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Abstract. Lidar (light detection and ranging) remote sensing technology 
provides promising tools for 3D characterization of the earth’s surface.  In 
ecosystem studies, lidar derived structural parameters relating to vegeta-
tion and terrain have been extensively used in many applications and are 
rapidly expanding.  Yet, most of the lidar applications have focused on tall, 
woody vegetation in forested environments and less research attention is 
given to non-forest, short stature vegetation dominated ecosystems.  Sim-
ilar to the lidar developments in forestry, novel methodological approach-
es and algorithm developments will be necessary to improve estimates of 
structural and biophysical properties (i.e. biomass and carbon storage) in 
non-forested short stature environments.  Under changing climate scenar-
ios, the latter is particularly useful to improve our understanding of their 
future role as terrestrial carbon sinks.  In an attempt to identify research 
gaps in airborne lidar remote sensing application in short stature vegeta-
tion studies, in this review article we provide a comprehensive overview 
on the current state of airborne lidar applications.  Our focus is mainly 
on the levels of accuracies and errors reported, as well as the potentials 
and limitations of the methods applied in these studies.  We also provide 
insights into future research needs and applications in these environments.  
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Introduction

Lidar remote sensing applications in forestry 
have been reported since 1980s (Nelson et al. 

1988). Yet, most of the lidar applications have 
focused largely on tall, woody vegetation-dom-
inated forested environments, more specifical-
ly conifer, temperate broadleaf and plantation 
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forests (Straatsma & Middelkoop 2006), while 
less research attention is given to non-forest, 
short stature environments. As short stature 
environments, we identify a variety of eco-
systems including rangelands (i.e. grasslands, 
deserts, savannas, and pasture lands), wetlands 
(bogs, fens, swamps, and marshes), and polar 
ecosystems (tundra and taiga). Short stature 
vegetation in these ecosystems plays a key role 
in many important ecological processes. For 
example, nearly 50% the world’s land area is 
covered by Rangelands (i.e. grasslands, shrub-
lands, deserts and tundra) and contributes to 
more than a third of terrestrial C reserves (Al-
len-Diaz, 1996). 
 Even in forested ecosystems, the understo-
ry herbaceous vegetation plays a key role in 
determining forest structure and composition. 
Ecosystem products and services they offer 
includes: increased biodiversity (Halpern & 
Spies 1995), provisioning of forest fuel loads 
(Arno 2000) and nutrient cycling (Gilliam 
2007). Further, the presence, abundance and 
diversity of the forest understory serve as in-
dicators of forest ecosystem health (Schulz et 
al. 2009, Suchar & Crookston 2010); contrib-
ute to building forest biomass and carbon (C) 
stocks and fuel loads (Arno 2000); and shape 
future forest structure and diversity (Legare et 
al. 2002). Yet, only a few studies reported the 
contributions of understory vegetation to for-
est ecosystem biomass and carbon (C) stocks 
and thus have eluded forest carbon quantifi-
cation at larger spatial (i.e. regional to global) 
scales. Thus, in this review, we also include 
studies focused on forest understory com-
prised of mixed herbaceous and short woody 
vegetation.
 Measurements relating to structural arrange-
ment of vegetation canopies are of critical im-
portance in characterizing landscapes. For ex-
ample, information relating to canopy structure 
provides a substantial amount of information 
on condition and functioning of vegetated eco-
systems. However, conventional, field based 
methods for characterizing vegetation struc-
ture have significant limitations, in particular 

at larger spatial scales (i.e. regional to global). 
Over the past two to three decades, there has 
been an enormous growth in availability of re-
motely sensed data leading to development of 
a wide variety of remote sensing applications 
in vegetation studies. The majority of these ap-
plications however, have largely been depen-
dent on rapidly and freely available data from 
passive, optical remote sensing systems (i.e. 
multispectral data from aerial photography 
and satellite sensors). However, passive opti-
cal remote sensing data are largely affected by 
signal attenuation due to poor atmospheric and 
background conditions. Further, their signals 
are originated largely from the electromagnet-
ic energy reflected from the uppermost canopy 
layers and therefore less sensitive to vegeta-
tion structure (Steininger 2000). Thus, passive 
optical remote sensing data have significant 
limitations in vegetation studies, more specifi-
cally for characterizing their 3D structure and 
related vegetation biophysical parameters (i.e. 
vegetation biomass and carbon stocks). More 
specifically, in short stature environments mul-
tispectral remote sensing measurements from 
these passive optical devices are further limit-
ed by different factors such as signal scattering 
from multiple layers of vegetation, bright soil 
background, relatively open vegetation and 
spectrally similar & / indiscriminate targets 
(Jakubauskas et al. 2001, Mirik et al. 2007, 
Okin et al. 2001, Smith 1997). Further, the 
sensitivity and accuracy of these systems de-
cline with increasing vegetation biomass and 
canopy cover (Drake et al. 2002). 
 Lidar remote sensing also uses NIR wave-
lengths in vegetation and terrain scanning. 
Laser interactions with vegetation and ground 
objects and thus, the recorded data (i.e. lidar 
intensity values) are therefore still affected in 
many similar ways. However, the ability of 
lidar data to provide accurate representations 
on three dimensional arrangement of vegeta-
tion canopies as well as sub-canopy topogra-
phy (Blair & Hofton 1999, Dubayah & Drake 
2000, Harding et al. 2001), and their ability to 
provide direct measurements on canopy pa-
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rameters (i.e. height, canopy diameter, cover, 
LAI)  are added advantages in vegetation and 
terrain studies. Further, lidar devices can pro-
vide sub-meter accuracy levels in the estimates 
of vegetation structural properties including 
tree heights (Straatsma & Middelkoop 2006) 
and parameters relating to forest density such 
as stem number (Lefsky et al. 1999, Næsset 
& Bjerknes 2001), stem diameter (Drake et 
al. 2002, Næsset 2002, Lin et al. 2016), tim-
ber volume (Nilsson 1996, Nelson et al. 2009) 
or basal area (Means et al. 1999) at a range of 
scales appropriate for landscape to ecosystem 
level assessments. Further, the ability of lidar 
data to estimate vegetation biophysical charac-
teristics such as biomass and canopy cover with 
higher accuracy levels is superior to passive 
multispectral remote sensing. This is of signifi-
cant importance over high biomass ecosystems 
where spectral signatures from passive optical 
remote sensors have shown to deteriorate or 
saturate (Drake et al. 2002, Means et al. 1999). 
More recently, an increasing number of studies 
incorporated lidar-derived canopy parameters 
in forest biomass prediction models (Boudreau 
et al. 2008, Drake et al. 2002, Lefsky et al. 
2005, Lin et al. 2011, 2016, Montesano et al. 
2014, Popescu et al. 2011, Zolkos et al. 2013).  
The main purpose of this review article is to 
provide a comprehensive overview on the cur-
rent state of airborne lidar applications in short 
stature environments. In this review, we first 
provide an overview on the impacts of vegeta-
tion more specifically in short stature environ-
ments to discuss their effects on laser scanning 
and lidar data. The later part of this review fo-
cuses on 3 broad categories of airborne lidar 
applications in short stature environments for: 
1) vegetated terrain estimates & characteriza-
tion; 2) land use land cover (LULC) charac-
terization: and 3) estimates on vegetation bio-
physical parameters. In each of these sections, 
we focus mainly on the levels of accuracies and 
errors reported, and potentials and limitations 
of the methods applied. We also attempt to 
provide insights into future research needs and 
applications in these environments. Thus in 

this review, we do not attempt to provide com-
prehensive details on lidar technology, rather 
refer the readers to other articles (i.e. Baltsav-
ias 1999, Petrie & Toth 2008, Popescu 2011, 
Wehr & Lohr 1999). Further, we focus on air-
borne lidar applications and do not attempt to 
discuss any applications using other lidar sys-
tems (i.e. space-born lidar or ground scanning) 
mainly due to their very limited applications 
reported in these short stature environments. 
For comprehensive reviews on airborne laser 
scanning of forests and other natural environ-
ments, readers are referred to Lim et al. (2003) 
and Heritage and Large (2009), respectively.

