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Abstract. Cut-to-length harvesting is a cost-efficient method of the wood 
supply chain. However, it risks causing stem damage in the mechanized 
process of thinning forest stands, thereby reducing the growth and tech-
nical quality of the remaining trees, which would then be exposed on the 
increased vulnerability to fungal diseases. For these reasons, it is critical 
to support quality monitoring of harvesting machines. One way to support 
quality monitoring is through the application of machine vision solutions. 
In this study, the damaged stems were photographed systematically from 
a strip road. The success of the stem-damage detection was analyzed to 
determine the relationships between successful detection, stand condition, 
and the image-processing technique. Statistically meaningful relationships 
were identified via logistic regression analysis, which can be used in selec-
tion of tailored image processing technique. The study indicated that the 
quality-monitoring system of mechanized harvesting could be improved by 
an increased focus on developing the multi-view photogrammetry of stem 
damages according to different stand conditions. Further, refining the ma-
chine learning system would support the need to determine accurate im-
age-processing thresholds of the texture of stem damages. Then, the overall 
proportion of successful stem-damage detections will be 89%. These im-
provements of the quality monitoring system will provide the efficient thin-
ning process in the sustainable wood supply from forests to forest industry. 
The implementation of such a system could be much broader, initially under 
Nordic conditions and then in other countries as well, given that its devel-
opment takes into considerations the significant calibration factors of local 
conditions.
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Introduction

In Finland, consistent forest growth has yield-
ed abundant wood resources. Annual growth 
in Finnish forests is higher than the annual 
harvested volume (23 million m³, solid cubic 
meter over bark). This situation causes limited 
care and development of forests by silviculture 
and logging on some forest areas, which threats 
viability of carbon sink in the sustainable for-
estry. Therefore, the sustainability strategy re-
garding national forestry has included setting a 
goal to provide the bigger volume of industrial 
wood harvesting from the current 65 million 
m³ to 90 million m³ by 2025 (Anonymous 
2015, Anonymous  2017a). Actually, new in-
vestments of forest industries will increase the 
demand for pulpwood. 
 Thinning has vastly increased importance 
as a potential source of pulpwood. However, 
the practice of thinning is fraught with envi-
ronmental challenges concerning the cutting 
quality of mechanized harvesting (Harstela 
1997, Han & Kellogg 2000a). As such, the 
wood harvesting industry would clearly bene-
fi t from a quality monitoring system that takes 
into account those aspects of sustainable for-
estry (ecological, economic, environmental, 
social) that have been recommended for com-
prehensive timber harvesting management 
in the Borealis Forest region (Laukkanen et 
al. 2004). In practice, poor harvesting quali-
ty consists largely of stand and soil damage, 
which bear directly on ecological sustainabil-
ity. Such poor quality results in growth loss-
es, rot defects, and a decline in the technical 
quality of residual trees, which in turn lead to 
economic losses (Vasiliauskas 2001, Mäkinen 
et al. 2007, Picchio et al. 2011). In forests, it is 
conventional for harvesting quality systems to 
be determined manually according to the fol-
lowing criteria: intensity of thinning, selection 
of trees, damage to residual trees, damage to 
the root system, damage to terrain, density of 
strip roads, and width of strip roads (Hassler et 
al. 1999, Han & Kellogg 2000b). 

