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Abstract Implementing a scheduled and reliable estimation of forest 
characteristics is important for the sustainable management of forests. This 
study aimed at evaluating the capability of Sentinel-2 satellite data to estimate 
above-ground biomass (AGB) in coppice forests of Persian oak (Quercus brantii 
var. persica) located in Western Iran. To estimate the AGB, field data collection 
was implemented in 80 square plots (40×40 m, area of 1600 m2). Two diameters 
of the crown were measured and used to calculate the AGB of each tree based on 
allometric equations. Then, the performance of satellite data in estimating the 
AGB was evaluated for the area of study using the field-based AGB (dependent 
variable) as well as the spectral band values, spectrally-derived vegetation indices 
(independent variables) and four machine learning (ML) algorithms: Multi-
Layer Perceptron Artificial Neural Network (MLPNN), k-Nearest Neighbor 
(kNN), Random Forest (RF), and Support Vector Regression (SVR). A five-fold 
cross-validation was used to verify the effectiveness of models. Examination 
of the Pearson’s correlation coefficient between AGB and the extracted values 
showed that IPVI and NDVI vegetation indices had the highest correlation 
with AGB (r = 0.897). The results indicated that the MLPNN algorithm was 
the best ML option (RMSE = 1.71 t ha-1; MAE = 1.37 t ha-1; relative RMSE 
= 24.75%; R2 = 0.87) in estimating the AGB, providing new insights on the 
capability of remotely sensed-based AGB modeling of sparse Mediterranean 
forest ecosystems in an area with limited number of field sample plots.
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Introduction

Forests are among the most important terrestrial 
resources that can be used to manage global 
warming because they absorb large amounts 
of carbon dioxide through photosynthesis 
(Favero et al. 2020). As an essential source 
of information for better understanding and 
estimating the global carbon cycle, forest 
biomass is a critical component in forest 
management and national development 
planning (Khan et al. 2021, Santoro et al. 2021). 
Knowledge on the amount of forest biomass is 
essential for carbon trading and sustainable 
forest management (Knoke et al. 2021), 
assessment of habitat status, and its production 
capacity (Kovac et al. 2020). Awareness on 
the dynamics in biomass quantity and the 
background processes triggering its change 
is also required to shape national policies for 
forest management and carbon sequestration 
(Yao et al. 2018, Lamont et al. 2020).
 Estimation of forest above ground biomass 
(AGB) can be done by destructive and non-
destructive methods. Using destructive methods 
such as field-based sampling is the most accurate 
approach to estimating forest AGB (Vashum & 
Jayakumar 2012). However, this usually takes 
time and it is costly, while sometimes it may 
not be practical for large-scale study areas and 
poorly accessible forests. These limitations 
have led scholars to test and use non-destructive 
methods such as remote sensing (e.g., Pandit et 
al. 2018, Pham et al. 2018, 2020). 
 Capabilities such as quick processing and 
analysis, compatibility with Geographical 
Information Systems (GIS) and continuity, 
made satellite data an excellent provider 
of forest information (Pande et al. 2021). 
However, for accuracy reasons, past studies 
have shown that satellite data should not be 
used as a single source, but complemented 
with non-spectral data such as that coming 
from field-data sampling (Holmgren et al. 
2000). Although radar, LIDAR, and high-