Effects of vegetation on laser scanning 
and lidar data

Effects on terrain estimates 

Accuracy of lidar derived DEMs is known to 
affect largely by physical structure of vegeta-
tion. For example, erect form, and high density 
and homogeneity of vegetation heights have 
known to increase DEM errors over vegetat-
ed terrains (Hopkinson et al. 2004). Vegetation 
overstory can also affect the density of lidar 
points returning from the nearby ground sur-
faces (i.e. ground points, Hodgson & Bres-
nahan 2004). Further, the attenuation of laser 
beam irradiance passing through a canopy is 
directly affected by the characteristics of veg-
etation that include density, size, horizontal 
and vertical distribution,  spectral and rough-
ness properties of foliage, woody elements and  
ground cover beneath canopy. Thus, for a com-
prehensive evaluation on vegetation influence 
on lidar quality, it is necessary to understand 
the basic principles relating to laser interac-
tions with the reflecting surfaces that include 
vegetation overstory. In any type of vegetated 
terrain, it is crucial to know the height of veg-
etation from where a lidar pulse is reflected. 
For example, in dense vegetation over tidal 
flats and salt marshes, this height correlated 
to one-half of the vegetation height (Populus 
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et al. 2001). The average depth that lidar can 
penetrate through marsh vegetation is also re-
ported as 0.03-0.1m (Sadro et al. 2007). How-
ever, over densely vegetated areas, as in the 
case of most herbaceous environments, further 
research is necessary to determine whether a 
laser pulse is returning from the bare earth or 
the above-ground vegetation. 
 In general, a systematic upward shift in lidar 
heights and thus a positive bias in lidar derived 
elevation estimates is expected as a result of 
laser beams returning from above the bare 
ground or if a mixed signal is returned from 
ground and vegetation surfaces (Gorte et al. 
2005, Gopfert & Heipke 2006, Rosso et al. 
2006) (Sadro et al. 2007, Toyra et al. 2003). 
This vegetation dependent positive bias may 
correlate directly with vegetation characteris-
tics including plant height, density (Gopfert 
and Heipke 2006, Populous et al. 2001, Toy-
ra et al. 2003) and vegetation type (Gopfert 
&Heipke 2006).  Shape and orientation of 
plant leaves contribute to changes in foliage 
profile and thereby influence vegetation-laser 
interactions and thus laser penetration char-
acteristics. Broadleaf dicots that are generally 
characterized by oval-shaped and horizontally 
orientated leaves can attenuate laser beam irra-
diance passing through the canopy more read-
ily leading to prompt reflections of the signals 
back to lidar sensors (Ni-Meister et al. 2001). 
For example, 80–90% canopy cover result 
only 10% of the lidar pulses to reach ground 
surface (Cowen et al. 2000) whereas in coastal 
salt marsh environments proportion of the li-
dar pulses that reached ground surface was as 
low as 3% (Sadro et al. 2007). These findings 
indicate that vegetation cover intercepts a rela-
tively large proportion of lidar pulses and, thus 
only a few reach ground. Thus, increasing veg-
etation cover can lead to a sparse distribution 
of lidar points returning from ground surfaces 
beneath vegetation cover. Accurate classifica-
tion of lidar returns as vegetation and ground 
returns is critical for the accuracy of terrain es-
timates using lidar. This classification can be 
increasingly challenging when the proportion 

of lidar returns from  the ground were small 
or absent, or when the vegetation was not tall 
enough to enable accurate detection of ground 
vs vegetation returns by the sensor (Gopfert 
& Heipke 2006).  Leaf loss can potentially in-
crease the likelihood of lidar signal originat-
ing from closer to ground surface (Hodgson 
& Bresnahan 2004, Su & Bork 2006) and thus 
lidar data acquisition during leaf-off condi-
tions is generally recommended for improving 
accuracies of terrain estimates where possible 
(Zlinszky et al. 2014). In contrast, angular or 
nearly vertical leaf orientations and needle like 
leaf blades of monocots, which is the dominant 
vegetation in grassland environments, facilitate 
increased laser penetrations through the cano-
py and to ground surfaces and can increase the 
proportion of lidar returning from ground and 
thereby may contribute to improving the accu-
racies of lidar derived ground estimates. Laser 
interactions with this type of vegetation how-
ever, tends to be more complex as this canopy 
architecture could cause repeated bouncing 
back and forth of incoming lidar signals within 
the grass canopy. For example, this nature of 
laser interactions may delay lidar return signal 
emanating from grasslands (Su & Bork, 2006) 
leading to considerable underestimation of 
ground elevations. With taller vegetation, this 
problem can even become more prominent, 
as the distance of laser beam through differ-
ent layers of vegetation becomes longer. If 
we assume a uniform vegetation structure in 
every layer, probability for laser energy to get 
absorbed or reflected before reaching ground 
is lower in relatively shorter vegetation. Thus 
if a uniform vegetation density along vertical 
profile of the canopy is assumed, an increase 
in negative bias of elevation estimates can be 
expected with increasing vegetation heights. 
However, leaf densities in almost all vegeta-
tion canopies vary significantly with canopy 
height and thus make it more challenging to 
quantify this bias in elevation estimates using 
lidar. 
 Several studies in short stature environments 
indicated that proximity to the nearest ground 
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lidar point is affected by vegetation intercep-
tion effect (Hodgeson et al. 2003, Sadro et al. 
2007, Yang et al. 2010) and therefore correlate 
with land cover category (i.e. scrub/shrub, 
forest, grass). In addition, within landscapes 
where vegetation is structurally more complex 
(i.e. thin shrub/ scrub lands and mixed vegeta-
tion types), and very short-statured (i.e. grass-
lands), lidar systems may not be able to detect 
centimeter-level height differences between 
vegetation and ground surface (Bowen & Wal-
termire 2002) and may decrease accuracies of 
lidar derived DEMs (Hodgson & Bresnahan 
2004, Reutebuch et al. 2003). However, stud-
ies in short stature environments have reported 
variable effects of vegetation while some stud-
ies indicated minimum or no significant vege-
tation effects (Montane & Torres 2006) on the 
accuracies of terrain estimates using lidar.

Effects on vegetation estimates

Limited lidar applications in short stature en-
vironments are attributed to two main aspects 
of their vegetation characteristics. First, dense 
vegetation, characterized by relatively less 
openings in vegetation cover limits laser pen-
etration into the ground (Toyra et al. 2003), 
making  terrain and thus vegetation height 
estimates increasingly challenging and less 
accurate (Chassereau et al. 2011, Hopkinson 
et al. 2005). Second, relatively shorter vege-
tation and low variation in vegetation height 
and canopy characteristics along vertical pro-
file of the canopy erode predictability of lidar 
derived variables in vegetation estimates (Li et 
al. 2015, Rosso et al. 2006, Wang et al. 2007). 
Theoretically in lidar remote sensing, vegeta-
tion structure can be better characterized us-
ing information provided by both first and last 
returns recorded for each emitted laser pulse. 
However, the ability of lidar data to charac-
terize vegetation structure is determined by 
the sensors ability to detect height differenc-
es between vegetation and ground returns and 
demands two conditions: height differences 
between returns from vegetation and ground 

surfaces are larger than 1) sensor’s detection 
limits, and 2) vertical errors associated with 
each of the returns (Rosso et al. 2005). In short 
stature vegetation canopies first and last returns 
(generally coded as vegetation and ground re-
turns, respectively) are often too close in both 
space and time making the separation of laser 
returns from ground and non-ground surfaces 
including vegetation increasingly challenging. 
Ability of a lidar sensor to separate returns that 
are too close in time is determined by the re-
set time (also known as range resolution) of 
the sensor. For a successful separation of two 
neighboring targets along pulse path, the min-
imum height difference between two targets 
should correspond to this reset time. Most li-
dar systems are designed with a reset time of 
8-10 nano seconds and thus enable a range 
separation of 1.2 to 1.5m (Popescu 2011). As a 
consequence, in short stature vegetation cano-
pies, there is a greater probability for reflected 
energy from vegetation and ground surfaces to 
become comingled. Thus in relatively short-
er vegetation, depending on the reset time of 
the sensor and the height difference between 
ground and top of the vegetation from where 
laser returns are reflected, the system may 
not be able to discern more than one return 
(Schmid et al. 2011) or can result in practical-
ly identical first and last returns (Wang et al. 
2007). Over some herbaceous environments 
(i.e. grasslands and coastal environments), the 
combined effect of uncertain separation of li-
dar returns and intrinsic instrument errors may 
lead to unacceptably large estimation errors in 
vegetation height as well as terrain estimates 
relative to their typically small topographic re-
lief  and small vegetation heights (Rosso et al. 
2006, Wang et al. 2009). 
 Over sparsely vegetated landscapes vegeta-
tion heights may be calculated as the height 
differences between first and last returns, 
while ground estimates can be derived based 
on last returns. The basic assumption here is 
that first returns are reflected from top of the 
canopy surfaces, while last returns are from 
the ground. There is no straightforward meth-
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od that can determine the depth of laser pulse 
penetration before reflecting back to the sen-
sor. Over sparsely vegetated environments (i.e. 
grasslands) laser pulses do not reflect from 
the absolute top of every stem it contacts, but 
rather some distance within canopy leading 
to underestimation of vegetation heights. The 
depth of the canopy from where the laser puls-
es reflect is governed by the amount of cano-
py cover as the reflection is produced when a 
threshold density of stems is sufficient to cause 
a reflection. (Hopkinson et al. 2005). Further-
more, in sparsely vegetated environments, as 
in the case of most dry land ecosystems, few-
er vegetation returns (as compared to dense-
ly foliated forested ecosystems) are recorded 
(Li et al. 2015, Mitchel et al. 2015, Rango et 
al. 2000, Ritchie et al. 1992, 1996, Weltz et 
al. 1994) and may not provide sufficient de-
tails to capture relatively larger spatial varia-
tion in vegetation surfaces, which may lead to 
increased errors in vegetation estimates. On 
the other hand, when the plant cover is dense, 
these pulses may not be able to penetrate all 
the vegetation layers and reach the ground sur-
face (Cobby et al. 2001, Estornell et al. 2010, 
Gopfert & Heipke 2006, Hodgson et al. 2005, 
Raber et al. 2002, Riano et al. 2007). These 
laser interactions will collectively lead to mis-
representation of vegetation characteristics in 
short stature environments.