 From an international perspective, the 
amount of wood-harvesting damage in Finland 
is low (Waters et al. 2004, Naghdi et al. 2009; 
Adekunle & Olagoke 2010, Behjou & Mol-
labashi 2012). There are several reasons for 
serious wood-harvesting damages abroad, in-
cluding harvesting method (Eroǧlu et al. 2009, 
Tavankar et al. 2013) and adverse stand condi-
tions for harvesting (Egan 1999, Camp 2002, 
Košir 2008, Nakou et al. 2016). Actually, the 
amount of tree damage in Finland has been on 
the rise and, in recent years, tree damages have 
been the single most signifi cant factor contrib-
uting to the deterioration of harvesting quality 
(Anonymous 2017b). Damage can be infl icted 
on various parts of the trees however this study 
only considers stem damages. According to the 
Finnish Forestry Centre (Anonymous 2017c), 
stem damage falls under the more general cat-
egory of damage to residual trees (after thin-
ning). Such damage is located above the pre-
sumed cutting surface of the stem. Further, a 
designation of stem damage obtains if the bark 
is damaged and the phloem layer is exposed 
more than 12 cm² under stem’s 1.3 m height or 
more than 30 cm² on whole stem surface. 
 The cut-to-length method (CTL) synchro-
nizes timber harvesting operations of the 
single-grip harvester and forwarder in the 
mechanized harvesting process (Ovaskainen 
& Heikkilä 2007). Recent studies concerning 
harvesting damage have focused on limited 
eff orts to identify damage in so-called un-
even-aged stands (Apafaian et al. 2015). There 
are several studies in Scandinavia for this is-
sue which focus on terrain damage caused by 
the forwarder (Granhus & Fjeld 2001, Surakka 
et al. 2011, Modig et al. 2012, Nevalainen et 
al. 2017). This study considers the single-grip 
harvester because stem damage usually occurs 
when the harvester’s boom strikes the remain-
ing trees. In addition, the impact of felled trees, 
along with the size of the tree that strikes the 
stems, contributes to stem damage sustained 
by the residual trees (Athanassadis 1997). 
 In Finland, the responsibility for managing 
the quality of wood harvesting is assumed 
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by the government authorities and wood pro-
curement organizations (Palander 1999). In 
practice, the quality of wood harvesting (e.g. 
stem damages) is mainly a matter of self-mon-
itoring by forest machine operators. The need 
for such self-monitoring reduces the produc-
tive work time of the human-machine system 
(i.e. forwarder or single-grip harvester). As 
such, self-monitoring can be regarded as a 
productivity-decreasing and cost-increasing 
factor that aff ects timber harvesting, because 
human resources are withdrawn from produc-
tive work to monitor the quality of harvesting 
(Ovaskainen & Heikkilä 2007, Pryor et al. 
2010, Spinelli et al. 2014). Self-monitoring 
can also be susceptible to psychological stress 
because the additional work demand gener-
ates a hectic pace and imposes a psychologi-
cal burden (Ovaskainen & Heikkilä 2007). In 
addition to the environmental and ecological 
aspects of sustainability, there is clearly room 
for improvement related to the economic and 
social sustainability of timber harvesting; such 
improvement could be achieved via computer-
ized systems. The practice of manual quality 
monitoring could be replaced by introducing 
a digital image processing technique, fi rst 
proposed in the 1960s, into the system (Ros-
enfeld 2015). Since the original inception of 
the digital image processing method, hundreds 
of similar techniques have been developed for 
image processing (Sonka 2015). For example, 
integrated machine learning and classifi cation 
systems can be used in image processing (Luo 
et al. 2016). So far, however, a system tests 
have yielded unsatisfactory cost/benefi t ratios 
that have prevented their implementation in 
the everyday operation of mechanized harvest-
ing.
 In Finland, sophisticated terrestrial laser 
scanning systems have been tested in rela-
tion to wood harvesting. In addition to these 
systems, forest technology aims to combine 
multi-view photogrammetry and image pro-
cessing, both of which have performed suc-
cessfully in operational tests requiring the 

automated volumetric measurement of truck-
loads in timber transportation (Acuna 2017). 
Recent forestry-related studies indicate that 
multi-view photogrammetry, an aff ordable al-
ternative to laser scanning systems (Rose et al. 
2015, Rodríguez-García et al. 2014), could be 
implemented operationally in timber harvest-
ing (Nevalainen et al. 2017, Forsman et al. 
2016, Borz et al. 2017, Hyyppä et al. 2018). 
Future research should compare the effi  cacy of 
photogrammetry and laser scanning systems 
for timber harvesting decision support regard-
ing their accuracy and costs. So far, the quality 
monitoring systems that collect digital infor-
mation about the cutting quality are not well 
known. 
 This research aimed to determine whether 
it is possible analyze/process stem damage in-
formation via terrestrial camera-based digital 
photographs. Further, this experimental study 
carefully analyzed an image processing algo-
rithm to evaluate its viability for improving 
quality monitoring in forest thinning. It is hy-
pothesized that, with respect to stem damage 
detection, an automatic monitoring system 
based on image processing could provide de-
cision support to the stakeholders when they 
are evaluating the quality of sustainable wood 
supply during daily timber harvesting opera-
tions.

Material and methods

Materials

The research material consisted of 104 digi-
tal photographs, featuring various instances 
and perspectives of stem damage. The pho-
tography was carried out in the context of a 
timber harvesting experiment subsidized by 
the forest industry company of Stora Enso in 
June 2016 at a forest of Finnish Park Service 
(N6882431.114, E401591.172 (ETRS-TM-
35FIN)) in southern Finland. The damage 
simulations were generated manually, by re-
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moving a long or square piece of bark from the 
surface of the stem and the phloem (Figure 1). 
Alternatively, the bark was removed, exposing 
the wood material by extending the damage 
at the xylem. The damages were simulated at 
roughly a 90º angle in relation to the strip road, 
in such a way as to make them observable 
from a harvester’s workstation. The worksta-
tions were at a distance of ten meters along the 
strip road. From each workstation, zero to four 
stems were selected for photographs, depend-
ing on the amount of suitable stems and their 
respective locations. Damaged stems were 
tagged with labels for identifi cation purposes.
 The stem damage was simulated on 23 Scots 
pines (Pinus sylvestris L.) and 31 Norway 
spruces (Picea abies Karst) (Table 1). The 
mean diameter of the damaged trees was 22.4 
cm at a 1.3 m height. The stem damage was 
photographed on a location 1.5 m above the 