resolution satellite imagery data can estimate 
biomass at increased accuracy, its wide use is 
still prevented by high operating costs, lack 
of international protocols, and low terrestrial 
coverage (Kelsey & Neff 2014). At least for 
these reasons, researchers in the field of forest 
sciences increasingly consider the use of freely 
available data at medium resolution.
 Sentinel-2 data are being widely used in 
precision agriculture (Sagarra et al. 2020), 
land-use management (Pazur et al. 2021), and 
other fields due to high accuracy, multiple 
imaging bands, fast updating speed and free 
availability (Forkuor et al. 2020). 
 Sentinel-2 satellites are equipped with 
a Multi-Spectral Instrument (MSI), which 
provides a spatial resolution of 10 to 60 meters, 
a short revisit time (five days with two satellites 
under cloud-free conditions), and 13 spectral 
bands that range from the visible range to the 
shortwave, making it suitable for monitoring the 
vegetation conditions (Korhonen et al. 2017). 
 In recent years, many researchers studied 
the capabilities of optical satellite data to 
estimate forest AGB (Torabzadeh et al. 2019, 
Lovynska et al. 2020, Safari & Sohrabi 2020, 
Li et al. 2021). Due to the complex relations 
between remotely sensed variables and AGB 
(Zhao et al. 2016, Zhu et al. 2017), machine 
learning algorithms, such as the artificial 
neural networks (ANNs), k-nearest neighbor 
(kNN), random forest (RF), and support vector 
regression (SVR) were found to provide 
promising results, mainly due to the fact that 
they can handle nonlinear relations. This has led 
to an increasing popularity of these algorithms 
in the past decade as well as to a widespread 
application to AGB estimation in temperate 
(Moradi et al. 2022), Mediterranean (Puletti 
et al. 2020), tropical (Ghosh & Behera 2018), 
subtropical (Castillo et al. 2017), and boreal 
(Neumann et al. 2012) forest ecosystems.
 ANN algorithms, for instance, have the 
advantage of distributed parallel processing 
and nonlinear and adaptive learning in AGB 
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estimation (Foody et al. 2001). The kNN 
method calculates the spectral distance 
between plot locations and the estimated pixels 
and then computes a weighted average of their 
forest AGB values (Zhang et al. 2019). The 
algorithm gives more weight to the ground truth 
values which are similar to those of the pixel 
estimations and kNN can be used to predict 
continuous as well as discrete forest variables 
without assuming a normal distribution or 
linear relations between variables (Gao et al. 
2018). Classical bagging algorithms such as 
RF have been considered to be among the 
best options of machine learning (Li et al. 
2021). SVR algorithms, which can deal with 
both linear and nonlinear high dimensionality 
problems, are widely used in spectral analysis 
(Clevers et al. 2007, Zhang et al. 2020).
 Zagros forests of Iran provide many economic 
and social benefits (Beygi Heidarlou et al. 2019). 
With an area of around 5 million ha (Roozitalab 
et al. 2018), these forests are spread over 11 
provinces and play a critical role in improving 
the climate condition, water supply, economic 
and social balance of the region. Zagros 
oak forests are regarded as typical semi-arid 
Mediterranean forests (Fathizadeh et al. 2021), 
being open mixed stands dominated by Persian 
oak (Quercus brantii var. persica) (Pourhashemi 
& Sadeghi 2020). 
 Among all the studies on AGB estimation 
in oak forests, few focused on the Q. brantii 
dominated forests, particularly on those 
managed by coppicing (Safari & Sohrabi 
2020). For example, Torabzadeh et al. (2019) 
estimated the AGB of coppice oak forests 
using optical data of the Sentinel-2 satellite. 
They used the RF algorithm for modeling by 
keeping the AGB as a dependent variable and 
the spectral band values and spectral-derived 
vegetation indices as independent variables, 
with a spatial resolution of 10 and 20 m. The 
model using all spectral bands and the derived 
vegetation indices provided the best estimates 
of AGB (R2 = 0.87 and RMSE = 10.75 t ha−1). 

Their results proved the capability of these 
data in estimating the biomass at a lower cost 
compared to the data provided by active and 
hyperspectral sensors. Safari & Sohrabi (2020) 
used Sentinel-1 data to estimate the AGB of two 
sites with different levels of human intervention 
in the Zagros coppice oak forests. Their results 
showed that the genetic algorithm and removal-
based variable screening techniques performed 
better; also, RF and multiple linear regression 
methods produced the best results.
 In a similar study from northern Ukraine, 
Lovynska et al. (2020) examined the capability 
of the Sentinel-2 satellite data to estimate the 
amount of AGB in pine forests. Their study 
used the Normalized Difference Vegetation 
Index (NDVI), Transformed Vegetation Index 
(TVI), Fraction of Absorbed Photosynthetic 
Active Radiation (FARAP), and Fraction of 
Vegetation Cover (FCOVER) biophysical 
parameters as independent variables and the 
amount of biomass obtained from field surveys 
as a dependent variable. Their results showed a 
high correlation between the remotely-sensed 
independent variables and the AGB field 
estimates. Nathammachot et al. (2018) used 
Sentinel-2 spectral data to estimate the AGB in 
Indonesia. They used seven vegetation indices 
obtained from the satellite data and biomass 
data derived from 45 plots for stepwise 
regression modeling. Results showed that the 
NDI45 index (Normalized Difference Index 
using bands No. 4 and 5 of Sentinel-2) had the 
highest correlation with AGB (R2 = 0.79). The 
regression model was found to be a good option 
for characterizing the dependence between 
field-estimated AGB and the vegetation 
indices (R2 = 0.81). Past studies, on the other 
hand, emphasized that there is no best single 
machine learning method for estimating AGB 
in different forest ecosystems (Ali et al. 2015).
 Considering the importance of oak forests in 
Iran and other Mediterranean regions, and the 
role of these forests in the general environment, 
in preventing soil erosion (Attarod et al. 2017, 
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Fathizadeh et al. 2021), providing wildlife 
habitats, providing various kinds of products 
and living conditions for forest dwellers, 
information on their condition becomes 
extremely important. On the other hand, these 
forests are typically non-commercial and the 
high cost of receiving non-free satellite data will 
make it difficult to manage them. Furthermore, 
it is unclear which machine-learning algorithm 
could produce the most accurate results for a 
particular study area and set of remotely sensed 
data. Hence, a comparative analysis needs to 
be carried out to check the performance of 
different modeling algorithms to estimate 
the AGB (Gao et al. 2018). Moreover, there 
are rare reports on comparative analysis of 
modeling algorithms under the conditions of 
coppice oak forests.
 The use of freely available Sentinel-2 data has 
provided good opportunities to monitor forests 
and to carry on inventories for a sustainable 
management of these Mediterranean forests. 
 In this paper, we evaluate the capability of 
Sentinel 2 freely available data to estimate the 
AGB in coppice oak forests located in western 
Iran. Specifically, we attempt to answer two 
research questions: i) is the optical data provided 
by the Sentinel-2 satellite useful in estimating 
the AGB of coppice oak forests? and ii) which 
machine learning technique (ANN, kNN, RF, 
and SVR) is able to provide a suitable model 
for estimating AGB? Through this study, we can 