Lidar applications in short stature envi-
ronments

Over the recent past, a variety of lidar applica-
tions have been reported even in the short stat-
ure environments. In this review, we identify 
three broad categories of studies on airborne 
lidar applications in short stature environments 
for: 1) estimating terrain elevation; 2) mapping 
and characterization of landscape and vegeta-
tion; and 3) estimating vegetation biophysical 
parameters (height, cover and biomass). In the 
following sections, we provide comprehensive 
overview on the findings of these studies. We 

focus our discussions mainly on the levels of 
accuracies and errors reported as well as the 
limitations and potentials of the methods ap-
plied.
 
Applications for vegetated terrain estimates 
and characterization

Mapping terrain elevation has been the prima-
ry focus of most lidar collections over short 
stature non-forest environments. Over the past 
decades, there has been a significant increase 
in the use of lidar data for deriving DEMs 
(Gesch 2007) and there is an extensive liter-
ature on terrain characterization using lidar. 
Vegetation cover can significantly affect laser 
penetration properties and in turn the accuracy 
of terrain estimates over vegetated landscape. 
As such, this review only discusses aspects of 
terrain extraction as they relate to vegetation 
characteristics of short stature environments.

Methods and algorithms

To determine surface elevations using laser 
scanning, it is necessary to separate laser puls-
es reflected from ground and vegetation or oth-
er objects (Kilian et al. 1996, Kraus & Pfeifer 
1998, Vosselman 2000). Separation of lidar 
returns from ground and vegetation surfaces is 
performed using a combination of automated 
and manual procedures that utilize geometric 
and topologic relationships of 3D data. Auto-
mated methods perform neighborhood opera-
tors that iteratively identify the lowest points 
within a predefined search window as “ground” 
returns. In subsequent iterations these ‘ground 
returns’ will further refine  by adding addition-
al returns that are also “low” or exhibit some 
angular deflection from a surface modeled by 
the previously identified set of points. Further 
processing of selected data points can include 
visual and statistical processing steps that fur-
ther remove returns from vegetation above the 
ground surface. Latter process can be locally 
adaptive and subjective (Hodgson & Bresna-
han 2004). Most of the filter algorithms cal-
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culate a measure of discontinuity based on a 
local neighborhood (Sithole & Vosselman 
2004), while some adopt slope based filters 
(i.e. Vosselman 2000). Local neighborhood 
and slope based filtering algorithms perform 
well in smooth landscapes, however produce 
increased errors in rough terrain (Vosselman 
2000, Sithole & Vosselman 2004), dense and 
complex vegetation (Hladik et al. 2013), and 
steep slopes (Kraus & Pfeifer 1998). 
 Common filter algorithms are capable of 
removing points reflected from higher vegeta-
tion and thus can improve accuracies of bare 
earth models, but fail to detect short vegeta-
tion, which is not significantly higher than sur-
rounding bare ground (Chassereau et al. 2011). 
Thus in short stature environments, specifical-
ly in herbaceous cover, vegetation and ground 
could not be differentially mapped by simple 
filtering. In these environments incorporation 
of lidar variables that are correlated with veg-
etation characteristics (i.e. local variance in 
laser pulse height) has been able to improve 
elevation estimates using lidar (Table 1, Supp. 
Info.). For example, empirical relationships 
between standard deviation of lidar elevation 
and vegetation height have been applied to 
calculate surface elevations (Coby et al. 2001, 
Davenport et al. 2000). Point labeling (Cobby 
et al. 2001) and land segmentation (Raber et 
al. 2002) algorithms have also reported to be 
superior to common algorithms. Some of the 
complex point labeling algorithms incorporat-
ed slope limits during point labeling (Schmid 
et al. 2011). For multi-story environments, and 
complex terrains, use of more ‘‘intelligent’’ 
algorithms (rather than simple automated al-
gorithms) and lasers with shorter pulse lengths 
have also been suggested (Hodgson et al. 
2003). These algorithms applied differential 
filtering based on the information available on 
land cover and/ vegetation characteristics and 
thus improved accuracies of lidar derived el-
evation estimates. Even with this differential 
filtering, elevation accuracies still decreased 
with increasing vegetation cover (Chassereau 
et al. 2011, Ritchie et al. 1996), partly due to 

the ineffectiveness of filter methods in remov-
ing lidar returns originated from above the 
ground surface in particular when only a few 
or no ground points available within analyzed 
area. 
 Inclusion of data other than lidar (i.e. multi- 
and hyper-spectral data, land cover classifi-
cations, aerial images, and field observations 
-Table 2, Supp. Info.) is also reported as an at-
tempt to capture variations in ground cover. For 
example, photogrammetric processing tech-
niques improved accuracies of lidar derived 
terrain estimates (Carter et al. 2001, Hicks et 
al. 2002, James et al. 2007, Lane 2000) largely 
by supplementing detection of break lines and 
stream edges where sudden changes in terrain 
exist over low lying coastal marshes (Adams 
& Chandler 2002), and under highly heteroge-
neous vegetation (height and cover) conditions 
(Montane & Torres 2006). These findings thus 
indicate the necessity of improved methods for 
characterizing terrain, in particular over com-
plex landscapes. Several other studies there-
fore adapted different smoothing techniques 
such as moving-window smoothing (Wang et 
al. 2009, Yang 2005). However, such filtering 
is recognized to diminish micro topographic 
structures in complex terrain conditions as in 
salt marsh environments and would probably 
lead to complete loss of narrow channel struc-
tures (Lohani & Mason 2001). In such condi-
tions, filtering algorithms can be applied only 
to the specific areas of interest and should ex-
clude the areas of sudden terrain irregularities 
(Wang et al. 2009). 
 Many algorithms that have been developed 
for the separation of ground and non-ground 
lidar returns are based on two assumptions: 1) 
topographic relief to be relatively gradual; and 
2) ground is locally the lowest reflecting sur-
face. Hence, the lowest lidar point in a local 
neighborhood (within a specified window) is 
considered to have fully penetrated vegetation 
and reached the ground (Sankey & Bond 2011; 
Schmid et al. 2011, Struetker & Glenn 2006). 
However, the dimensions of filtering window 
determine the levels of exclusion of lidar data 
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and smoothing, and therefore can be a key 
determinant of the accuracies of the derived 
DEMs. For example, significant differences 
are reported in the RMSEs in elevation esti-
mates derived using different window sizes in 
coastal marshes (Kulawardhana et al. 2014), 
grasslands (Ritchie et al. 1996), croplands 
(Coby et al. 2001), and shrub lands (Struet-
ker & Glenn 2006). Some of these findings 
revealed increasing challenges in short stature 
environments and indicated that even last lidar 
returns filtered using the smallest window size 
were returning from inside vegetation rather 
than from the ground surface (Kulawardhana 
et al. 2014). This type of laser-vegetation inter-
actions often results in collection of lidar point 
elevations that closely resemble a flat surface 
consistent with the ground surface (Gopfert & 
Heipke 2006), more specifically in dense veg-
etation cover.
 Interpolation of lidar points to raster surface 
is generally identified as a measure for reduc-
ing vertical error in lidar derived elevation es-
timates (Hopkinson et al. 2004, Zlinszky et al. 
2014). Before interpolations selective classifi-
cation of lidar returns as ground and vegetation 
returns can improve lidar derived elevation es-
timates. This classification however, should be 
performed considering variations in both ter-
rain and vegetation cover (Morris et al. 2002, 
Montane & Torres 2006, Rosso et al. 2005; 
Sadro et al. 2007, Wang et al. 2009). Filtering 
of laser returns based on their timing of returns 
(i.e. first or last returns) rather than their rela-
tive positioning on the vertical domain is also 
a common practice. For example, DEM inter-
polations using local minima of only the first 
returns have proven superior results over use 
of all the returns within sage brush dominat-
ed terrain (Struetker and Glenn 2006) as this 
approach tends to minimize potential problem 
of multiple returns originating from similar 
heights of the terrain. Such filtering would 
be effective in relatively short vegetation, 
where multiple returns originating from sim-
ilar heights may not be recorded as separate 
returns in the lidar systems, particularly if the 