ground surface, fi rst with number labels and 
then without. The number of stem damage 
observations was 248. The average length of 
the stem damage was 31.8 cm (min 7 cm and 
max 117 cm) and the average width was 5.7 
cm (min 2 cm and max 14 cm).
 The damaged stems were photographed 
from three vantage points at 15 workstations 
(Figure 2). Due to diffi  cult harvesting condi-
tions, 19 trees were photographed from one 
vantage point at 11 workstations. If the stem 
damage was photographed from three vantage 
points, the camera was shifted 3.5 m forward 
and backward along the strip road (Figure 2). 
The average distance from point of photogra-
phy to the damaged stems was 6.4 m. 
 The photography was carried out during 
summer daylight hours in cloudy, partly 
cloudy, and sunny weather conditions. Sea-
sonal variation in the  color values of the stem 

damage and the forest was avoid-
ed by photographing the damage 
immediately following the dam-
age simulation. The stem damage 
was photographed with a Canon 
EOS 60D DSLR digital camera. 
The focal length of the camera 
lens was set at 18 mm. The cam-
era was connected to a tripod to 
maximize stability (Figure 2). Im-
ages were recorded and archived 
in JPEG format. The images were 
5,184 pixels in width and 3,456 
pixels in height. The color profi le 
of the images was sRGB with a bit 
depth of 24. 

Features of stem damage: a) phloem is revealed in 

long stem damage, b) xylem is revealed in square stem 

damage.

Figure 1

Successful stem 
damage detection

Total sample
statistics

Texture
Damage 
location

Image-fi lming 
angle

Sun Species

N SD n
1

n
2

n
1

n
2

n
1

n
2

n
1

n
2

n
1

n
2

Yes 126 242 122 4 117 9 73 53 65 61 67 59
No 122 215 54 68 80 42 35 87 47 75 67 55
Summary 248 223 176 72 197 51 108 140 112 136 134 114

Basic information about stem damage in the photographsTable 1
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The stem damage detection process 

Computer detection of the stem damage was 
achieved by applying the threshold-based lin-
ear classifi cation method in the image process-
ing by using MATLAB and ImageJ program. 
The algorithm was designed to identify pixel 
clusters characterized by the typical yellow-
ish color of fresh wood, given the exposure 
of the phloem or xylem of trees caused by 
damaged stems. Stems are also assumed to 
be dark or brownish in color on trees such as 
Scots pine and Norway spruce. The detection 
process consisted of eleven steps, of which six 
were aimed at detecting the stem; steps seven 
through ten were focused on the stem damage 
detection (Figure 3).
 In Step 2, the stems are roughly delineated 

by removing the background 
vegetation and the sky from the 
original RGB image (the cre-
ation of which was Step 1). This 
is achieved by excluding pixels 
that were too green (the vegeta-
tion), and too white or blue (the 
sky) from the image, by setting 
the pixel value to 0, if the RGB 
values of the corresponding 
colors are above the empiri-
cally defi ned threshold values. 
In Step 3, a median classifi er 
is applied, which smooths out 
randomly-distributed pixels and 
can be used to identify vertical 
objects like the stems. In Step 
4, pixel clusters smaller than 
the established threshold value 
are removed from the image, 
leaving only the stems. In Step 
5, the possible holes remaining 
in the stems are fi lled. In Step 6, 
the stem textures are restored. In 
Step 7, pixels that deviate from 
the average stem color, includ-
ing yellowish damaged stem, 
are highlighted. In Step 8, pixels 
that are too green, blue or white 
are removed, using a similar 

threshold technique to that in Step 2. The pur-
pose of Step 8 is to scrub out any vegetation, 
lichen or sunlight refl ections that might mis-
identifi ed as the stem damage (false positives). 
In Step 9, a median classifi er is applied again 
to smooth out randomly-distributed pixels, 
further reducing the potential number of false 
positives. In Step 10, any remaining potential 
false positives are removed from the image, 
by excluding pixel clusters that are too qualify 
as actual stem damage. The detection process 
concludes in Step 11, when the result mate-
rializes; this fi nal step produces an image, in 
which the stem damage is visible.

The camera position at the edge of the strip roadFigure 2
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The software package ImageJ was used to 
quantify stem damages. We wrote a macro for 
ImageJ, which worked on bimodal distribu-
tions and presented the image to the user. After 
that, the values of threshold were used to seg-
ment the image, until a satisfactory result was 
achieved.

