on NAIP-LiDAR stacked 
image against ground truths of Mississippi Sandhill 
area.

Maximum 
Likelihood 
classified 
image

Ground Truth (Pixels)

Class Ground Other 
vegetation Tallow Total

Ground 41 5 0 46
Other 
vegetation 0 32 2 34

Tallow 0 1 37 38
Total 41 38 39 118

Note: Total number of correctly classified pixels = (41+32+37) = 110. Overall 
classification accuracy = 110/118 = 93.22%. Kappa coefficient = 0.89.

Confusion matrices using ground truth ROIs were 
used to conduct accuracy assessment. The matrix 
contains information of each image classification 
including the correctly classified pixels and mis-
classified pixels. In general, grassland, shrubs, and 
algal concentration were confused with Tallow 
tree and Chinese privet (Table 4 - Table 6).

Mobile Tensaw River Delta

The OA (54.42%) and k (0.43) 
of the classification map using 
ISODATA increased to 76.86% 
and 0.71 respectively using 
ML on NAIP stacked imagery 
(Table 3). The OA further 
increased from 76.86% to 
77.42% using NAIP and CHM 
stacked imagery. Additionally, 
the OA (85.63%) and k (0.82) 
was obtained with NAIP stacked 
with LiDAR-derived CHM and 
TWI using ML. With the same 

dataset and classification algorithm, 
we observed increased PA (89.91%) 
and UA (89.09%) for Chinese privet. 
The UA for Chinese privet increased 
from 75.65% to 89.09% on adding 
LiDAR-derived CHM and TWI to 
NAIP stacked imagery. Similarly, 
the UA of Tallow tree also increased 
from 70.83% to 98.97 with the same 
approach.

Figure 3 Classified image of Mobile Tensaw Wildlife 
Management Area showing the distribution 
of Tallow tree and Chinese privet using RF 
on NAIP stacked imagery with the highest 
OA and k. The green area represents other 
(water, urban, and other vegetation), red 
area represents Tallow tree, and blue area 
represents Chinese privet.
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 Among all classification algorithms and 
datasets used, the highest OA (87.5%) and 
the highest k (0.84) was obtained with RF 
using NAIP stacked imagery (Figure 3). The 
addition of LiDAR-derived CHM and TWI 
did not contribute to increase the OA and k 
as compared to NAIP stacked image using 
RF. However, the PA and UA of Tallow tree 
increased from 96.19% and 84.17% to 99.05% 
and 85.95% respectively, on adding LiDAR-
derived CHM and TWI to NAIP stacked 
imagery using RF. Likewise, the PA and UA 
of Chinese privet increased from 94.50% and 
89.57% to 97.25% and 92.17% respectively 
with the same dataset and method (Table 3).

Bon Secour National Wildlife Refuge

The OA (83.90%) and k (0.78) of the classification 
map using ISODATA increased to 80.93% and 
0.74 respectively, using ML on NAIP stacked 
image (Table 3). The OA further increased from 
80.93% to 93.64% using NAIP and CHM stacked 
image. Moreover, the highest OA (95.33%) 
and k (0.93) was obtained with NAIP stacked 
with LiDAR-derived CHM and TWI using ML 
(Figure 4). The same dataset and method that 
produced highest OA and k gave the highest PA 
(96.49%) and UA (100%) for classifying Tallow 

tree. Besides that, we observed an increase in PAs 
for classifying Tallow tree with the addition of 
LiDAR-derived variables as compared to NAIP 
stacked image alone using ML. Similarly, with 
RF classification the OA and k increased from 
89.4% and 0.85 to 94.29% and 0.88 respectively, 
on adding LiDAR-derived CHM to NAIP stacked 
image. However, the accuracies did not increase 
further on adding TWI to the dataset with RF 
classification. 

Mississippi Sandhill Crane National Wildlife Refuge

We obtained OA (89.13%) and k (0.83) for 
the classification map using ISODATA. The 
classification accuracy increased from 87.28% 
to 90.67% on adding LiDAR-derived CHM to 
NAIP stacked image using ML. The highest 
OA (93.22%) and k (0.89) was obtained with 
NAIP stacked image and LiDAR derived CHM 
and TWI using ML (Figure 5). The PA and UA 

Figure 4 Classified image of Bon Secour National Wildlife 
Reserve showing the distribution of Tallow tree 
using ML for NAIP stacked with LiDAR-derived 
CHM and TWI. The green area represents other 
(water, urban, and other vegetation) and red 
area represents the distribution of Tallow tree. 
This map has the highest OA, k, PA, and UA for 
classifying Tallow tree among the classification 
approaches used.