sensor’s signal detection threshold is too low 
(Hodgson et al. 2003). This method however 
may not be appropriate for dense canopies. If 
the canopy is too dense, the number of ground 
returns available within the local window 
may not be sufficient to generate an accurate 
ground surface. There would also be a balance 
between maximum canopy cover and terrain 
variability. For example, over a gentle terrain, 
even with a relatively fewer number of ground 
points an accurate interpolation of the surface 
could be generated (Gong et al. 2000; Raber 
et al. 2002), while over a rugged and variable 
terrain increased number of ground points and 
therefore more canopy openings will be neces-
sary, which can be rather challenging in most 
short stature non-forest environments.
 Interpolation of raw or filtered lidar heights 
is performed using specified window sizes. In 
this process, the size of the filtering window, 
further determines the levels of smoothing, 
terrain irregularities retained in derived DEMs 
and thus their levels of accuracies (Wang et 
al. 2009). In general, smaller neighborhood 
smoothing significantly improve derived 
DEMs while interpolations using larger filter-
ing window sizes can lead to lower accuracies 
of elevation estimates using lidar. The size 
of the filtering/ smoothing window however, 
needs to be determined based on the amount 
of information available in the data (i.e. lidar 
point density). In general, higher lidar point 
densities may allow DEM interpolations using 
smaller window sizes as they provide more 
information (i.e. points) for the interpolation. 
Simple spatial-interpolation techniques, such 
as IDW and natural neighbors can be recog-
nized as traditionally preferred methods (Su 
& Bork 2006). However, advanced techniques 
(e.g., kriging, splines, decimation, and break 
lines) may be more appropriate in specific situ-
ations. For example, kriging with a trend mod-
el may be more accurate for lidar data with 
decreased point densities (Lloyd & Atkinson 
2002).
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Errors and accuracies of lidar derived terrain 
estimates

Most lidar data are available with vertical ac-
curacies of about ±0.15m when compared to 
surveyed ground points (Hetherington 2009), 
and with a comparable root mean square error 
(RMSE) for bare earth returns, while the best 
accuracy levels are achievable only under the 
most ideal circumstances (e.g., for low altitude 
areas, flat terrain, minimal or no surface veg-
etation or obstructions, much human analysis, 
etc.). Some empirical studies suggest accura-
cies of ±0.25m or larger as more realistic for 
large scale mapping applications in complex 
terrain and vegetation conditions as in the 
case of herbaceous environments (Hodgson & 
Bresnahan 2004, Su & Bork 2006). In gener-
al, vertical accuracy of lidar derived elevation 
estimates over open-terrain conditions is used 
as a measure of overall quality of lidar data 
collection and post-processing, while the er-
rors over vegetated/ constructed areas can help 
understanding error contributions from laser 
interactions with vegetation and other ground 
objects. Most accuracy assessments provide 
vertical RMSEs, and overlook potential hori-
zontal errors, which are typically greater than 
vertical errors, but can be difficult to assess 
in lidar datasets. This difficulty is due to the 
inability for precisely locating, or the lack of 
distinct topographic features on elevation sur-
faces that are necessary for such tests. Due to 
this reason horizontal accuracies are generally 
derived based on the factors relating to lidar 
system characteristics including flying height 
and angle relative to the ground surface. Ver-
tical accuracies of the lidar derived elevation 
estimates can be evaluated either by compar-
ing: 1) original lidar heights or 2) interpolat-
ed surfaces to reference elevations measured 
using ground surveys (Table 1, Supp. Info.). 
Although the first approach eliminates interpo-
lation error, elevation accuracies still rely on 
the GPS accuracy, and thus our ability to locate 
lidar points precisely on the ground. 

 Total error associated with elevation es-
timates can be classified into various com-
ponents. These generally include, in order 
of decreasing importance, errors from lidar 
system measurements, interpolation errors, 
horizontal displacement errors, and surveyor 
errors (Hodgson & Bresnahan 2004). Several 
efforts have been made to identify, understand 
and where possible, to reduce these errors and 
their sources, while some others attempted to 
identify and explain the influence of specific 
ground characteristics such as vegetation type 
and density (Narayanan & Guenther 1998, 
Ni-Meister et al. 2001), slope gradient (Buf-
ton 1989), and other external factors such as 
off-nadir sampling angle (Tsutsui et al. 1998). 
While the majority of studies in short stature 
environments indicated a systematic upward 
shift in lidar heights (positive bias) ranging 
from 0.02 to 0.72 m a few reported a negative 
bias in lidar-derived elevation estimates (Table 
1, Supp. Info.). 
 Collecting enough lidar returns from the 
ground, which is critical for mapping eleva-
tion and subsequently terrain slope/aspect is a 
major challenge in dense herbaceous environ-
ments. Adjusting specifications of lidar collec-
tions (i.e. flight height, pulse rate, sensor type, 
and field of view) to: 1) emit a large number of 
laser pulses; and 2) limit the area coverage of 
laser pulse interactions (i.e. smaller laser pulse 
footprints) and thereby to increase the likeli-
hood of laser pulses that penetrate vegetation 
to reach the ground can increase the proportion 
of laser pulses returning from ground. In the 
case of aerial lidar, higher lidar point densi-
ties can be achieved by changing flight spec-
ifications (i.e. lower flying altitude, reduced 
speed). Effects of lidar collection and system 
parameters (e.g., flying altitude, laser instru-
ment) on the sensitivity of lidar data and ac-
curacies of elevation and vegetation estimates 
derived using them has not been rigorously 
researched, and thus indicate the necessity of 
future research focused on these aspects. Find-
ings of some previous studies however, have 
indicated varying effects of ground and vege-
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tation characteristics on horizontal and vertical 
accuracies of acquired lidar data, as well as the 
accuracies of elevation estimates derived using 
them. For example over herbaceous understo-
ry in a forested area (Cowen et al. 2000) and 
mixed vegetation environments (Hodgeson et 
al. 2005), strong linear relationships have been 
reported between density of lidar points re-
turning from ground and percent canopy cover. 
These findings however, did not explain if the 
accuracies in elevation estimates were affected 
by the point density alone. Few other studies, 
did not establish such relationships, however 
attributed greater errors in elevation estimates 
to lower point densities of lidar data acquired 
over sagebrush dominated landscapes (Glenn 
et al. 2011, Mitchell et al. 2011). Thus if the 
larger errors in dense vegetation cover is pri-
marily attributed to data limitations, increasing 
lidar posting density through changing flying 
and laser scanning attributes (higher pulse 
rates and lower AGLs) may improve the accu-
racies of lidar derived elevation estimates. 
 Early work in topographic mapping relied 
on Koppe’s formula for estimating elevation 
errors attributed to covariation of horizontal 
error and slope (Maling 1988). According to 
this formula, for any observation with a con-
stant error in horizontal location, elevation 
error increases as the slope increases. This re-
mains true and even become more problematic 
in estimates of terrain using lidar, more specif-
ically when large footprint lidar data is used 
over extended geographic areas as in the case 
of regional to global scale elevation estimates 
using space-borne lidar (Lee et al. 2011, Lef-
sky et al. 2007). Local scale studies over her-
baceous environments indicate varying effects 
of increasing slopes in the accuracies of lidar 
derived terrain estimates (Adams & Chandler 
2002, Bowen & Waltmire 2002, Estornell et al. 
2010, Hodgson & Bresnahan 2004, Spaete et 
al. 2011). Contrasting findings have also been 
reported with minimal or no slope effect on 
the accuracies of lidar derived elevation esti-
mates (Hodgson et al. 2005, Montane & Torres 
2006). Over the areas of mixed vegetation and 

varying slopes the effects of slope on elevation 
accuracies are confounded by varying effects 
of vegetation (Hodgson & Bresnahan 2004, 
Hodgson et al. 2005, Spaete et al. 2011). Other 
than the slope, increased terrain unevenness/ 
irregularities as reflected in micro topographic 
variations are also identified to increase eleva-
tion errors (Asselman 2002, Chassauereu et al. 
2003, Su & Bork 2006).
 