Analysis of the stem damage detection 

process

The success of stem and stem damage detec-
tion is an index of information quality; the suc-
cess was evaluated on the basis of visualized 
phases of the color processing algorithm (Fig-
ure 3). In fact, successful stem detection was 
determined by the sixth step of the algorithm, 
which restored the stem texture. The detection 
was designated successful if the texture and 
stem feature were successfully recovered, rela-

tive to the original image. The size and area of 
restored texture had to match the stem in terms 
of feature, shape, and position. A successful 
detection designation was applied to cases 
where multiple branches at diff erent heights 
on stem compromised visibility, but permitted 
detection of the lower part of the stem to be 
detected. Further, detection was classifi ed as 
successful in cases where the small fractions 
of texture at the stem’s edge were missingdue 
to light refl ections, for example, but the stem 
was still clearly recognizable.
 The success of the stem damage detection 
was determined from the step 10 of the algo-
rithm. Correct fi ndings were evaluated and 
recorded if the stem damage was comparable 
to that of the original image. For  further anal-
ysis of the success of the detection process, the 
detections were divided into two categories 
by stand condition. Construction of classify-

The depiction of the stem damage detection: 1) The original RGB 

image; 2) the image after removal of the background sky and vege-

tation; 3) median classifi er; 4) removal of small, non-stem objects; 

5) hole-fi lling; 6) texture restoration, 7) the highlighted image after 

the mean stem color subtraction, 8) removal of too-green, too-blue 

or too-white pixels, 9) median classifi er, 10) removal of too-small 

pixel clusters (false positives). 

Figure 3
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ing categories was based on the features due 
to variation in damage, photographing point, 
sunlight, tree species and in the calculated re-
lations of the distance from the photograph-
ing point to the stem damage divided by stem 
diameter at 1.3 m height, damage length or 
damage width. On the other hand, the causes 
of detection failures were analyzed by clas-
sifying the steps of detection algorithm into 
separate groups, which lead to failures in the 
image processing. The consistency of the al-

gorithm examined from two sets of digital 
photographs (with labels and without labels) 
that were fi lmed from the same photographing 
point (Figure 4).
 In addition to the visual analysis of success-
ful detection of data presented in Table 1, we 
demonstrated the relationships between the 
predicted outcome (e.g. successful stem dam-
age detection) and certain characteristics of 
stand conditions (e.g. photographic distance) 
and image-processing technique found in ob-

The image pairs of research material (a, c, e) and (b, d, f). There are successful detec-

tions of stems (c, d) and stem damages (e, f) in both photography series.

Figure 4
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servations by using logistic regression mod-
els (Hosmer & Lemeshow 2000, Huang et 
al. 2017). Logistic regression was developed 
in 1958 (Cox 1958). Logistic regression is a 
multivariate analysis method that studies the 
relationship between independent variables 
and dependent variables i.e. variable y and a 
series of infl uencing features x (Huang et al. 
2017).  
 A fi rst logistic regression model demonstrat-
ed the relationship between the successful stem 
damage detection (outcome) and all stand con-
ditions (independent variables). Another mod-
el demonstrated the signifi cant relationship 
between the successful stem damage detection 
and image-processing technique (texture) and 
selected stand conditions. We made judgments 
concerning whether any discrepancies ob-
served will likely aff ect the use of the model 
for its intended purpose i.e., for improving the 
stem damage detection system with regard to 
the association between the independent vari-
able and the outcome. The measures of eff ect 
are divided into “total” and “local” measures. 
For the present data, measures are described in 
Table 2, which is used in the logistic regression 
analysis. Data are entered into the analysis as 
0 or 1 coding for the dichotomous outcome, 
continuous values for continuous predictor 
“distance”, and dummy coding (e.g., 0 or 1) 
for categorical predictors. For example, there 
are 73 observations of category 1 (image-fi lm-
ing angle = 90°) and 53 observations of cate-
gory 2 (image-fi lming angle ≠ 90°) when stem 
damage detection was successful (Yes) in Ta-

ble 2. Categories of the stand conditions are 
described in Table 3. In testing of the logistic 
regression model, higher sensitivity and speci-
fi city of the classifi cation table indicate a better 
performance of the model (Hosmer & Leme-
show 2000).