better understand the AGB modeling mechanisms 
by finding the suitable remotely sensed variables 
and modeling algorithms under the conditions of 
Mediterranean oak coppice forests.

Materials and Methods

Study area

The Zagros oak forests of western Iran are 
divided into several classes based on climate, 
tree and plant species: northern, central, and 
southern Zagros forests. The Gahvareh region, 
which is our study area, is located in Dalahu 
forests, Kermanshah Province and central 
Zagros, at an altitude ranging from 1850 to 
2100 m, between 34˚31ʹ55ʹʹ to 34˚33ʹ01ʹʹ N 
and 46˚10ʹ52ʹʹ to 46˚12ʹ19ʹʹ E (Figure 1). The 
region's average annual precipitation is 498 mm, 
with winter and summer being the seasons of 
the most and least annual rainfall, respectively. 
The average annual temperature of the region 
is 15 °C. In most of the Zagros forests, the 
climate is Mediterranean (Attarod et al. 2017). 
The main tree species in Gahvareh is Q. brantii, 
which grows in coppiced form. Other species 
include gall oak (Q. infectoria), hawthorns 
(Crataegus aronia), wild pear (Pyrus glabra), 
and wild pistachio (Pistacia atlantica). All 
forest stands are characterized by low densities 
and heterogeneous canopies. Typically, forest 
stands are composed of isolated trees.

Figure 1 The geographic location of study area. (a) Kermanshah province of western Iran, (b) DEM map, and (c) sampling plots.
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Field data collection

In order to obtain field data, 80 georeferenced 
square plots with an area of 1600 m2 (40×40 
m) each were established in the late summer 
of 2020. The plots were chosen based on the 
systematic method; in each plot, diameters at 
the breast height (DBH) of all trees thicker than 
5 cm were measured (Karlson et al. 2015). The 
crown diameter of each tree was calculated as 
the average of two values measured along with 
two perpendicular directions from the location 
of each tree. Additionally, the species name of 
each tree was recorded in all 80 plots. Tree-
level AGB was estimated using allometric 
equations (Eq. 1 and 2) developed for Zagros 
oak trees forests from Iran (Iranmanesh 2013). 
These were developed for calculating the AGB 
(t/ha) of single trees (Eq. 1) and sprout-clumps 
(Eq. 2) based on crown diameters (X, in m), 
respectively, being widely used in the Zagros 
Forest of Iran.

 AGB=0.425× X^3.230   (1)
 AGB=1.275× X^2.362    (2)

Satellite data

A single tile (cloud-free) standard Sentinel-2 
product acquired on 21 December 2020 was 
downloaded from the Copernicus Data and 
Information Access Service (DIAS) (www.
scihub.copernicus.eu). This data was the closest 
to the date of the field survey with per-pixel 
radiometric measurements and 13 spectral bands 
ranging from the visible to the shortwave infrared 
(SWIR). In this study, we excluded bands no. 1, 
9, and 10 to extract spectral values corresponding 
to ground sample plots and statistical analysis. 
This study used cloud-free images produced 
through the Sen2Cor atmospheric correction 
processor on the Level-2A product (Castillo et al. 
2017). Following the atmospheric correction, 9 
bands were composited and clipped to the study 
area (Table 1).
 Before analysis, we converted images into 
surface reflectance (SR) values using the 

FLAASH tool of the ENVI software (Ver. 5.3) 
(FLAASH 2009). In addition, 2D available 
1:50,000 scale topographic maps and vector 
layers of roads and rivers from the Gahvareh 
region were used to correct geometric errors 
(Beygi Heidarlou et al. 2019). Table 2 lists the 
vegetation indices used in this study. We used 
the IDRISI Taiga software for all processing 
performed on the image’s bands and for the 
calculation of considered indices. In order to 
extract values corresponding to each sample plot, 
the coordinates of 4 points around the plots were 
entered in ArcGIS (Ver. 10.8) to create a polygon 
for each plot. Then, the created shape files were 
exported to IDRISI Terrset software (Ver. 19.0.6), 
and after digitizing the plots, digital values of all 
bands were extracted and transferred to Statistica 
software (Ver. 12.0) for modeling.
 The workflow implemented to model the AGB 
using Sentinel-2 data is shown in Figure 2, and 
it included four major steps: (1) preparation of 
data from different sources; (2) selection of the 
variables from Sentinel-2 data; (3) development 
of AGB estimation models using different 
algorithms; and (4) comparison and evaluation of 
the AGB modeling results.