Applications for vegetation and land use/ 
land cover (LULC) characterizations

LULC classification studies in short stature en-
vironments indicate that the synergy of lidar 
and optical data improved classification accu-
racies as compared to using either of these data 
alone (Table 2, Supp. Info.). This improvement 
is achieved by exploiting spectral signatures 
and information relating to three-dimension-
al structure of vegetation canopies provided 
by multispectral and lidar data, respectively. 
More specifically, use of lidar data in classifi-
cation algorithms have helped overcome some 
of the limitations associated with spectrally 
similar vegetation types, mainly through the 
provisioning of information relating to the dis-
similarities of their vertical structure. 
 The majority of these studies integrated li-
dar altimetry data with multi- or hyper-spec-
tral data from medium to high resolution data 
for LULC classifications over coastal, grass-
land, woodland, and urban landscapes while 
few others evaluated using multiple variables 
derived using lidar data alone (Table 2, Supp. 
Info.). These studies indicate considerable im-
provements in the classification accuracy when 
lidar data were integrated with either multi- or 
hyper-spectral data while classification perfor-
mance using lidar data alone remained poor 
(Table 2, Supp. Info.). According to these find-
ings confusion in the classification results were 
mainly evident over the areas characterized by 
dense tree cover, and increased complexity in 
vertical arrangement of the canopy layers and 
was partly due to the presence of understory 
herbaceous vegetation (Garcia et al. 2011, 
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Koetz et al. 2008). Over landscapes character-
ized by more complex terrain and vegetation 
(i.e. coastal salt marshes), only marginal im-
provements in classification accuracies have 
been achieved when lidar data were integrated 
(Yang et al. 2010). 
 Lidar derived vegetation height models have 
also been used for improving vegetation clas-
sifications as well as mapping ground topog-
raphy. These classifications however indicated 
relatively poor performances, more specifically 
over mild slopes and densely vegetated areas. 
Integration of multiple variables derived using 
lidar is also a promising approach for mapping 
and characterizing mixed vegetation (Alexan-
der et al 2015, Collin et al. 2010, Chust et al. 
2008, Rosso et al. 2006, Sadro et al. 2007, Yang 
et al. 2010, Zlinszky et al. 2014). For example, 
integration of a novel vegetation index (Nor-
malized Difference Lidar Vegetation Index - 
NDLVI) using dual wavelength lidar returned 
superior results in mapping intertidal marsh 
vegetation and adjacent coastal areas (Collin 
et al. 2010). Integration of multiple variables 
extracted from lidar data (i.e. raw & filtered 
intensity, reflectance, point density), lidar de-
rived DEMs and vegetation height models is 
also a possibility (Alexander et al. 2015, Chust 
et al. 2008, Zlinszky et al. 2014). As these data 
layers can provide information relating to dif-
ferences in landscape as well as vegetation, 
combination of different layers may improve 
capability of classification models to separate 
different habitats. 
 Lidar intensity data can also be used for 
improving accuracy of habitat classification 
within herbaceous land cover (Brennan & 
Webster 2006, Chust et al. 2008, Song et al. 
2002). Lidar intensity images however, have 
increased limitations in vegetation applica-
tions mainly due to their excessive noise and 
artifacts caused by sensor scanning that lead to 
heterogeneous and speckled images (Brennan 
& Webster 2006, Song et al. 2002). The exces-
sive noise in intensity data is largely attributed 
to the angle of reflection and thus, same land 
cover class may give rise to different intensi-

ty values due to changes in angle of reflection 
alone (Song et al. 2002). In coastal environ-
ments, submerged conditions can also intro-
duce noise in lidar intensity values, as water 
can attenuate near infrared pulses (Hladik et al. 
2013). Thus, in coastal environments acquisi-
tion of lidar data under low tidal conditions is 
generally recommended. However, we did not 
find evidence of any study that evaluated the 
effects of submerged conditions on the noise.
 Over short stature environments, lidar data 
has been used in LULC classifications to 
characterize morphology of desert grasslands 
(Rango et al. 2000), sagebrush vegetation in 
semi-arid landscapes (Sankey & Bond 2011, 
Struetker & Glenn 2006), and coastal land-
scapes (Rapinel et al. 2014, Rosso et al. 2006, 
Sadro et al. 2007). Some of these studies at-
tempted to improve classification accuracies 
by capturing the changes in vegetation growth 
over time as reflected in lidar-derived digital 
surface models of two time periods (Rosso 
et al. 2006). Even though comparable levels 
of vegetation penetration during both years 
were assumed in this approach, differential 
laser penetration through vegetation canopies 
can be identified as a major issue in the use 
of multi-temporal lidar datasets. Integration 
of multi-spectral signatures in the change de-
tection methodology may help overcome the 
above limitation. Over the recent past, un-
availability of real time data from multi-sen-
sor systems that can generate lidar and passive 
optical remote sensing data have been one 
of the biggest limitations for data fusion ap-
proaches. However, as the new sensors and 
systems are being developed, future research 
will take the advantage of increasing availabil-
ity of real time multi-sensor data. For example, 
Goddard’s Lidar, Hyperspectral and Thermal 
(G-LiHT) airborne imager is one such unique 
development that provides real time multi-sen-
sor data, and thus will contribute to advancing 
these data fusion concepts and approaches for 
integrating lidar with hyperspectral as well 
as thermal remote sensing data (Cook et al. 
2013).
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Applications for estimation of vegetation bio-
physical parameters (height, cover, biomass 
and carbon) 

Once a DTM is derived using lidar data, height 
above ground surface for any given point can 
be calculated as the difference between derived 
DTM and height recorded for each point. Re-
sulting data will provide a three dimensional 
point cloud representing heights above ground 
level. This information can then be converted 
to a vertical point height distribution character-
ized by various statistics. These statistics are 
subsequently related to structural properties 
of vegetation canopies that need to be verified 
using field reference data (Lefsky et al. 1999, 
Næsset 2002). These applications have been 
researched extensively in forestry, while sim-
ilar applications are reported in short stature 
herbaceous environments as well. The major-
ity of lidar applications in vegetation studies 
over non-forested environments concentrated 
on the estimates of vegetation heights, while 
only a very few of them evaluated lidar poten-
tials for estimating vegetation cover, canopy 
shape and volume or biomass.

Vegetation height estimates

Studies in short stature environments have es-
tablished empirical relations to predict vegeta-
tion height from laser-scanning data (Table 3, 
Supp. Info.). In general lidar-derived vegeta-
tion height estimates over relatively arid grass 
and shrub land areas agree well with field mea-
surements (Menenti & Ritchie 1994, Ritchie 
1995, Ritchie et al. 1996, Weltz et al. 1994), 
floodplain grasslands (Assellman et al. 2002, 
Cobby et al. 2001, Hopkinson et al. 2004, Hop-
kinson et al. 2005, Straatsma & Middelkoop 
2007), croplands (Davenport et al. 2000, Luo 
et al. 2016), wetlands (Luo et al. 2014, Wang et 
al. 2009), and sagebrush dominated rangelands 
(Glenn et al. 2011, Mitchell et al. 2011, San-
key & Bond 2011, Streutker & Glenn 2006). 
Some of these studies developed regression 