Results 

The success of detection process in image 
processing was assessed by grouping the de-
tections according to stand conditions. The 
stem detection (81%) succeeded better than 
the stem-damage detection (51%) for all 
stand-condition groups (Table 3). The stem 
detection succeeded best when there were no 
sunlight refl ections on the surface of the stems 
surface (92%) and no visible sunlight (88%). 
The success rate of stem detection was 59% 
if stem damages were on the side of the stem 
or notably low on the stem. The most success-
ful stem-damage detection (68%) was attained 
when the damage was photographed from the 
middle of the workstations (90°), and when the 
sun was not lightening the image (61%). If the 
stem damage was situated at the side and on the 
low part of the stem (<50 cm), the success rate 
was 18%. In the categories of these stand-con-
dition groups, the diff erences between the suc-
cessful detections were statistically signifi cant 
(Table 3).
 The number of concurrently successful de-
tections of the stem and stem damage was 121 
(49%). In addition to the group analysis of suc-

Successful stem 
damage detection

Total sample
statistics

Texture
Damage 
location

Image-fi lming 
angle

Sun Species

N SD n
1

n
2

n
1

n
2

n
1

n
2

n
1

n
2

n
1

n
2

Yes 126 242 122 4 117 9 73 53 65 61 67 59
No 122 215 54 68 80 42 35 87 47 75 67 55
Summary 248 223 176 72 197 51 108 140 112 136 134 114

Description of data for logistic regression model consists of total statistics and local measures of 

stand conditions and image-processing technique (Texture) 

Table 2

Note. Abbreviations: N - number of observations, SD - standard deviation, n
1 
- number of observations of 

category 1, n
2
 - number of observations of category 2.
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cessful detections by stand conditions, causes 
of unsuccessful detection were analyzed by 
examining the operations of the image-pro-
cessing algorithm. There were several steps 
combined into one category, which led to de-
tection failure, but it was possible to attribute 
the failure to one main single step (Table 4). 
These results were determined visually, using 
images to evaluate the cause-eff ect relation-
ship between that step and the detection fail-
ure.
 Step 4 of the algorithm, in which unreal 
stem objects were removed, was the most sig-
nifi cant contributing factor to detection failure. 
Step 5, in which the holes inside the stem were 
fi lled, was another problematic phase. Finally, 
Step 10, in which the false stem damages were 
removed by eliminating small pixel clusters, 
ultimately removed real stem-damage obser-
vations in 12 cases. 
 The other statistical analysis aimed to in-

vestigate the relationships between successful 
stem-damage detection, stand condition, and 
image-processing technique. To this end, a lo-
gistic regression method was used to develop 
two prediction models for successful detection 
(Tables 5 and 6). When all previously present-
ed stand condition variables were included in 
the model (Table 5), the model indicated that 
the overall proportion of successful stem-dam-
age detection was 77% (Table 7). When the 
image’s texture and the statistically signifi cant 
stand conditions were selected for incorpora-
tion into the model (Table 6), the overall pro-
portion of successful stem-damage detections 
was 89% (Table 7). The proposition was 74%, 
when the statistically signifi cant stand condi-
tions were included in the model.

     Observation Stem detection Stem damage detection
Group Cat Stand condition N n % χ2 n % χ2

X
1

1
2

Image-fi lming angle = 90°
Image-fi lming angle ≠ 90°

108
140

92
108

85
77

2.5 73
53

68
38

21.5
(***

X
2

1
2

Sunlight refl ection at the stem
No sunlight refl ection at the stem

80
168

46
154

58
92

40.5
(***

23
103

29
61

22.9
(***

X
3

1
2

Sunlight in image
No sunlight in image

136
112

102
98

75
88

6.1
(*

61
65

45
58

4.2
(*

X
4

1
2

Norway spruce
Scots pine

114
134

95
105

83
78

0.9 59
67

52
50

0.1

X
5

1
2

Square stem damage
Long stem damage

144
104

115
85

80
82

0.1 75
51

52
49

0.2

X
6

1
2

Damage is located at middle of stem
Damage is not located at middle of stem

197
51

170
30

86
59

19.5
(***

117
9

60
18

28.2
(***

X
7

1
2

Distance and DBH ratio <28.75
Distance and DBH ratio >28.75

124
124

106
94

86
76

3.7
(*

70
56

57
45

3.1

X
8

1
2

Distance and damage height ratio <28.55
Distance and damage height ratio >28.55

124
124

106
94

86
76

3.7
(*

68
58

55
47

1.6

X
9

1
2

Distance and damage size ratio <120
Distance and damage size ratio >120

124
124

104
96

84
77

1.6 69
57

56
46

2.3

Total observations 248 200 81 126 51
Statistical signifi cance of Chi-square test value, (* - p<0.05, (** - p<0.01, (*** - p<0.001

The successful stem and stem-damage detections, by the stand conditionsTable 3

Note. Abbreviations: N - total number of observations, n - local number of observations, % - share of success-

ful detections, Cat - category, χ2 - chi-square test value.
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Stem and stem-damage detection failures of the algorithm in the image processingTable 4

Note. Abbreviations: n - number of detection failures, % - share of false detections.