Figure 5 Classified image of Mississippi Sandhill Crane 
National Wildlife refuge (one unit amongst the 
99 units representing western Wildlife Refuge 
area) showing the distribution of Tallow tree 
using ML for NAIP stacked with LiDAR-derived 
CHM and TWI. The green area represents 
other (ground and other vegetation) and red 
area represents the distribution of Tallow tree. 
This maps the highest OA and k among the 
classification approaches used.
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for classifying Tallow tree increased on adding 
LiDAR derived CHM and TWI to NAIP 
stacked image as compared to NAIP stacked 
image alone. Likewise, with RF classification 
the OA and k increased from 88.98% and 0.83 
to 90.67% and 0.85 respectively, on adding 
LiDAR-derived CHM to NAIP stacked image. 
The OA further increased to 92.37% with 
LiDAR derived TWI added to the CHM and 
NAIP stacked image (Table 3).

Discussion

The study investigated techniques for 
mapping the distribution of Tallow tree and 
Chinese privet within ecologically sensitive 
coastal areas, with focus on the coastal 
region of Alabama and Mississippi in the 
southeastern United States. A combination 
of bands and NDVI derived from NAIP 
imagery and LiDAR-derived CHM and 
TWI were examined for each classification 
approach used. Evidently, the OA, PA, UA, 
and k obtained from different classification 
approaches varied over the study area.
 Among all classification approaches carried 
out on Mobile Tensaw area, RF on NAIP 
stacked image outperformed ISODATA and 
ML. Jensen et al. (2020) and Shoot et al. 
(2021) support machine learning algorithm 
(e.g., RF) as a robust classifier for natural 
resource data. Shoot et al. (2021) achieved 
the highest OA (78%) and k (0.66) with RF 
classification algorithm using vegetation 
indices and LiDAR-derived canopy height 
metrics. The variables importance showed that 
near infrared band followed by NDVI were the 
most important band with NAIP stacked image 
as the input data source. With the added CHM 
and TWI to NAIP stacked image, the most 
important variables were NDVI followed by 
near infrared band and TWI. Kim et al. (2020) 
found near infrared and DEM as the most 
important variables among their classifications. 
On Bon Secour and Mississippi Sandhill area, 
ML classifier produced better OA and k as 
compared to ISODATA and RF. In general, 