models for predicting vegetation heights. 
However these relationships vary significantly 
(Table 3, Supp. Info.). For example, Cobby et 
al. (2001) used a log-linear regression, which 
did not perform well in the study of Hopkinson 
et al. (2004). Further, the slope of the regres-
sion equation of Hopkinson et al. (2004) was 
significantly higher than that of the Davenport 
et al. (2000, Table 3, Supp. Info.). In addition, 
vegetation heights predicted using the derived 
regression models indicated a poorer detec-
tion of vegetation tips, which might attribute 
to lower vegetation density (Hopkinson et al. 
2004). Moreover, these studies were not able 
to suggest a single laser-derived statistic for 
predicting vegetation heights or cover (Table 
3, Supp. Info.). 
 Percentiles of laser data have been used ex-
tensively to derive vegetation height estimates. 
The basic assumption in these applications is 
that the vertical distribution of vegetation can-
opies is same as the vertical distribution of 
laser points (Magnussen & Boudewyn 1998). 
Consequently, the n-percentile of laser verti-
cal point distribution or the n percentile of la-
ser heights that are derived using the ground 
elevation as the reference (also referred to as 
detrended lidar heights) would correspond to 
the height of vegetation below which n percent 
of the leaf area occurs. This concept is being 
further verified in field studies over a range of 
canopy types and indicated strong correlations 
between corresponding percentiles of leaf area 
and laser data (Table 3, Supp. Info.). Standard 
deviation of lidar heights within a specified lo-
cal window is also used as a predictor of rel-
atively shorter vegetation over different envi-
ronments including croplands (Davenport et al. 
2000); grasslands of river floodplains (Cobby 
et al. 2001, Mason & Scott 2004) and other ri-
parian areas (Hopkinson et al. 2004); wetlands 
(Luo et al. 2014); and relatively arid grass and 
shrub land areas (Menenti & Ritchie 1994). 
Median value of laser height distribution in a 
specified local window (Asselman 2002) and a 
simple multiplier of standard deviation of ver-
tical laser pulse distribution (Cobby et al. 2001, 
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Hopkinson et al. 2004, Mason & Scott 2004, 
Menenti & Ritchie 1994) are also suggested as 
good predictors of vegetation heights. Howev-
er, limitations of the later variable are identi-
fied, more specifically for short vegetation in 
steep slopes due to tendency of standard de-
viations to increase with increasing slope re-
gardless of vegetation height (Hodgson et al. 
2003). Thus for high slope areas it might be 
possible to adjust the multiplying factor (slope 
of the regression model) downwards based on 
the angle of slope of the DEM (Hodgson et al. 
2004). The upper end of laser height distribu-
tions (i.e. maximum and 90th percentile) within 
local windows of varying sizes (i.e. 5 m x 5 m, 
3 m x 3 m) has been used as a better predictor 
of vegetation heights over shrub lands (Glenn 
et al. 2011, Mitchell et al. 2011, Riano et al. 
2007) and coastal marshes (Kulawardhana et 
al. 2014). These findings indicated that local 
maxima of lidar heights, although superior to 
standard deviations, consistently underestimat-
ed vegetation heights. Further, findings from 
forestry have shown that lidar metrics relating 
to the upper end of laser height distributions 
are highly sensitive to sample point density 
and morphology of vegetation canopies (Hop-
kinson et al. 2006, Magnussen & Boudewyn 
1998; Naesset 1997). In particular, when can-
opy surface height is variable as in the case of 
most herbaceous vegetation, it is possible that 
only a single stem of a grass or a shrub canopy 
will correspond to the maximum lidar height 
as evidenced in forestry with conical crowns 
(Lefsky et al. 2007). Thus to capture this in-
creased variation in vegetation heights and 
canopy surfaces of herbaceous environments, 
more specifically over grassland and cropland 
areas, it is important to acquire data with suf-
ficient sampling density. Standard deviation of 
laser height distributions on the other hand, is 
a function of the overall distribution of vege-
tation layers from ground to canopy surfaces. 
Thus given a sufficient number of laser pulses 
returning from the area of interest, standard 
deviation of lidar heights should better capture 
the variations in vertical structure of vegeta-

tion canopy. These findings indicate that the 
applicability of such variables are largely de-
termined by the interplay between variations 
of vegetation characteristics (i.e. height and 
cover) over the given area (and thus within the 
area of filtering window) and the amount of 
information available in lidar data (i.e. point 
density). 
 Several studies over coastal salt marshes 
(Wang et al. 2009) and shrub dominant land-
scapes (Riano et al. 2007) created Digital 
Surface Models (DSMs), by interpolating li-
dar variables (i.e. maximum height) within a 
specified search neighborhood to a continuous 
surface. Assuming that these DSMs reflect 
canopy surface elevation, Digital Vegetation 
Models (DVMs) were then created by sub-
tracting DEM from DSM. Although vegeta-
tion heights extracted from resulting DVMs 
indicated good correspondence with field mea-
sured vegetation heights, they did not include 
much of the information from the topmost sur-
face of the vegetation. Further, relatively large 
errors in vegetation height estimates were ob-
served for densely vegetated areas, and were 
partially attributed to poor separation of lidar 
returns as ground and vegetation returns. Thus 
some studies used alternative data source/s 
(i.e. spectral data) along with lidar for correct-
ing vegetation containing pixels in the derived 
DEMs and thereby improved accuracy in veg-
etation height estimates (Rango et al. 2000).
 Effects of using different filter sizes for fil-
tering specified laser height statistics have also 
been evaluated (Brown & Hugenholtz 2011, 
Kulawardhana et al. 2014, Wang et al. 2009). 
Theoretically, increasing filter radius increases 
the likelihood for capturing laser pulses that 
were fully penetrated the vegetation and re-
flected by the ground. This will also make it 
more likely that the returns from near the top 
of vegetation are captured in the filtering win-
dow. However, increasing filter radius beyond 
a certain threshold can lead to overestimations 
in vegetation heights, which is largely attribut-
ed to missing local topographic variations in 
the derived DEMs (Brown & Hugenholtz 
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2011). Further, the DEMs created using mov-
ing window filtering algorithms are generally 
characterized by lower spatial resolution than 
that of raw lidar data and the amount of infor-
mation lost during this filtering process can be 
a function of the window size and degree of 
variation in surface properties (i.e. vegetation 
heights). Thus given relatively greater varia-
tion of vegetation heights within most low stat-
ure herbaceous environments, more specifical-
ly over grasslands and croplands, appropriate 
window size/s should be selected with much 
care, considering variations in terrain and veg-
etation characteristics as well as the character-
istics of the data itself.
 
Canopy cover, shape, plant density, biomass and 
carbon estimates 

Theoretically, the proportion of lidar returns 
originating from vegetation canopies and 
ground surfaces relate to the amount of veg-
etation cover, and canopy openings, respec-
tively. Based on this rationale, several lidar 
metrics have been proposed as canopy cover/ 
vegetation density related variables. These 
metrics directly relate to the laser penetration 
properties within vegetation canopies and also 
known as laser penetration indices. Assum-
ing a direct inverse relationship between la-
ser penetration and the amount of vegetation 
cover (i.e. decreasing laser penetration with 
increasing vegetation cover), laser penetration 
indices estimate vegetation cover as the ratio 
of vegetation returns to the total number of 
returns (Evans et al. 2009). Thus a larger ra-
tio implies a higher vegetation density while 
a small ratio is indicative of the higher canopy 
openings. Over the recent past an increasing 
number of studies reported using laser penetra-
tion indices for vegetation cover and biomass 
estimates in short stature environments, more 
specifically over crop lands (Luo et al. 2016) 
grassland dominated rangeland environments 
(Mograbi et al. 2015, Ritchie et al. 1992, Weltz 
et al. 1994), sagebrush dominated landscapes 
(Li et al. 2015, Mitchel et al. 2015, Sankey et 