Category Step Defi nition of image-processing operation n %

Original image 1 Reads new image from the database 0 0

Stem detection
2
3

Removes background sky and vegetation
Median classifi er

11
14

4
6

Stem processing
4
5
6

Removes small non-stem objects
Fills holes
Restores texture

55
22
0

22
9
0

Stem-damage detection
7
8
9

Mean trunk color subtraction
Removes too-green, too-blue and too-white pixels
Median classifi er

9
3
1

4
1
1

False stem-damage removal 10 Removes small pixel clusters 12 5

Report 11 Reports successful detections 0 0

Relationships between successful stem damage detection and stand conditions in image processing 

of photograph taken from the strip road in timber harvesting. Statistically meaningful stand condi-

tions are marked with bold font.

Table 5

Model Y = a + b
1
X

1
 + b

2
X

2
 + b

3
X

3
 + b

4
X

4
 + b

5
X

5
 + b

6
X

6
 + b

7
X

7
 + b

8
X

8
 + b

9
X

9

The cut value 
is .500

where
Y - successful stem-damage detection (1 - yes, 0 - no)
 a - constant
X

1
 - fi lming angle (1 - 90°, 0 - no 90°)

X
2
 - sunlight refl ection on stem (1 - yes, 0 - no)

X
3
 - sunlight on image (1 - yes, 0 - no)

X
4
 - species (1 - spruce, 0 - pine)

X
5
 - damage feature (1 - square, 0 - long)

X
6
 - damage location (1 - middle, 0 - side)

X
7
 - distance/stem damage diameter at 1.3 m >28.75 (1 - yes, 0 - no)

X
8
 - distance/damage length >28.55 (1 - yes, 0 - no)

X
9
 - distance/damage width >120 (1 - yes, 0 - no)

b
1, 

b
2, 

b
3, 

b
4, 

b
3, 

b
4, 

b
5, 

b
6
, b

7, 
b

8, 
b

9
 - coeffi  cients of the variables

Predictor
Parameter 
estimate, β

Standard 
error, β

Wald’s
χ2 df p-value

Odds ratio
expβ

a 9.822 1.909 26.465 1 .000 18428.281
b

1
-1.087 .348 9.769 1 .002 .337

b
2

-1.241 .417 8.858 1 .003 .289

b
3

-.324 .419 .597 1 .440 .724
b

4
-.287 .321 .804 1 .370 .750

b
5

-.965 .533 3.275 1 .070 .381
b

6
-1.786 .452 15.642 1 .000 .168

b
7

-.226 .326 .482 1 .487 .797

b
8

-.966 .479 4.074 1 .044 .381

b
9

-.169 .362 .218 1 .640 .847

Goodness-of-fi t test χ2 df p-value

Hosmer and Lemeshow 6.767 8 .562
Note: Cox and Snell R2 = .242, Nagelkerke R2 (Max rescaled R2) = .322
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Discussion

In Finland, managers of wood procurement 
organizations need decision support for relat-
ed to quality monitoring of sustainable wood 
harvesting (Laukkanen et al. 2004, Palander 
1999). At the system level, data and informa-
tion should be collected during the harvesting 
operations by automatic quality monitoring. So 
far, this kind of decision support is not avail-
able, and the current manual or terrestrial laser 
scanning-based monitoring methods are re-
source-intensive (Forsman et al. 2016, Hyyppä 
et al. 2018). Therefore, the aim of this research 
was to determine whether it is possible to gen-
erate the requisite stem damage information 
from normal terrestrial camera-based digital 
photographs. Further, in this experimental 
study, an image-processing algorithm was ana-

lyzed carefully for the development of a quali-
ty monitoring system of timber harvesting. The 
research material was photographed during 
normal summer weather (Table 1). The study 
revealed the stem-damage detection success 
in actual harvesting circumstances, but there 
are needs for the future tests to show that the 
system works during winter conditions. The 
detection algorithm operated very similarly in 
the image pairs, when the lighting conditions 
did not change signifi cantly between capturing 
of images. As expected, abundant sunlight and 
refl ections caused by lighting are signifi cant 
issues that bear on the performance of image 
processing and monitoring of stem damages. 
In the future, the image-processing algorithm 
can be developed in such a way as to render 
the system cognizant of varying lighting con-
ditions in timber harvesting. 

Eff ects of image-processing technique and stand conditions on the successful detection of stem 

damage in image processing of photograph taken from strip road in timber harvesting. Statistically 

meaningful stand conditions and image-processing technique eff ects are marked with bold font.