Data analysis

ANN, kNN, RF, and SVR algorithms were 
used for modeling. All models were optimized 
by a five-fold cross-validation (Pham et al. 
2020) to avoid overfitting (Pandit et al. 2018).

Table 1 Spectral bands of the Sentinel-2 satellite 
imagery.

Spectral 
band

Center 
wavelength 

(nm)

Band 
width 
(nm)

Spatial 
resolution 

(m)
B2 490 65 10
B3 560 35 10
B4 665 30 10
B5 705 15 20
B6 740 15 20
B7 783 20 20
B8 842 115 10
B8a 865 20 20
B11 1610 90 20
B12 2190 180 20
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Table 2 Vegetation indices used in this study.

Vegetation Index Equation Reference
Inverted Red-Edge Chlorophyll 
Index (IRECI) (NIR–RED)/(RED/RED) (Frampton et al. 2013) 

MERIS Terrestrial Chlorophyll 
Index (MTCI) (NIR–RE)/(RE-RED) (Dash & Curran 2007) 

Modified Chlorophyll Absorption in 
Reflectance Index (MCARI) [(RE–RED) – ((0.2)×(RE–GREEN))] × (RE × RED-1) (Daughty et al. 2000) 

Second Modified Soil-Adjusted 
Vegetation Index (MSAVI2) (1 + 0.5) × (NIR − RED)/(NIR + RED + L); L= 0.5 (Huete 1988) 

Soil-Adjusted Vegetation Index 
(SAVI) [(NIR – RED)/(NIR + RED) + 0.5] × 0.5 (Clevers et al. 2002) 

Normalized Difference Vegetation 
Index with Band 4 & 5 (NDI45) NIR/(NIR + RED) (Crippen 1990) 

Sentinel-2 Red-Edge Position 
(S2REP) 705 + 35 × (RED + RE3)/(2−RE1)/(RE2 − RE1) (Guyot & Baret 1988)

Green Normalized Difference 
Vegetation Index (GNDVI) (NIR − GREEN)/(NIR + GREEN) (Gitelson et al. 1996) 

Normalized Difference Vegetation 
Index (NDVI) (NIR − RED)/(NIR + RED) (Rouse 1973)

Infrared Percentage Vegetation 
Index (IPVI) 0.5× (NDVI + 1) (Crippen 1990)

Difference Vegetation Index (DVI) NIR − RED (Tucker 1979) 

Pigment Specific Simple Ratio 
(PSSRA) NIR/RED (Roujean & Breon 1995) 

Red-Edge Inflection Point (REIP) 705 + 35 × (RED – RE3)/(2 – RE1)/RE2-RE1) (Hermann et al. 2011)

Ratio Vegetation Index (RVI) NIR/RED (Jordan 1969) 

Note: NIR: Near Infrared and RE: Red-edge bands; 
          The value of n is equal to: n = (2 × (NIR2 - RED2) + 1.5× NIR + 0.5 × RED)/(NIR + RED + 0.5)

Figure 2 Research flowchart.
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Multi-Layer Perceptron ANN algorithm

For non-linear, complex relations such as those 
specific to forest AGB modeling, an ANN 
consists of several nodes that are interconnected 
using mathematical algorithms (Li et al. 2020). 
Multi-Layer Perceptron ANNs (hereafter 
MLPNNs) are the most commonly used neural 
network algorithms in environmental modeling 
(Hu & Weng 2009, Hirigoyen et. al. 2021), and 
in forest AGB estimation (Mas 2004, Pham et 
al. 2017, 2018, Long et al. 2021). Each layer 
within a MLPNN is made up of several nodes 
or neurons.
 There are typically three layers in such a model: 
the input, hidden, and output layers. In the input 
layer, the neurons receive the values of explanatory 
variables, whereas the number of neurons in 
the hidden layers should be tuned based on the 
characteristics of the data. For regression purposes, 
the output layer contains one neuron that holds the 
value of the predicted AGB. 
 MLPNN's efficacy is significantly affected by 
the connection weights between the input and 
hidden layers, as well as between the hidden 
and output layers (Moradi et al. 2022). A back-
propagation algorithm (Pham et al. 2017) is 
used to adjust the weights in the training phase 
so as to lower the difference between the AGB 
values predicted by the MLPNN model and 
those from field inventory; the algorithm it is 
repeated until a predefined accuracy level or a 
specified number of iterations is reached. 
 To construct the MLPNNs model, the number 
of hidden neurons that significantly impact 
AGB estimation (Haykin 1998, Mas 2004) 
was selected based on the findings of previous 
studies (Bui et al. 2016). We then developed the 
best MLPNNs models by varying the number 
of neurons against the root mean square error 
(RMSE). The initial weights were assigned 
randomly, and when developing the network, 
the interconnection weights were adjusted to 
minimize the prediction error.
kNN algorithm