al. 2010, Struetker & Glenn 2006), forest un-
derstorey (Estornell et al. 2012) and wetlands 
(Luo et al. 2014, Kulawardhana et al. 2014). 
 The biggest challenge of using laser pene-
tration indices relates to defining vegetation 
returns. Typically, the lowest lidar returns are 
from the ground while anything above that 
is from vegetation. However, the common 
approach used in short stature environments 
is to set a height threshold and define all the 
returns within a specified window returning 
from above that height as vegetation returns. 
This height threshold and the filtering window 
size should be applied considering sensor lim-
itations for separating laser pulses returning 
from similar heights, characteristics of vegeta-
tion (i.e. amount of canopy openings) and the 
data (i.e. lidar point density). In short stature 
environments height thresholds used to define 
vegetation returns span a wide range from 0 
to >1.5m. Relatively smaller height thresh-
olds (i.e. <0.5m) have been used with higher 
point density of lidar data and sufficient can-
opy openings to facilitate laser penetration to 
the ground surfaces (Luo et al. 2014, Luo et al. 
2016, Ritchie et al. 1992, Weltz et al. 1994). 
Only a very few studies evaluated the effects 
of variable filtering window sizes and lidar 
point densities on the accuracies of lidar de-
rived cover variables (Luo et al. 2014, 2016). 
Over shrub dominated ecosystems, insufficient 
returns from vegetation in particular over het-
erogeneous cover conditions is one of the ma-
jor limitations in using laser penetration indi-
ces for canopy cover and/ or volume estimates 
(Li et al. 2015, Mitchel et al. 2015). In general, 
when sufficient canopy openings are avail-
able to allow laser penetration into the ground 
surfaces, first and last returns are expected to 
return from the top of vegetation and ground 
surfaces, respectively. However, canopy cov-
er estimates using only the first returns are 
also reported (Mitchell et al. 2011, Struetker 
& Glenn 2006). Two important issues can be 
identified in this approach. First, lidar return-
ing from ground surfaces (i.e. ground returns) 
are assumed to have no vegetation (0% cov-
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er) within their footprint whereas lidar returns 
originated from above the ground surfaces (i.e. 
non-ground/ vegetation returns) require only 
a minimal amount of vegetation to generate a 
return pulse. This in turn, can lead to a bias 
in non-ground/ vegetation classifications, and 
tend to overestimate vegetation cover. Sec-
ond, the exclusion of last returns can largely 
eliminate representation of bare earth surfaces 
leading to underestimation of ground surface, 
and thus overestimation of the amount of vege-
tation cover. Lidar intensity values can also be 
used as a measure of vegetation density (Go-
pfert & Heipke 2006). This approach is based 
on the hypothesis that every layer of vegeta-
tion decreases the intensity value for following 
echoes and thereby leads to decreased intensi-
ty values over dense vegetation. However, this 
hypothesis remains true for spectrally homo-
geneous vegetation layers, and is not applica-
ble for very dense vegetation surfaces that can 
yield higher intensity values due to poor laser 
penetration at the canopy surface. Only a few 
studies in short stature environments evaluated 
lidar applications for estimating canopy shape, 
area (Glenn et al. 2011, Mitchell et al. 2011), 
volume (Estornell et al. 2012, Hopkinson et al. 
2005, Li et al. 2015) and Leaf Area Index (Luo 
et al. 2014, 2016). In general, errors in can-
opy shape estimates were partially attributed 
to low point density (Li et al. 2015, Luo et al. 
2016, Mitchell et al. 2011, 2015). Even though 
the underestimation of canopy-projected area 
reported in these studies is substantial, these 
errors may be corrected by supplementary 
measurements from spectral data (Li et al. 
2015, Mitchel et al. 2015) and ground obser-
vations. 
 It is interesting to notice that over the past 
few years, increasing number of studies report-
ed using lidar derived vegetation height and 
cover variables for predicting vegetation bio-
mass in short stature environments more spe-
cifically, over tall grass dominated rangelands 
(Mograbi et al. 2015), coastal salt marshes 
(Kulawardhana et al. 2014, forest understorey 
(Estornell et al. 2011, 2012), sagebrush dom-

inated landscapes (Li et al. 2015), and crop 
lands (Luo et al. 2016). Even though the bio-
mass predictability of these models were poor 
(as compared to forest biomass predictions), 
marginal improvements have been reported 
when lidar data were integrated with vegeta-
tion indices derived from multi- or hyper-spec-
tral data (Kulawardhana et al. 2014, Li et al. 
2015). Underestimated vegetation heights 
from lidar data (Kulawardhana et al. 2014, Li 
et al. 2015) as well as inability of lidar derived 
cover variables to capture heterogeneous cover 
conditions (Li et al. 2015) are likely contrib-
utors for poor biomass predictability. Thus, 
improved height and cover detection with in-
creased lidar point density and/ or supplemen-
tary measurements from ground observations 
and spectral data along with improved meth-
ods will contribute to improving biomass pre-
dictions even in short stature environments. 

Errors and accuracies of lidar derived vegetation 
estimates 

Lidar applications in herbaceous environments 
report varying levels of accuracies in vegeta-
tion height estimates. However, the absolute 
errors in vegetation height estimates over simi-
lar vegetation were comparable (Table 3, Supp. 
Info.). The majority of these studies identified 
underestimation of vegetation heights as a 
common problem in short stature environ-
ments. Underestimation of vegetation heights 
is typically attributed to: laser penetration 
into vegetation generating return signals from 
material within the canopy rather than from 
top of the canopy surfaces (Clark et al. 2004, 
Gaveau & Hill 2003, Weltz et al.1994); poor 
representation of canopy surfaces due to low 
point density of lidar data (Glenn et al. 2011, 
Hodgson & Bresnahan 2004, Mitchell et al. 
2011, Straatsma & Middelkoop 2007, Streut-
ker & Glenn 2006) and/ sparse vegetation with 
increased canopy openings (Davenport et al. 
2000); overestimation of ground height due 
to minimal pulse penetration through dense 
vegetation (Adams & Chandler 2002, Ander-
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sen et al. 2006, Hodgson & Bresnahan 2004, 
Hopkinson et al. 2004, Wang & Glenn 2008, 
Weltz et al. 1994); sensor limitations includ-
ing signal detection thresholds (Wang et al. 
2009); limitations in the methods used in sepa-
ration of ground vs non-ground returns (Rosso 
et al. 2006); interpolation errors of either one 
or both of the ground and vegetation surfaces 
(Assellman, 2002, Hopkinson et al. 2005); or 
the combined effects of one or more of these 
factors (Glenn et al. 2011, Kulawardhana et 
al. 2014). For example, Glenn et al. (2011) at-
tributed sagebrush height errors to the errors 
in bare ground estimates, vertical accuracy of 
lidar system, lidar penetration in to the foliage, 
and insufficient/ missing lidar signals from 
topmost layers of sagebrush crown. Howev-
er, the majority of error contribution was due 
to laser penetration: at least two-thirds of the 
error was attributed to canopy penetration 
and/or the lidar missing the top of the sage-
brush crown. Similar findings were observed 
in grassland environments (Asselman 2002) 
where lidar missed taller plants leading to con-
siderable underestimates of vegetation heights. 
These findings suggest that in short stature 
environments, taller plants are too few or too 
wide apart to be clearly identified by the laser 
scanner. Further, low point densities of lidar 
data that increase the likelihood of missing the 
top of vegetation is also recognized as a major 
limitation in short stature vegetation (Glenn 
et al. 2011, Kulawardhana et al. 2014).Thus 
high point density lidar data is recommended 
for improving accuracy of vegetation height 
estimates in herbaceous environments. Several 
other studies (Cobby et al. 2001, Davenport et 
al. 2000, Struetker and Glenn 2006) however, 
recognized vegetation height underestimates 
as a result of increased canopy openings. To 
account for high canopy penetration in herba-
ceous environments, use of vegetation rough-
ness-based adjustment factor (i.e. standard 
deviation of vegetation returns within each 
pixel) was thus suggested. Other studies have 
demonstrated different factors that can poten-