ML classifier performed well over the smaller 
study sites (Bon Secour and Mississippi 
Sandhill) as compared to the larger study site 
(Mobile Tensaw). Paola and Schowengerdt 
(1995) noted that the ML classifier is sensitive 
to spectral properties of classes and performs 
better for small areas with homogeneous 
forest stands. The separation of classes in such 
cases is more straightforward and there is less 
confusion between classes yielding higher 
accuracy. 
 Regardless of the algorithms used for all three 
study sites, we observed an increased overall 
classification accuracy with added LiDAR-
derived variables, such as CHM and TWI to 
the NAIP stacked image, as compared to the 
NAIP stacked image alone. In coastal regions, 
elevation and water govern the dynamics of 
vegetation that grow there. Based on the field 
observation of our target invasives i.e., Tallow 
tree and Chinese privet grow mostly on low 
elevation area with abundant water. Hence, it 
was difficult to achieve spectral separability of 
training samples between classes with NAIP 
stacked image only. We observed an increased 
OA and PA for classifying Tallow tree and 
Chinese privet after adding the CHM and 
TWI to NAIP stacked image. The addition of 
these LiDAR-derived variables enhanced the 
capability to discern Tallow tree and Chinese 
privet with added vegetation structure and 
moisture information. Evaluation of accuracy 
assessment also shows that the other vegetation 
class including grassland and shrubland in 
prairie ecosystem and algal concentration 
in water were separable from Tallow tree 
and Chinese privet (Table 4). Studies have 
demonstrated the benefits of combining 
structural (LiDAR) and spectral (imagery) data 
in this regard. For example, Große-Stoltenberg 
et al. (2016) and Hantson et al. (2012) conveyed 
higher classification accuracies with the aerial 
imagery combined with LiDAR than the aerial 
imagery alone.
 Most of the coastal regions of southern 
Alabama and Mississippi are not accessible 
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due to the floodplains. This highlights the use 
of remote sensing techniques for potential 
mapping of invasives, especially on the 
inaccessible study sites. Invasive plants can be 
detected remotely, given distinct morphology 
and seasonality. Cavender-Bares et al. (2020) 
showed that when the target invasives have 
unique phenology, it is easier to distinguish 
invasives from the native species. For instance, 
Ramsey et al. (2002) showed that the leaves 
of Tallow tree turn red during the fall season, 
when it is senescing, making it distinct from 
other native species. However, not all Tallow 
trees senesce at the same rate, there are chances 
of confusion with other plant species turning 
red, and acquiring data of desired season 
can be costly. For this study, we developed 
a framework with a cost-effective approach 
using freely available data (NAIP imagery and 
airborne LiDAR) and attained good accuracies 
to detect Tallow tree and Chinese privet. We 
produced high resolution (1 m) distribution 
maps of Tallow tree and Chinese privet within 
the southern coastal USA.
 We recommended using the remotely sensed 
data of senescing season, if available, for the 
tallow dominant area to attain better accuracy. 
We also suggest the use of drone survey 
for collecting presence and absence data of 
invasive species from the inaccessible areas for 
better accuracy.
 Joshi et al. (2004) conveyed that remote 
sensing has been most applied for mapping 
canopy-dominant species so far. Remote sensing 
techniques used for detecting invasives plants 
have mainly dealt with overstory invasives 
(Ramsey et al. 2002, Randall 2015, Große-
Stoltenberg et al. 2016). But all invasives do not 
dominate the canopy. Many invasive plants of 
concern are understory, where the application 
of remote sensing technique is tricky for 
species detection. Due to the difficulty of 
mapping understory invasives, these invaders 
have received little attention. Chinese privet is 
an understory shrub, concealed by the canopy 
of Tallow tree and other overstory vegetation, 

that makes it challenging to detect. A study 
conducted by Cash et al. (2020) leveraged the 
potential to map Chinese privet over a small 
area of 23 km2 using freely available satellite 
image from Landsat 8 and Sentinel 2. Another 
study by Singh et al. (2015) used data intensive 
methodology of mapping Chinese privet using 
airborne LiDAR and IKONOS imagery. In our 
study, the capability of mapping Chinese privet 
using LiDAR-derived variables integrated 
with NAIP imagery was demonstrated and 
thus, recommended as a feasible approach 
for developing distribution map of invasives 
in inaccessible sites. We suggest exploring 
the combination of input data sources derived 
from LiDAR such as canopy cover model, 
canopy density model, textures (data range, 
contrast, entropy), and topographic roughness. 
We further recommend post processing 
approaches with different window sizes to 
produce accurate vegetation maps.

Conclusions

The study examined different mapping 
approaches by using free and publicly available 
remote sensing data for invasive species 
mapping. In Mobile Tensaw, RF algorithm 
achieved the highest OA of 87.5% using 
NAIP stacked imagery. In Bon Secour, the ML 
classifier achieved the highest OA of 95.33% 
using the CHM and TWI integrated with 
NAIP imagery. Similarly, the same classifier 
and input dataset produced the highest OA of 
93.22% in Mississippi Sandhill. Regardless 
of the study sites and algorithms used, adding 
LiDAR-derived variables to NAIP stacked 
image increased the classification accuracies 
of Tallow tree and Chinese privet. The RF 
algorithm outperformed ISODATA and ML 
classifier while classifying Tallow tree and 
Chinese privet in Mobile Tensaw. With the same 
algorithm, the highest classification accuracies 
were achieved for Tallow tree in Mississippi 
Sandhill, whereas in Bon Secour, the highest 
classification accuracies for Tallow tree were 
achieved with the ML classifier. The workflow 
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used by this study offers an inexpensive, 
reliable, and high-resolution data framework 
alternative to purchasing commercial data. 
The study provides a spatially explicit baseline 
inventory map of vital invasive species of 
the region that contributes to developing a 
framework for broader-scale mapping.
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