In forestry studies and particularly for those 

aiming at forest stand structural parameter 
estimation, the kNN algorithm is widely used 
(Gao et al. 2018, Zhang et al. 2019, Moradi et 
al. 2022). In the kNN, the similarity between 
observed and predicted values is measured 
using one- or a multiple-variable approach. The 
selection of k value and distance metric are critical 
factors affecting the estimation accuracy of the 
kNN algorithm. The optimal k value of the kNN 
algorithm was considered to stay between one 
and 50, according to the results of similar studies 
such as those of McRoberts (2008) and Shataee 
et al. (2012). Optimal k value was selected for the 
instance in which the prediction accuracy reached 
the maximum. There are four types of distance 
metrics commonly used in the kNN algorithm: 
the Euclidean, squared Euclidean, Manhattan, 
and Chebychev (Yazdani et al. 2020, Moradi et al. 
2022) (Equations 3-6) distances.

where x and p are the target and reference 
units, respectively.

RF algorithm

RF is a robust machine learning algorithm 
known for its high accuracy; it is based on 
bagging and random feature selection (Breiman 
2001, Belgiu & Dragut 2016). RF can capture 
complex non-linear relations and it can deal 
with multicollinearity problems (Anderson et 
al. 2018, Dalla Corte et al. 2020, Torre-Tojal et 
al. 2022). RF algorithm is fast and easy to use, 
and it can make accurate predictions even when 
highly correlated variables are present, such as 
when predicting biomass data (Torre-Tojal et 
al. 2022). In the past decade, this algorithm has 
been widely used in creating models that relate 
forest characteristics to variables derived from 
multi-source data (Tian et al. 2014, Anderson 
et al. 2018, Dalla Corte et al. 2020, Yadav et al. 
2021, Torre-Tojal et al. 2022, Xi et al. 2022). 
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 The RF picks random subsets of explanatory 
variables and builds the tree up to a certain 
point. The Classification and Regression Trees 
(CART) algorithm is used to first construct 
multiple decision trees, and then to combine 
the predictions from each tree to produce an 
ensemble response (Gisalson et al. 2006). RF 
can be used for classification problems (the 
output of the RF represents the class selected 
by the majority of trees) or regression problems 
(the individual trees return the mean or average 
prediction). In regression problems, RF is used 
to vote responses to be combined (averaged) 
to estimate the dependent variable by an 
arbitrary number (ensemble) of simple trees 
(a subset of independent variables) (Shataee 
et al. 2012). To generate a forest of regression 
trees, randomly sampled data and variables 
can be bagged and bootstrapped iteratively 
(Stevens et al. 2015). Implementing RF 
requires regularizing a decision tree and setting 
stopping parameters. Finally, the RF model is 
constructed by grouping base-decision trees 
into a forest (Pham et al. 2019). 
 Seventy percent of the total plots from the 
training dataset (i.e., in bag data), should be 
contained in these bootstrap datasets, and the 
rest of the datasets (i.e., 30%; out of bag data) 
are used to evaluate the performance of the RF 
model (Rodriguez-Galiano et al. 2012). Past 
research has found that the number of base-
decision trees should be carefully selected 
since the RF model's performance is dependent 
on this parameter (Stevens et al. 2015, Pham 
et al. 2019). Three parameters are used in the 
architecture of the RF algorithm: the number 
of trees (Ntree), the minimum number of 
observations per leaf (mtry), and the number 
of repetitions in the calculation of importance 
(nperm). A total of 500 trees (i.e., Ntree) were 
used for this study to ensure the stability of RF 
model results (Stevens et al. 2015, Moradi et 
al. 2022). The number of trees that produced a 
stable error was kept as the optimal number of 
trees in the RF model. We modified both mtry 
and Ntree by rerunning the settings, and then 

compared the average squared error between 
test samples (Gao et al. 2018).