Table 6

Model
Y = a + b

1
X

1
 + b

2
X

2
 + b

3
X

3
 + b

4
X

4
 + b

5
X

5
+ b

6
X

6

The cut value 
is .500

where:
Y - successful stem damage detection (1 - yes, 0 - no)
 a - constant
X

1
 - distance from stem to photography point, cm 

X
2
 - image texture (1 - yes, 0 - no)

X
3
 - damage location (1 - middle, 0 - side)

X
4
 - fi lming angle (1 - 90°, 0 - no 90°)

X
5
 - sunlight on image (1 - yes, 0 - no)

X
6
 - species (1 - spruce, 0 - pine)

b
1, 

b
2, 

b
3, 

b
4, 

b
5, 

b
6
 - coeffi  cients of the variables

Predictor
Parameter 
estimate, β

Standard 
error, β

Wald’s
χ2 df p-value

expβ

odds ratio

a 4.007 .863 21.581 1 .000 54.999
b

1
-.004 .001 12.968 1 .000 .996

b
2

-5.148 .741 48.247 1 .000 .006

b
3

-1.242 .517 5.765 1 .016 .286

b
4

1.558 .461 11.403 1 .001 .475
b

5
-.966 .401 5.791 1 .016 .381

b
6

-.901 .426 4.483 1 .034 .406
Goodness-of-fi t test χ2 df p-value
Hosmer and Lemeshow 32.886 8 .000
Note: Cox and Snell R2 = .477, Nagelkerke R2 (Max rescaled R2) = .636
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 The analysis of the eff ects of stand condi-
tions succeeded well, identifying most import-
ant stand conditions. In addition to the statisti-
cally signifi cant stand conditions, tree species 
(Norway spruce, Scots pine) and stem damage 
shape (square, long) were selected for the lo-
gistic regression analysis as important stand 
conditions for additional tests. On the other 
hand, it was clear that the detection algorithm 
aff ected the success of stem-damage detection. 
There was no information about stem features 
or a suitable image-processing technique in 
the literature for constructing an effi  cient algo-
rithm for the stem damage detection (Forsman 
et al. 2016). To evaluate the performance, the 
success of stem and stem-damage detections 
was determined visually from images by as-
sessing the cause-eff ect relationships between 
the steps of the algorithm and detection fail-
ure. The algorithm yielded detection failures 
due to thin holes in the recovered matrix of 
stems, which were caused by the sun’s refl ec-
tions, damage situated at the side of the stem 
or twigs of the vegetation. The results revealed 
that determination of thresholds and the size of 
pixel groups used as criteria for fi lling holes in 
image texture were important features of the 
algorithm. This information can be used to de-
velop a more eff ective image-processing tech-
nique for the future. Consequently, the texture 
of the image was also selected for another lo-
gistic regression analysis, which increased the 
overall proportion of successful stem-damage 
detections to 89% (Table 7). 
 The image processing requires a careful de-

termination of thresholds for image-texture 
operations, because the algorithm had not been 
integrated with any advanced mechanism. For 
example, in Step 4, fi lling of the holes could 
malfunction, if there were small open connec-
tions between the stem matrix and the back-
ground. As a result, the stem texture recovery 
(Step 5), often missed a part of the texture, and 
that missing piece may have represented stem 
damage in the original image. A solution to 
this problem requires a better threshold-based 
matrix correction mechanism, which can be 
developed for the current system by utilizing 
the logistic regression (Huang et al. 2017).
 The importance of the physical dimensions 
of stem damage emerged when image texture 
was included in the analysis of the successful 
stem-damage detection. If the algorithm did 
not detect the stem damage, its distance to the 
photographic point was often found to be too 
far. In this preliminary study, we did not ac-
tively try to determine the optimum thresholds 
for a false damage elimination or a real dam-
age defi nition. The size of the removed pixel 
clusters (<1,000 pixels) was defi ned heuris-
tically (as rule of thumb) for the used image 
material. It should be noted that the average 
size of simulated damage was 31.8 cm high 
and 5.7 cm width in this study. In practical 
wood harvesting, the damage can be smaller 
and have diff erent feature, so the detection of 
distant damages can be a challenging for im-
age processing without the adaptively resizing 
removed pixel clusters (thresholding) for used 
image material. This will be implemented with 

Predicted
Correct prediction, %

A B A B

No Yes A B

Observed
No 85 105 37 17 60.7 86.1
Yes 21 10 105 116 83.3 92.1

Overall percentage 76.6 89.1

Classifi cation of successful stem-damage detections (No - 0, Yes - 1) from the strip road in thinning, 

using two prediction models in respect to diff erent predictor variables: A - with stand conditions, B 

- with stand conditions and image-processing technique. Prediction models are described in Tables 

5 and 6.