tially introduce variable levels of error in lidar 
derived vegetation height estimates. These in-
clude variable sizes of the filtering or interpo-
lation window adapted in deriving vegetation 
height models (Glenn et al. 2006, Kulaward-
hana et al. 2014, Mitchel et al. 2011, Sankey & 
Bond 2011), variations in terrain slope (Glenn 
et al. 2006, Hodgson et al. 2005, Hopkinson 
et al. 2005), or the presence of unfavorable 
conditions (i.e. presence of surface water, in-
creased soil moisture) during data acquisition 
that attenuate laser pulses (Hopkinson et al. 
2004, Rosso et al. 2006). 
 Findings of a few studies indicated that er-
rors and accuracies of vegetation cover related 
estimates (i.e. percent cover, density, canopy 
shape, volume) using laser penetration indices 
vary largely across different landscapes/ eco-
systems of short stature vegetation. A strong 
agreement (r2 = 0.95) between lidar derived 
vegetation height distribution and vegetation 
cover of relatively taller rangeland vegetation 
(1-3 m), suggests lidar derived height distri-
bution as a good representation of the vertical 
profile of vegetation cover (Ritchie et al. (1992 
& 1996), while in a similar grassland environ-
ment, which was characterized by relatively 
shorter plants (<0.3m), laser measurements 
consistently overestimated vegetation cover 
(Weltz et al. 1994). In a salt marsh environ-
ment, none of the lidar derived cover measure-
ments (i.e. laser penetration indices) correlated 
directly with field measured vegetation cover 
(Kulawardhana et al. 2014). However, lidar 
derived cover related variables were able to 
predict 49% of vegetation cover (r2= 0.49) 
over sagebrush dominated landscapes with 
marginal improvements (r2= 0.58) when inte-
grated with spectral data (Mitchel et al. 2015), 
and thus indicated increased potential of lidar 
data for estimates of shrub cover. 
 Similar to the vegetation cover estimates, 
biomass prediction models using lidar varied 
largely over different environments (i.e. re-
ported r2 values are within a wide range from 
0.33 to 0.93). Overall, biomass predictability 
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of lidar derived variables remains relatively 
low as compared to forest biomass predictions 
using them. However, these biomass predic-
tion models improved at varying levels when 
integrated with spectral data from multi- or 
hyperspectral data (Estornell et al. 2012; Ku-
lawardhana et al. 2014; Li et al 2015). Fur-
ther, these studies, indicated point density 
of lidar data (Estornell et al 2011, 2012) and 
vegetation characteristics (Li et al. 2015) as 
key determinants of the accuracies of biomass 
prediction models. Findings from a salt marsh 
study (Kulawardhana et al. 2014) indicated 
that percent root square error of the biomass 
regression models were <20%, which is below 
the error threshold recommended for remote 
sensing based forest biomass prediction mod-
els that should be used repeatedly for the esti-
mation of forest carbon stock changes (Zolkos 
et al. 2013). These biomass prediction models 
therefore indicate a greater potential even in 
these challenging short stature environments. 

Concluding remarks and future direc-
tions

Use of lidar in vegetation studies has accelerat-
ed rapidly in recent years. While the literature 
on lidar applications in forestry is rich, rela-
tively lesser applications are reported in short 
stature non-forest environments. The majori-
ty of these studies have concentrated largely 
on terrain estimates, while a few used lidar 
derived variables for estimates of vegetation 
height, cover and biomass. In this review, we 
identified three broad categories of lidar ap-
plications in short stature environments for: 
1) estimating terrain elevation; 2) mapping 
and characterization of landscape and vegeta-
tion; and 3) estimating vegetation biophysical 
parameters (height, cover and biomass). Our 
discussions focus on their findings, in particu-
lar the levels of accuracies and errors reported 
as well as the limitations and potentials of the 
methods applied. These studies were scattered 

across a wide variety of ecosystems, ranging 
from short stature desert grasslands to shrub 
dominated woodlands/ scrublands, and were 
also distributed over different geographic as 
well as ecological regions. Methodological 
approaches and algorithms used in the major-
ity of these studies are largely similar to those 
reported in forested environments. However, 
several studies introduced novel approaches 
largely to overcome increased limitations re-
sulting from relatively short and dense vege-
tation. 
 Given the increased challenges in these en-
vironments, and considering the interplay be-
tween vegetation, terrain, and data characteris-
tics in determining the levels of accuracies of 
lidar derived terrain and vegetation estimates, 
we recognize that improved understanding on 
the interactions between laser pulses and vege-
tation and other ground objects remains crucial 
for the appropriate use of lidar in these envi-
ronments. This understanding should result 
from assessment of laser-beam properties and 
characteristics of both vegetation and terrain 
as they collectively govern laser-interactions 
with vegetation and thus determine the ability 
of lidar data to discriminate vegetation from 
ground. Laser beam properties can include 
temporal pulse width, band width of the detec-
tor, and footprint size. Vegetation characteris-
tics can include leaf orientation, plant height, 
and degree of canopy openings, while slope 
and terrain irregularities can be the two main 
terrain characteristics. 
 Accurate coding of ground vs. non-ground 
or vegetation returns has been one of the most 
critical first steps in both vegetation and terrain 
estimates in these environments. Even though 
a wide variety of filtering and interpolation al-
gorithms have been applied in deriving DEMs 
using lidar, there is a considerable conflicting 
information relating to the appropriateness of 
these algorithms over various terrain and veg-
etation cover conditions. For comprehensive 
evaluation of their applicability under varying 
terrain and vegetation conditions a rigorous 



190

Ann. For. Res. 60(1): 173-196, 2017                                                                                                                         Review article 

comparison of the strengths and weaknesses of 
these algorithms and filtering methods is neces-
sary. Although several studies evaluated vari-
ability of lidar accuracy by land cover, there 
are no straight forward methods or findings 
that report expected accuracy levels for spe-
cific land cover categories. As laser pulses do 
not penetrate every layer of the vegetation in a 
similar way, and as the vegetation influence is 
affected by the differences in both vegetation 
structure and composition, understanding veg-
etation influence on the lidar accuracy across 
vegetation layers and over different vegetation 
categories remains increasingly challenging. 
In general, the accuracy levels of terrain and 
vegetation estimates can be recognized as a 
function of a collection of parameters. These 
include characteristics of vegetation, lidar sys-
tem and data, terrain, and the conditions that 
existed during the time of data acquisition. 
 In non-forested short stature environments, 
variable levels of improvements in the classi-
fication accuracies were reported when lidar 
data were integrated with data from passive 
optical remote sensing. Over complex terrain 
and densely vegetated areas, lidar derived veg-
etation related variables when used in LULC 
classification models reported relatively poor 
performances. However, findings of these 
studies in general, indicate that the synergy of 
lidar and optical data improved LULC classi-
fications as compared to using either of these 
data alone. These findings thus highlight the 
necessity of developing appropriate classifica-
tion algorithms to optimize the use of lidar data 
while recognizing the limitations of each envi-
ronment pertaining to their vegetation, terrain 
as well as other site specific conditions, more 
specifically for complex terrain and densely 
vegetated landscapes.
 The majority of lidar applications in vege-
tation studies over non-forested environments 
concentrated on the estimates of vegetation 
heights and only a very few of them evaluated 
lidar potentials for estimating vegetation cov-
er, canopy shape, or the biomass. Studies from 

over a wide variety of ecosystems (i.e. rela-
tively arid grass and shrub land areas, flood-
plain grasslands, croplands, coastal salt marsh-
es, sagebrush dominated rangelands) indicate 
a good correspondence between lidar-derived 
and field-measured vegetation heights. How-
ever, consistent underestimates of vegetation 
heights, in particular over heterogeneous veg-
etation cover and when lidar point density was 
low is recognized as one of the major limita-
tions in using lidar for vegetation height as 
well as biomass predictions. Further, empirical 
relationships established in these studies to 
predict vegetation height from lidar data vary 
significantly. In addition, these studies were 
not able to suggest a single laser-derived sta-
tistic that is capable of predicting vegetation 
height or the cover. These findings thus indi-
cate that the applicability of such variables are 
largely determined by the interplay between 
variations of vegetation height and cover over 
the given area and the amount of information 
available in lidar data (i.e. point density). Er-
rors of lidar derived vegetation height, cover 
and biomass estimates reported in these envi-
ronments are substantial. These errors howev-
er may be corrected by using supplementary 
data from ground measurements and also by 
integrating lidar variables with spectral infor-
mation. These findings thus indicate potentials 
of lidar even in these complex and increasingly 
challenging short stature herbaceous environ-
ments.
 Considering increased challenges in these 
environments, some of these studies suggested 
that lidar applications might be limited in short 
stature, herbaceous vegetation (i.e. grasslands 
and croplands) and also in younger stands of 
woody dominated environments. However, 
with rapid developments in lidar remote sens-
ing techniques and increasing availability of 
data over different spatial and temporal scales, 
development of appropriate research methods 
and lidar remote sensing techniques is of crit-
ical importance for further expansion of lidar 
remote sensing in wider applications. Once 
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appropriate methods are established, lidar re-
mote sensing will provide effective techniques 
with greater potential for replacing laborious 
field-based measurements in vegetation stud-
ies as well as for spatially extending the site 
specific local scale field measurements so that 
large areas could be rapidly and accurately 
surveyed. In addition, given the ecological as 
well as economic significance of some of these 
non-forested ecosystems (i.e. rangelands, wet-
lands, croplands), expansion of research inter-
ests into these environments will contribute to 
furthering our understanding of lidar remote 
sensing capabilities for the study of important 
ecosystems, and their products and services. 
Such an understanding will serve as the basis 
for implementing appropriate methods and al-
gorithms that can be most suited for the specif-
ic conditions that prevail in these challenging 
and less lidar-exploited ecosystems.
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