SVR algorithm

The SVR has been recognized as one of the 
most efficient machine learning algorithms 
(Smola & Scholkopf 2004), including in the 
estimation of forest AGB (Wu et al. 2016, 
2018). Literature reviews showed that the 
performance of the SVR model is significantly 
influenced by the selection of the kernel type 
(Vafaei et al. 2018, Wu et al. 2018). In this 
study, four kernels were considered for the 
SVR algorithm, including Linear, Polynomial, 
Radial Basis Function (RBF), and Sigmoid 
(Ronoud et al. 2021). To estimate the AGB, an 
SVR function is built according to Eq. 7.

where k (xi; x) is the kernel function; xi is the training 
vector; α represents the LaGrange multiplier; and 
b denotes the bias term in the regression.

Statistical analysis and model 
performance assessment

A sensitivity analysis was performed to 
determine the most effective model parameters 
(Baloly et al. 2018). The Kolmogorov-Smirnov 
test was used to check if samples came from 
a population with a normal distribution. We 
used the Pearson correlation coefficient (r) 
to check the association between the AGB of 
each sample plot (dependent variable) and the 
corresponding spectral values (independent 
variables). Statistical analysis was implemented 
in the Statistica software (Ver. 12.0).
 Cross-validation was used to evaluate the 
model's generalization capability as a strategy 
to deal with a small number of ground-
truth sample points and to avoid overfitting 
of the model (Pandit et al. 2018). We used 
four performance metrics (Equations 8-11), 
namely the root mean square error (RMSE), 
the mean absolute error (MAE), relative 



173

Moradi et al. Above-ground biomass estimation in a Mediterranean sparse...

RMSE (RMSE%), and the coefficient of 
determination (R2) (Nazari, et al. 2020, Nazari, 
et al. 2020), to compare the performance of 
the selected machine learning techniques in 
AGB estimation, where low RMSE and MAE 
values, on the one hand, and high R2 values, on 
the other hand, characterize better predictive 
capabilities of the models.

where AGBp and AGBi are the predicted and 
observed AGB per ith plot, respectively, n is the 
total number of testing sample plots, and AGBo 
is the average of the testing sample plots.

Results

Field Survey

Table 3 shows the descriptive statistics of the 
stand structural parameters and AGB. Field 
measurements indicated that the minimum, 
maximum, and mean values of the AGB were 
of 0.03, 19.76, and 6.91 t/ha, respectively, with 
a standard error of 0.60 t/ha (Table 3).

Correlation between AGB and spectral 
bands

Based on Pearson’s correlation coefficient, 
a significant negative association was found 
between the spectral band information (i.e., 
B2, B3, B4, B5, B6, B7, B8, B8a, B11, and 
B12) and in situ AGB (Table 4); there was a 
significant positive relation between AGB and 
vegetation indices (p < 0.01; Table 4). IPVI 
and NDVI vegetation indices of the Sentinel-2 
data outputted the highest correlation with in 
situ AGB (r = 0.897; Table 4). The sensitivity 

Table 3 Characteristics of the sparse coppice oak forest from the study site.

Statistical Parameter Mean
Tree Height (m) DBH (cm) Crown Diameter (m) AGB (t/ha)

Maximum 8.17 70.06 6.55 19.76
Minimum 1.45 7.14 1.30 0.04
Average 4.07 23.97 3.86 6.91
Standard Deviation (±) 1.54 11.15 1.15 5.36
Standard Error (±) 0.17 1.25 0.13 0.60
Coefficient of Variation (%) 37.85 46.54 29.89 77.63

Table 4 Pearson correlation coefficient between spectral variables and aboveground biomass (AGB).
Input Variable Correlation Coefficient (r) Input Variable Correlation Coefficient (r) 

B2 -0.712** IPVI 0.897**
B3 -0.729** IRECI 0.843**
B4 -0.758** MCARI 0.618**
B5 -0.715** MSAVI2 0.890**
B6 -0.508** MTCI 0.896**
B7 -0.412** NDI45 0.726**
B8 -0.386** NDVI 0.897**
B8a -0.361** PSSRA 0.886**
B11 -0.674** REIP 0.854**
B12 -0.741** RVI 0.890**
DVI 0.776** S2REP 0.705**
GNDVI 0.885** SAVI 0.890**

Notes: ** Significance level: 0.01.
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analysis results showed that the variables B8a, 
RVI, and SAVI had the greatest impact on 
modeling, respectively.

Models for AGB estimation

The results of the four machine learning 
models are summarized in Table 5. In general, 
the MLPNN algorithm produced the best 
results for AGB estimation in our study area, 
(the lowest RMSE, Relative RMSE, MAE and 
the highest R2), while the worst results were 
those outputted by the kNN algorithm. The 
best result was obtained when the MLPNN 
machine learning model had three hidden 
layers. Among the distance metrics used for the 
kNN model, the squared Euclidean distance 

produced the most accurate results (i.e., RMSE 
= 2.32 t ha-1, MAE = 1.75 t ha-1, relative RMSE 
= 33.58%, and R2 = 0.79). The best kernel 
type for the SVR algorithm was the linear one, 
which returned the lowest RMSE and MAE 
and the highest R2.
 Figure 3 shows the average squared error 
rates plotted against the number of trees used 
for estimating AGB by the RF algorithm 
during training and testing. The optimal 
number of trees was determined as the point 
where increasing the number of trees does 
not cause changes in the error rate (Figure 
3). Improvement in error rates from 160 trees 
onward was low, so this number was used as 
the optimum number of trees (Figure 3).