Table 7
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training data, using computer learning theory 
and methods. In fact, it would be interesting 
to develop an algorithm that can also estimate 
the size of the damage in addition to detection 
of the damage. Then, the size could be used 
as an additional quality criterion in the quality 
monitoring system.
 As mentioned, the logistic regression anal-
ysis determined relationships between the 
stand conditions and the image-processing 
technique for prioritization of future studies 
on adaptive threshold techniques related to 
the successful stem-damage detections. On the 
other hand, Tables 5 and 6 show interactions 
(correlations) between the several independent 
variables (predictors, features) which aff ect the 
successful stem damage detection. For exam-
ple, tree species became the statistically sig-
nifi cant predictor, when image’s texture was 
added to the consideration (Table 6). Besides, 
fi lming angle and damage location retained 
statistically meaningful independent variables 
in both models, which interact with each oth-
er; there were signifi cant detection problems, 
when the damage was located at the side of the 
stem from the point of view of photographing 
position. Damage location itself had a minor 
eff ect on the stem detection, but in situations 
where damage was situated on the side, the 
distance between the photographic point and 
stem was also longer, and there were more for-
est objects near the stem in the image, which 
reduced stem detection success. For example, 
branches between the observed stem and the 
photgraphic point may cause problems within 
the stem-damage detection processes, espe-
cially in Norway-spruce-dominated forests. 
 The abovementioned problems can be avoid-
ed by developing the stem damage detection 
via multi-view photogrammetry, in which the 
algorithm estimates and forms one interface 
as the average of several consecutive detect-
ed interfaces from the strip road of thinning, 
when a harvester is forwarding in a stand (Ne-
valainen et al. 2017, Rose et al. 2015, Forsman 
et al. 2016). In this study, we just used direct 

observation made by the algorithm without 
that kind of estimation. Recent studies have 
suggested that multi-view photogrammetry is 
an aff ordable alternative for implementation in 
operational wood procurement (Acuna 2017, 
Borz 2017). As to future implementation, ter-
restrial photographing from a moving harvest-
er (or forwarder) and increasing the number of 
images are recommended steps for image ac-
quisition, to ensure adequate overlap between 
views. 
 In this study, the logistic regression mod-
el was applied to determine the relationships 
between certain features and successful stem 
damage detection. Besides, the logistic regres-
sion can also be called as a linear classifi er be-
cause it provides a decision boundary which 
is linear in nature. So, the classifi cation of 
image features made by the logistic regression 
would be linear classifi cation, which can be 
utilized in machine learning applications (Luo 
et al. 2016, Huang et al. 2017). Accordingly, 
future studies about machine learning will 
reveal the eff ectiveness of multi-view UAV 
photogrammetry for detection of successful 
outcomes in image processing. Based on the 
literature and this experimental study, both ter-
restrial multi-view UAV photogrammetry and 
machine learning are suggested for use in the 
construction of an image-processing algorithm 
for more advanced quality monitoring of tim-
ber harvesting. The automatic quality monitor-
ing system described above, in detail, would 
have several advantages in mechanized wood 
harvesting relative to current systems. In prac-
tice, the forest machine operators’ obligation 
to self-monitor can be avoided with this kind 
of decision support, which yields more cost-ef-
fi cient cutting work and the required quality 
(features) of sustainable wood harvesting to 
the forest industry and forest owners. Lessons 
have been learned during this study, and the 
image-processing system will be developed 
further.
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Conclusions

In Finland, forestry companies that operate 
in compliance with standards for sustainable 
forest management are recognized by sustain-
ability certifi cates awarded by impartial third 
parties. This study analyzed a quality-moni-
toring system that will provide a decision sup-
port to the stakeholders to account for quality 
aspects of sustainable forestry in mechanized 
wood harvesting. The study revealed that it is 
possible to implement automatic image-based 
detection of stem damage in normal harvest-
ing conditions. The terrestrial detection system 
was promising in the context of the current de-
velopment stage, where the algorithm lacked 
advanced neural mechanisms and detections 
were based on direct and separate observations 
without multi-view UAV photogrammetry. 
Further, it was possible to explain most of the 
unsuccessful detections via algorithmic analy-
sis and logistic regression modeling. Therefore, 
the results obtained from the image-process-
ing analysis indicate that the automatic stem 
damage detection software can be employed to 
create a quality-management system applica-
ble to Finnish forestry. Subsequently, a stem 
damage index-based monitoring system would 
be able to provide wood harvesting operators 
and entrepreneurs the requisite information to 
minimize the damage sustained during daily 
harvesting operations. Relative to human fi eld 
measurements, the time spent on monitoring 
can be signifi cantly reduced, albeit at a cost of 
some omitted instances of stem damage and 
a minimally reduction in precision. The im-
plementation of such a system could be much 
broader, initially under Nordic conditions and 
then in other countries as well, given that its 
development takes into considerations the sig-
nifi cant calibration factors of local conditions.
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