Figure 3 Random Forest (RF) error testing graph - the average squared error of above ground biomass (AGB) outputted by the RF 
algorithm, plotted against the number of trees using the training and testing datasets.
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Discussion

Monitoring changes in forested area as well 
as its biomass are important activities for the 
management and sustainable development 
of forest ecosystems (Cakir et al. 2008, Li et 
al. 2021). Therefore, monitoring forests and 
obtaining up-to-date and accurate information 
will play a significant role in improving the 
management of forest resources. Capabilities 
such as the ability to quickly process large 
data sets, acceptable spatial and temporal 
coverage, free satellite image data, and 
the accuracy of the obtained information 
stand as good sources of information for a 
sustainable resource management. On the 
other hand, uncertainty of predictions based 
on remotely sensed data was always discussed 
by experts. Such uncertainties may come from 
an incorrect ground survey, improper size 
and an insufficient number of sample plots, 
heterogeneous conditions of the study areas, 
data processing tools and techniques, statistical 

methods, and a considerable time interval 
between the acquisition of remotely sensed 
data and field data collection. This study aimed 
at investigating the capabilities of the optical 
Sentinel-2 satellite data in estimating the AGB 
of Mediterranean coppice oak forests located 
in Iran based on Sentinel-2 bands with a spatial 
resolution of 10 and 20 m, 15 vegetation 
indices and four common non-parametric 
machine learning algorithms (MLPNN, kNN, 
SVR and RF).
 All of the vegetation indices derived from 
the Sentinel-2 datasets showed a significant 
correlation with forest AGB in these 
Mediterranean forests. Thus, by increasing 
forest AGB value, the reflectance will also 
increase, which is in line with the results of 
other studies (Ronoud et al. 2021). The Pearson 
correlation coefficient between input variables 
and AGB showed that IPVI and NDVI indices 
had the highest correlation with the field-
sampled AGB. In previous studies, NDVI and 
the infrared band showed a high correlation 

Table 5 Performance of the tested machine learning algorithms.

Algorithm Parameters RMSE 
(t ha-1)

MAE
 (t ha-1)

Relative 
RMSE (%) R2

MLPNN
3 hidden layers (first layer = 24 neurons; 
second layer = 18 neurons; third layer = 1 
neuron)

1.71 1.37 24.75 0.86

Algorithm Distance Variable Optimal k RMSE 
(t ha-1)

MAE
 (t ha-1)

Relative 
RMSE (%) R2

kNN
(k range = 1-50)

Euclidean 34 2.46 1.88 35.60 0.78
Squared Euclidean 38 2.32 1.75 33.58 0.79
Manhattan 32 2.44 1.79 35.31 0.77
Chebyshev 34 2.68 2.08 38.78 0.75

Algorithm Optimal k RMSE 
(t ha-1)

MAE
 (t ha-1)

Relative 
RMSE (%) R2

RF 7 2.08 1.64 30.10 0.82

Algorithm Kernel Type RMSE 
(t ha-1)

MAE
 (t ha-1)

Relative 
RMSE (%) R2

SVR

Linear 2.03 1.49 29.38 0.86
Polynomial 2.41 1.78 34.88 0.80
Radial Basis Function (RBF) 2.13 1.53 30.83 0.84
Sigmoid 2.14 1.55 30.97 0.83
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with forest characteristics, such as forested 
area, density, and AGB (Luo et al. 2013, 
Karlson et al. 2015; Mohamed et al. 2016, 
Safari et al. 2017, Barakat et al. 2018, Eskandari 
et al. 2020, Pirotti et al. 2020). This is due to 
the high sensitivity of the infrared spectrum to 
the forest structure. The amount of reflection 
is also reduced by reducing the biomass, 
especially in the near-infrared spectrum. 
Decreased reflection prevents the occurrence 
of the saturation phenomenon (Gasparri et al. 
2010), which leads to better performance of 
the near-infrared band and of the NDVI index, 
which is highly effective by the near-infrared 
band. The amount of forest biomass is directly 
related to forest management. The lower 
average value of forest biomass in this study as 
compared to previous studies conducted in the 
Zagros forests (Safari et al. 2017, Torabzadeh 
et al. 2019) can be due to cutting tree branches 
and removing of leaves by local people to 
ensure their fuel needs. The area was also 
heavily affected by the Loranthus europaeus 
(a hemiparasitic plant), so the Department 
of Natural Resources and the villagers cut 
down the infected branches to combat oak 
decline (Pourhashemi & Sadeghi 2020), which 
reduced the canopy density and eventually its 
AGB. Reducing the density of tree canopies 
increases the interference brought by soil 
reflection which combines with that of tree 
cover at the pixel level. Mixed pixels were 
found to significantly affect the accuracy of 
estimates such as carbon sequestration in low 
canopy forests (Calvao & Palmeirim 2004, 
Eisfelder et al. 2012).
 The machine learning algorithm selection is 
of first importance as it may significantly affect 
the accuracy of estimations (Vafaei et al. 2017, 
Ronoud et al. 2021, Moradi et al. 2022). It is 
unclear which algorithm will produce the most 
accurate results for a given study area and set 
of remotely sensed data (Safari et al. 2017, 
Vafaei et al. 2017). Hence, a comparative 
study of different AGB estimation algorithms 
is required. Most machine learning algorithms 

do not make any assumptions about the model 
or the distribution of input data, which makes 
it possible to explicitly describe the nonlinear 
relation between forest AGB and remotely 
sensed data (Liu et al. 2017, Pandit et al. 2018). 
Among the four machine learning techniques 
used in this study, the MLPNN model 
provided the highest estimation accuracy 
(highest R2, and the lowest RMSE, Relative 
RNSE, and MAE performance metrics). The 
Sentinel-2-derived AGB model using the 
MLPNN algorithm yielded a RMSE% of 
24.7%. Considering the heterogeneity of the 
study area and the small number of available 
field measurements, the obtained results can 
be considered satisfactory. The MLPNN 
algorithm learns quickly, generalizes well, 
and has high self-learning ability levels 
(Camargo et al. 2019). MLPNN consists of 
an input layer, which receives the signal, 
an output layer, which makes a decision or 
prediction about the input, and an arbitrary 
number of hidden layers (or none at all) 
in between (Mas 2004, Pham et al. 2017, 
Camargo et al. 2019). The MLPNN model has 
been the most commonly-applied ANN model 
for reliable forest ABG prediction (Foody et 
al. 2001, Englhart et al. 2011, Ozcelik et al. 
2017, Pham et al. 2017). For example, Pham 
et al. (2017) concluded that the MLPNN 
algorithm achieved the best performance (R2 

= 0.78) for estimating the AGB of mangrove 
apple (Sonneratia caseolaris) in Vietnam as 
compared to SVR, RF, radial basis function 
neural networks (RBFNN), and Gaussian 
process (GP). In another study, Masjedi et al. 
(2018) pointed out that the MLPNN models 
have a more precise result than RF to estimate 
AGB of Sorghum bicolor in Iran.
 The kNN presented the highest accuracy and 
lower errors when using the squared Euclidean 
distance metric (Table 5). These results 
confirmed the outcomes of previous research, 
which reported that kNN implementations 
with the squared Euclidean metric had a 
consistently smaller error and larger accuracy 
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than those with other distance metrics (Shataee 
et al. 2012). Literature research showed that 
the squared Euclidean metric lowers the bias 
of the estimates (e.g., Altman 1992, Tuominen 
et al. 2010). The type of the kernel function 
had a significant effect on the performance of 
SVR models, and we found that the best one 
was the linear kernel (Table 5). It requires the 
fewest parameters and it is less susceptible 
to overfitting compared to other kernel types 
(Axelsson et al. 2013, Marabel & Alvarez-
Taboada 2013).
 There are some uncertainties in our AGB 
estimation procedure. First, we did not have 
access to the species-related allometric 
equations for our study area, therefore we used 
equations (i.e., Equations 2 and 3) which are 
general for all the Zagros forests. In addition, 
GPS positional errors considerably affect the 
results obtained from remote sensing studies 
(Ronoud et al. 2021) while all of the machine 
learning algorithms are site-specific in the 
sense that their results might fluctuate by the 
study area. As such, generalization of our 
results should be made with caution and based 
on site-specificity validation.

Conclusion

This study investigated the capability of 
Sentinel-2 spectral data to estimate the AGB 
of oak coppice stands in a part of Kermanshah 
province (located in a Mediterranean Zagros 
region, Iran). These sparse-covered forests 
are being currently managed mainly for 
their environmental value. Among the four-
tested ML algorithms, our findings indicate 
a better performance of the MLPNN in 
estimating the AGB from sparse coppice oak 
forests. The MLPNN algorithm used in our 
research can be replicated over other coppice 
oak forests sharing similar characteristics, 
stand structures and biophysical parameters, 
standing for an effective way of estimating 
the AGB in low-access forests or in forests 
lacking the resources for a detailed ground-
based sampling of AGB.
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